
Chapter 2: Divide and Conquer
Anna Brandenberger, Anton Malakhveitchouk

January 26, 2018

This is the second chapter of the augmented transcript of a lecture
given by Luc Devroye on the 11th of January 2018 for the Honours
Data Structures and Algorithms class (COMP 252, McGill University).
The subject was the Divide-and-Conquer algorithm design method.

Principle

The principle of the divide-and-conquer method is to solve a large
problem by breaking it down into several sub-problems, recur-
sively solving them, and finally merging the solutions to these sub-
problems to give the final solution.

Figure 1: Diagram of the idea behind
the divide-and-conquer algorithm
principle.Sample Problems

Example 1. Chip Testing Problem1 1 Cormen et al. [1989] exercise 4-5.

• Context: A factory produces chips that are either good (G) or bad
(B). To evaluate their state, the chips can be paired in a testing
device where the two chips evaluate each other, i.e., each chip
gives its opinion on whether the other is good or bad. Good chips
tell the truth, while bad chips are unreliable.

• Goal: Given n chips, determine their state (G/B), with the premise
that the set of good chips G is larger than the set of bad chips B:
|G | > |B| 2. Complexity is measured in terms of the number of 2 This is a necessary condition. One

can prove that if it is reversed, the
algorithm could fail.

uses of the testing device, which acts as an oracle.

The tester has three possible outputs according to the opinions
given by the chips: GG, BB or BG. Note the following:

GG
}

implies that both chips are from G or both are from B.

BB

BG

}
implies that the pair contains at least one chip from B.

Algorithm Proposal:

1. Find one good chip using the Divide-and-Conquer method.

2. Do n − 1 additional tests to determine the state of every other
chip.

Figure 2: Diagram of the Tester, an
oracle (type of device described in the
first class on 01/09, a "black box" device
capable of producing a solution to a
given computational problem in one
operation).



chapter 2: divide and conquer 2

The divide-and conquer algorithm for finding one good chip
depends on whether n is even or odd. We will deal with the even
case first, and then modify it slightly to yield the odd case.

Even case: There must be at least one GG pair to
begin with, since |G | > |B| (pidgeon-
hole principle). In the first elimination,
each non-GG pair removed contains
at least one chip from B, so there
are more (or equal number) bad than
good chips eliminated, therefore the
|G | > |B| condition is preserved for
the remaining GG pairs. Furthermore,
the two sets of chips in the GG pairs are
identical, therefore eliminating one of
them still guarantees |G | > |B|.

• Pair the chips and test: total n/2 pairs (tests).

• Eliminate all pairs that are not GG.

• For each such GG pair, eliminate the second chips. (This is the key
divide-and-conquer step.)

This algorithm is applied recursively to the remaining chips, re-
ducing down until there is one chip remaining. The |G | > |B| condi-
tion is preserved throughout, therefore the last chip remaining must
be a chip from G .

Odd case:

• Take the nth chip and perform n − 1 tests against all the other
chips. Take a majority vote of the n − 1 chips. In case of a tie,
declare the chip "good".

• If the nth chip is good, halt!

• Otherwise, eliminate the nth chip and apply the even case algo-
rithm.

Figure 3: Illustration of the even case
divide-and-conquer algorithm (part 1.
to find one good chip).

Remark about randomization:
It is easy to solve this problem with O(n) expected time complex-

ity, if we randomize. Just repeat the following until a success occurs:

• Choose a chip α at random from the remaining chips.

• Let the remaining chips vote on α. If the majority (50% or more)
declare it "good", then it is good, and we can halt: α is in G .

One such round costs not more than n.
We halt after a round with probability at least 0.5. Therefore, we

expect to execute not more than two rounds. The expected complex-
ity is thus ≤ 2n.

Time Complexity Analysis

Let Tn be the worst-case time taken for a problem of size n.Tn ≤ n− 1 + n−1
2 + Tn−1

2
, when n is odd,

Tn ≤ 0 + n
2 + Tn

2
, when n is even,

(1)

where T1 = 0, T2 = 0.



chapter 2: divide and conquer 3

Let n be a power of 2: n = 2k. By substitution,

Tn ≤
n
2
+ Tn

2

≤ n
2
+

n
4
+ Tn

4

≤ n
2
+

n
4
+

n
8
+ ... + 1

≤ n
(

1
2
+

1
4
+

1
8
+ ...

)
+ 1

= n + 1.

