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Université Pierre et Marie Curie – Paris VI
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Abstract

Let X1, . . . ,Xn be identically distributed random vectors in R
d, in-

dependently drawn according to some probability density. An obser-
vation Xi is said to be a layered nearest neighbour (LNN) of a point
x if the hyperrectangle defined by x and Xi contains no other data
points. We first establish consistency results on Ln(x), the number
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of LNN of x. Then, given a sample (X, Y ), (X1, Y1), . . . , (Xn, Yn) of
independent identically distributed random vectors from R

d × R, one
may estimate the regression function r(x) = E[Y |X = x] by the LNN
estimator mn(x), defined as an average over the Yi’s corresponding to
those Xi with are LNN of x. Under mild conditions on r, we establish
consistency of E|rn(x) − r(x)|p towards 0 as n → ∞, for almost all x

and all p ≥ 1, and discuss the links between rn and the random forest
estimates of Breiman [7]. We finally show the universal consistency
of the bagged (bootstrap-aggregated) nearest neighbour method for
regression and classification.

1 Introduction

Let Dn = {X1, . . . ,Xn} be a sample of independent and identically dis-
tributed (i.i.d.) random vectors in R

d, d ≥ 2. An observation Xi is said to
be a layered nearest neighbour (LNN) of a target point x if the hyperrectangle
defined by x and Xi contains no other data points. As illustrated in Figure
1 below, the number of LNN of x is typically larger than one and depends
on the number and configuration of the sample points.

The LNN concept, which is briefly discussed in the monograph [12, Chapter
11, Problem 11.6], has strong connections with the notions of dominance and
maxima in random vectors. Recall that a point Xi = (Xi1, . . . , Xid) is said to
be dominated by Xj if Xik ≤ Xjk for all k = 1, . . . , d, and a point Xi is called
a maximum of Dn if none of the other points dominates. One can distinguish
between dominance (Xik ≤ Xjk for all k), strong dominance (at least one
inequality is strict) and strict dominance (all inequalities are strict). The
actual kind of dominance will not matter in this paper because we will as-
sume throughout that the common distribution of the data has a density, so
that equality of coordinates happens with zero probability. The study of the
maxima of a set of points was initiated by Barndorff-Nielsen and Sobel [4] as
an attempt to describe the boundary of a set of random points in R

d. Dom-
inance deals with the natural order relations for multivariate observations.
Due to its close relationship with the convex hull, dominance is important
in computational geometry, pattern classification, graphics, economics and
data analysis. The reader is referred to Bai et al. [3] for more information
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Figure 1: The layered nearest neighbours (LNN) of a point x.

and references.

Denote by Ln the number of maxima in the set Dn. Under the assumption
that the components of each vector of Dn are independently and continuously
distributed, a lot is known about the statistical properties of Ln (Barndorff-
Nielsen and Sobel [4], Bai et al. [2, 3]). For example, it can be shown that

ELn =
(log n)d−1

(d − 1)!
+ O

(

(log n)d−2
)

,

and
(d − 1)! Ln

(log n)d−1
→ 1 in probability,

as n → ∞ and d ≥ 2 is fixed. From this, one deduces that when the random
vectors X1, . . . ,Xn are independently and uniformly distributed over (0, 1)d,
then the number of LNN of any point x in (0, 1)d, denoted hereafter by Ln(x),
satisfies

ELn(x) =
2d(log n)d−1

(d − 1)!
+ O

(

(log n)d−2
)
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and
(d − 1)! Ln(x)

2d(log n)d−1
→ 1 in probability as n → ∞.

Here, the extra factor represents the contribution of the 2d quadrants sur-
rounding the point x.

On the other hand, to the best of our knowledge, little if nothing is known
about the behavior of Ln(x) under the much more general assumption that
the sample points are distributed according to some arbitrary (i.e., non-
necessarily uniform) probability density. A quick inspection reveals that the
analysis of this important case is non-trivial and that it may not be readily
deduced from the above-mentioned results. Thus, the first objective of this
paper is to fill the gap and to offer consistency results about Ln(x) when
X1, . . . ,Xn are independently drawn according to some arbitrary probability
density f . This will be the topic of section 2.

Next, we wish to emphasize that the LNN concept has also important sta-
tistical consequences. To formalize this idea, suppose that we are given a
sequence (X, Y ), (X1, Y1), . . . , (Xn, Yn) of i.i.d. R

d × R-valued random vari-
ables with E|Y | < ∞. Then, denoting by Ln(x) the set of LNN of x ∈ R

d,
the regression function r(x) = E[Y |X = x] may be estimated by

rn(x) =
1

Ln(x)

n
∑

i=1

Yi1[Xi∈Ln(x)].

(Note that Ln(x) ≥ 1, so that the division makes sense). In other words, the
estimate rn(x) just outputs the average of the Yi’s associated with the LNN
of the target point x.

