
Abstract Data Types
Florestan Brunck

February 15, 2022

This is a transcription of a lecture given by Luc Devroye on the 28th
of February 2019 for the undergraduate class on Data Structures and
Algorithms at McGill University (COMP 251). This lecture introduces
abstract data types.

1 Data Structures

Definition 1. An abstract data type (ADT) consists of an object,
containing the data (e.g., a set, list, graph or a grid), together with a
set of operations acting on the data object (e.g., sort, insert, delete,
copy).

A data structure refers to an implementation of an abstract data
type. Examples of adts include lists, stacks, queues and deques,
for which the data object consists of an ordered list of elements and
the associated operations are suggested in Figure. 1, they will be
presented in later sections.

1 2 n

... ...

n-1

... ...

... ...

... ...

LIST

STACK

QUEUE

DEQUE

Figure 1: Operations on stacks, queues
and deques.

2 Lists

A List is a linearly ordered set L = [x1, x2, . . . , xi, . . . xn], where
the index i indicates the position in the list. The size or number of
elements in the list L is denoted by |L|. The adt "list" associates two
atomic operations1 with such an ordered set: 1 Atomic, in this context, signifies that all

other operations can be expressed using
only atomic operations.

1. sublist(L, [i . . .]) returns [xi, . . . , xn]

sublist(L, [. . . i]) returns [x1, . . . , xi]

sublist(L, [i . . . j]) returns [xi, . . . , xj]

2. concatenation(L1, L2) or L1 & L1 returns [L1 L2]

The following additional operations (which can be defined using only
atomic operations) are usually implemented by default for conve-
nience:

push(x, L) = L′ & L where L′ = [x]

pop(L) = sublist(L, [2 . . .])

access(i, L) = sublist(L, [i . . . i])

delete(i, L) = sublist(L, [. . . i− 1]) & sublist(L, [i + 1 . . .])

abstract data types 2

insert(x, j, L)) = sublist(L, [. . . j]) & [x] & sublist(L, [j + 1 . . .])

Note: In contrast, the search operation is usually not in the set of
defining operations.

2.1 Implementations of Lists

Different data structures can be used to implement the List abstract
data type, each with their own advantages and drawbacks.

Data Structure sublist concatenate

array O(1) Θ(n)
linked list Θ(n) O(1)

binary search tree O(log n) O(log n)

In the following section we provide more details on the linked-
list data structure. The binary search tree implementation will be
discussed in a future chapter.

2.2 Linked Lists

Definition 2. A Singly Linked List consists of a collection of cells,
each holding a data object and a unique pointer to another cell called
its successor.

x1 x2 xn-1 xn

POINTER TO THE LIST CELL NIL POINTER

...

Figure 2: Singly linked list with endoge-
nous data storage

Note: The data storage in lists may be either endogenous, i.e., each
cell contains its data object internally, or exogenous, i.e., each cell has a
pointer to its data object, stored elsewhere externally (Figure. 3).

Definition 3. A Doubly Linked List consists of a collection of cells,
each holding a data object and a set of two pointers to other cells,
called its successor and its predecessor.

x1 x2 xn-1 xn

Figure 3: Singly linked list with exoge-
nous data storage

Note: Both singly linked lists and doubly linked lists can form circu-
lar lists (see Figure. 5).

abstract data types 3

x1 x2 xn-1
xn

POINTER TO SUCCESSOR

POINTER TO PREDECESSOR

Figure 4: Doubly linked list

x1 x2 xn-1 xn

Figure 5: Singly or doubly circular
linked lists

There is an additional trick which is often used to ensure that a list
is never empty. Namely, one can pad the list with a header cell in the
front of the list, receiving the initial pointer; and a trailer (or sentinel)
cell receiving the last reference (see Figure. 6). Header cells often
hold statistical information about the linked list, such as its size, the
maximal value in the list, the average value, etc.

x1 xn

HEADER
TRAILER

(SENTINEL)

Figure 6: Singly linked list with exoge-
nous data storage

2.3 List-Related ADTs

Lists are very useful to represent and manipulate a variety of abstract
objects.

Example 1: Lists can be used for the symbolic manipulation of polyno-
mials. Namely, to each polynomial P(x) = ∑n

k=0 ak · xk we can as-
sociate the singly linked list whose data objects consists of the co-
efficients ai of P. As an example of symbolic computation, consider
taking the derivative of P. With regards to our list this amounts to
replacing the data object of the i-th cell (i.e., the coefficient ai) with
the new data object (i · ai) for all i.

Example 2: A related example is the representation of arbitrarily
large unbounded integers ∑n

k=0 ak · bk in basis b. We can recycle the
same idea by replacing the literal xi associated with our polyno-
mial by the number bi. 1

2

3

Figure 7: A window manager manipu-
lates a linked list of programs

Example 3: A window manager can be represented by a linked list as
well. Each cell is now associated with a given program (File ex-
plorer, Browser, etc.) and its successor cell/program is displayed
behind it. That way the linear order now keeps track of which pro-
gram is to be displayed in front of which other programs. The
user’s operations are reflected by operations on the list, e.g., click-
ing on a window reroutes the initial pointer to the associated cell
and modifies the successor of that cell to be the former initial cell,
while changing the successor of its predecessor to its successor.
Closing/opening a windows corresponds to the delete/create

operations.

abstract data types 4

Example 4: Lists can also be used for memory management where the
available spaces are linked through the list (see Figure. 8).

∅ ∅ ∅ ∅

Figure 8: Memory management using
linked lists3 Stacks

... ...