(2)

It is a good exercise at this point to show that Tn = O(n) in gen-
eral, without the power-of-two restriction.



chapter 2: divide and conquer 4

Example 2. Fractal/Karatsuba multiplication3 3 Karatsuba and Ofman [1963]

• Context: algorithm for multiplying two n-bit numbers an and bn:4 4 We assume an and bn are the same
size. If not, add zeros in front of the
smaller number. By padding with a
front 0 if necessary, we can assume that
n is even.

an = ([0100001....][........0100]) = α1 + α2 × 2
n
2

bn = ([0101101....][........0110]) = β1 + β2 × 2
n
2

(3)

where α1 and β1 are n/2 bit numbers.

Naive Algorithm:
Compute α1β1 + α2β2 × 2n + (α1β2 + α2β1)× 2n/2 by performing

multiplication recursively, noting that αi and βi are n/2-bit numbers.

Time Complexity Analysis

Let Tn be the cost of multiplication in bits: 2n comes from the shifting (multiplying
by 2n and 2

n
2 ) and 6n comes from the

three additions. What costs us are the
four recursions.

Tn = 4Tn
2
+ 2n + 6n. (4)

This yields Tn = Θ(n2) — This is of the same order as the original
simple multiplication algorithm.

Karatsuba’s innovation was realizing that:
α1β2 + α2β1 = (α1 − α2)(β2 − β1) + α1β1 + α2β2.

Applying this trick, the algorithm now only needs to compute
α1β1, α2β2 and (α1 − α2)(β1 − β2): three multiplications instead
of four. [Note that both α1 − α2 and β1 − β2 are n/2-bit numbers].
We have: 2n comes from the shifting and 10n

from the additions and subtractions.

Tn = 3Tn
2
+ 2n + 10n, (5)

and, as we will see later, this yields Tn = Θ(nlog2 3).

Further developments, such as the Toom-Cook algorithm5, are 5 Cook and Aanderaa [1969]

even faster: the Toom-Cook algorithm, also known as Toom3, divides
an and bn into three parts instead of two, yielding:

Tn = 5Tn/3 + n, (6)

and thus, Tn = Θ(nlog3 5), which is a slight improvement over Karat-
suba’s algorithm6. 6 As we have:

• log2 3 ≈ 1.58

• log3 5 ≈ 1.46



chapter 2: divide and conquer 5

Example 3. Merge Sort

• Goal: sort a given list A of size n.

Algorithm Proposal:

1. Sort A[1, ..., n
2 ]

2. Sort A[ n
2 + 1, ..., n]

3. Then merge the two sorted lists.

We measure complexity Tn in terms of the number of element
comparisons (using a "comparison oracle"). Note that the merge costs
not more than n− 1, and therefore,

Tn ≤ n− 1 + Tb n
2 c + Td n

2 e ≈ n + 2Tn
2
. (7)

As we will see in the next chapter, this yields
Tn = Θ(n log n).

Figure 4: Diagram showing the convex
hull, separated into the upper and
lower hull, for a set of points in R2.Example 4. Computational Geometry: Finding the Convex Hull

• Goal: Given n points in the plane R2, find the convex hull in or-
der. To visualize the convex hull, imagine

stretching a rubber band around all the
points and letting it snap in.A point y is on the convex hull of a set of points if there exists a line

through y that has all other points on one side. Let a and b be the
points with the smallest and largest x-coordinate in the data. They
are part of the convex hull. The line through a and b separates the
convex hull into an upper convex hull (the points above the line) and
a lower convex hull. We therefore need only develop an algorithm for
the upper convex hull.

The principle of our algorithm is the same as MergeSort.

Figure 5: Diagram of the merging
step. The blue and black lines are
respectively the upper hulls of the
(1, ..., n

2 ) and ( n
2 + 1, ..., n) points from

steps 1. and 2.

Algorithm Proposal:

1. Find the upper hull for points (1, ..., n
2 ).

2. Find the upper hull for points ( n
2 + 1, ..., n).

3. Merge by progressing by x-coordinate from left to right, eliminat-
ing points with angle < 180°. This step takes linear time as every
step either adds one point to the upper convex hull or eliminates
one.

As in the case of MergeSort, Tn = Θ(n log n).
Exercise: Write the merging algorithm out in detail.



chapter 2: divide and conquer 6

References

S.A. Cook and S.O. Aanderaa. On the minimum computation time
of algorithms. Transactions of the American Mathematical Society, 142:
291–314, 1969.

T.H Cormen, C.E. Leiserson, R.L.Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 1989. ISBN 9780262033848.

A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers
on automata. Soviet Physics—Doklady, 7(7):595–596, 1963. Transla-
tion of an article in Doklady Akademii Nauk SSSR, 145(2), 1962.


	Principle
	Sample Problems