PUSH(x,S)

POP(S) TOP(S)

n 1

Figure 9: The stack ADT

Definition 4. The adt stack associates the operations push and pop

with a list. Stacks treat the list as a single-ended entity and observe a
first-in, last-out policy.

Additionally, the following operations are usually defined:

top reports (but does not remove) the top element

makenull(S) creates an empty stack

empty(S) which returns true if |S| = 0

Stacks are easily implemented with linked lists, for which all the
described operations take constant time.

4 Queues
... ...

DEQUEUE(S)

ENQUEUE(S)

1 n

Figure 10: The queue ADT

Definition 5. The adt queue associates the operations enqueue

and dequeue with a list. The goal of these operations is to now
treat the list as a double-ended object, where enqueue(x, L) =

L & [x] appends elements at the back of the list (notice the reversal
of the order in the concatenation compared to push in a stack), and
dequeue assumes the same role as pop does in a stack. Queues are
therefore said to observe a first-in, first-out policy.

Similarly, the makenull(S) and empty(S) operations can be de-
fined. And likewise, they can easily implemented with linked lists, for
which all the described operations take constant time.

x1 x2 xn-1 xn

FRONT POINTER

...

REAR POINTER

SOLE POINTER

...xn x1 xn-2 xn-1

Figure 11: The single pointer and
double-pointer implementations of a
queue.

Two different implementations allow us to differentiation the
front-end and the rear-end of a linked-list to implement queues. Both
are equivalent and allow for constant time operations. In the single
pointer implementation, we keep one sole pointer to the list and ask
the for the last cell in the list (the rear-end element) to have point to
the first cell. In the double-pointer implementation we simply keep two
pointers to the front and the end of the list.

5 Deques
... ...

PUSH(x,S)

POP(S)

INJECT(x,S)

EJECT(S)

1 n

Figure 12: The deque ADT

Definition 6. The adt deque2 associates two additional operations

2 The word deque is a shortening of
"doubly ended queue"

to the stack operations (push and pop) with a list: namely the opera-
tions inject and eject which assume symmetrical roles with regard
to the tail of the list3.

3 Try to write them out using atomic
operations

abstract data types 5

Deques are usually implemented with doubly linked circular lists, for
which all the described operations take constant time.

6 Stacks and Queues in Use

Example 1: To evaluate/parse expressions, stacks are particularly useful.
A good example is parenthesis parsing, where left parenthesis
are pushed onto a stack and popped as we read right parenthesis
while reading an expression from the left to the right. To check
whether the expression is correctly parsed or not we can simply
have a program return an error if we pop an empty stack over as
we scan our string or if empty (S) returns false once we reach
the end of the expression.

Example 2: Another use of stacks is the computation of arithmetic ex-
pressions. While the regular way to present a computation requires
parenthesis to parse the order in which operators need to be ap-
plied (infix notation), we may also use postfix notation, for which
the operands and operators are written in the order they need to
be applied and such that each operator unambiguously operates
on the last two operands which have have not yet been operated
on (read the side-note to the right for an example). Assuming an
expression is given in postfix4 notation, there is a simple algorithm 4 As an exercise, provide an algorithm

to convert an expression given in infix
notation into postfix notation, e.g.
5× (6 + 2)− 12/4 becomes

5 6 2 +× 1 2 4 /−

to evaluate it which relies on a stack collecting operands.

evaluate(Q)

1 // The input Q is a queue holding the postfix expression
2 makenull(S)
3 while |Q| > 0
4 x ←− dequeue(Q)

5 if x ∈ {operand} then
6 push(x, S)
7 else // If x ∈ {operator}
8 a←− pop(S)
9 b←− pop(S)

10 c←− b x a
11 push(c, S)
12 result ←− pop(S)

Example 3: For graph and more specifically tree traversal, we will see
in subsequent lectures that one can implement the Depth-First-
Search (dfs) algorithm non recursively using a stack.

Example 4: Stacks also turn out to be the right object to manipulate
function calls and nested objects, and in particular recursion. The

abstract data types 6

call stack handles the execution of programs and functions and is
arguably the most fundamental use of stacks in computer science.
Each time a function makes a call to another function, we push

it on the stack. If that function calls other sub-functions they be-
come subsequent items to be pushed on the stack, which—given
the well-suited first-in-last-out policy of stacks—will need to be
handled first before they can return their values (as they are poped
from the stack) to the original caller/function, which can then be
poped itself. As an example, in a recursive problem, a large initial
problem is pushed on the stack and will trigger calls to smaller
subsequent sub-problems. The smaller the sub-problem, the later
the call, the last items added to the stack being the sub-problems
that can directly be handled.

Example 5: Stacks also yield easy, elegant solutions to a variety of
problems. For example, if one were to escape a maze, keeping a
stack to record the successive turns while marking the explored
alleys gives a successful strategy to reach the exit. Figure 13 shows
the first few steps of a player and the corresponding stack. We also
give a simple algorithm to record the escape path in a maze.

1 2 3 4 5 6 7

Figure 13: Using a stack to find the exit
in a maze.

escape-path(Maze, Start)

1 // Start is a Start Node corresponding to the given entrance
2 makenull(S), push(Start, S), mark(Start)
3 while top(S) 6= Exit
4 if top(S) has an unmarked neighbour v
5 push(v, S), mark(v)
6 else // If there are no unmarked neighbours
7 pop(S)
8 // Upon halting, S holds the escape path from the Start to the Exit.

	Data Structures
	Lists
	Implementations of Lists
	Linked Lists
	List-Related ADTs

	Stacks
	Queues
	Deques
	Stacks and Queues in Use