The interest of studying the LNN regression estimate rn, which was first
mentioned in [12], is threefold. Firstly, we observe that this estimate has no
smoothing parameter, a somewhat unusual situation in nonparametric esti-
mation. Secondly, it is scale-invariant, which is clearly a desirable feature
when the components of the vector represent physically different quantities.
And thirdly, it turns out that rn is intimately related to the random forests
classification and regression estimates, which were defined by Breiman in [7].
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Breiman [7] takes data (X1, Y1), . . . , (Xn, Yn) and partitions R
d randomly

into “pure” rectangles, i.e., rectangles that each contain one data point. If
A(X) is the rectangle to which X belongs, then X votes “Yi”, where Xi is
the unique data point in A(X). Breiman repeats such voting and call the
principle “random forests”. Classification is done by a majority vote. Re-
gression is done by averaging all Yi’s. Observe that each voting Xi is a LNN
of X, so that random forests lead to a weighted LNN estimate. In contrast,
the estimate rn above assigns uniform weights. Biau et al. [8] point out that
the random forest method is not universally consistent, but the question of
consistency remains open when X is assumed to have a density.

This paper is indeed concerned with minimal conditions of convergence.
We say that a regression function estimate rn is Lp-consistent (p > 0) if
E|rn(X) − r(X)|p → 0 , as n → ∞, where X is independent of and dis-
tributed as X1. It is universally Lp-consistent if this property is true for all
distributions of (X1, Y1) with E|Y1|p < ∞. Universal consistency was the
driving theme of the monograph [12], and we try as much as possible to ad-
here to the style and notation of that text.

In classification, we have Y ∈ {0, 1}, and construct a {0, 1}-valued estimate
gn(x) of Y . This is related to regression function estimation since one could
use a regression function estimate rn(x) of r(x) = E[Y |X = x], and set

gn(x) = 1[rn(x)≥1/2]. (1)

That estimate has the property that if E|rn(X)− r(X)| → 0 as n → ∞, then

P(gn(X) 6= Y ) → inf
g:Rd→{0,1}

P(g(X) 6= Y ),

a property which is called Bayes risk consistency (see [12]). It is universally
Bayes risk consistent if this property is true for all distributions of (X1, Y1).

Random forests are some of the most successful ensemble methods that ex-
hibit performance on the level of boosting and support vector machines.
Fast and robust to noise, random forests do not overfit and offer possibili-
ties for explanation and visualization of the input, such as variable selection.
Moreover, random forests have been shown to give excellent performance on
a number of practical problems and are among the most accurate general-
purpose regression methods available.
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An important attempt to investigate the driving force behind consistency
of random forests is due to Lin and Jeon [17], who show that a forest can
be seen as an adaptively weighted LNN regression estimate and argue that
the LNN approach provides an interesting data-dependent way of measuring
proximities between observations.

As a new step towards understanding random forests, we study the consis-
tency of the (uniformly weighted) LNN regression estimate rn and toroughly
discuss the links between rn and the random forest estimates of Breiman [7]
(section 3). We finally show in section 4 the universal consistency of the
bagged (bootstrap-aggregated) nearest neighbour method for regression and
classification. Proofs of some technical results are gathered in section 5.

2 Some consistency properties of the LNN

Throughout this section, we let Dn = {X1, . . . ,Xn} be R
d-valued (d ≥ 2) in-

dependent random variables, identically distributed according to some prob-
ability density f with respect to the Lebesgue measure λ. For any x ∈ R

d,
we denote by Ln(x) the set of layered nearest neighbours (LNN) of x in Dn,
and we let Ln(x) be the cardinality of Ln(x) (i.e., Ln(x) = |Ln(x)|). Finally,
we denote the probability measure associated to f by µ.

We will prove the following two basic consistency theorems:

Theorem 2.1 For µ-almost all x ∈ R
d, one has

Ln(x) → ∞ in probability as n → ∞.

Theorem 2.2 Suppose that f is λ-almost everywhere continuous. Then

(d − 1)! ELn(x)

2d(log n)d−1
→ 1 as n → ∞,

at µ-almost all x ∈ R
d.

In the sequel, for x = (x1, . . . , xd) and ε > 0, we let the hyperrectangle Rε(x)
be defined as Rε(x) = [x1, x1 + ε]× . . .× [xd, xd + ε]. The crucial result from
real analysis that is needed in the proof of Theorem 2.1 and Theorem 2.2 is
the following (see for instance Wheeden and Zygmund [22]):

6



Lemma 2.1 Let g be locally integrable in R
d. Then, for λ-almost all x,

1

εd

∫

Rε(x)

|g(y) − g(x)| dy → 0 as ε → 0. (2)

Thus also, at λ-almost all x,

1

εd

∫

Rε(x)

g(y)dy → f(x) as ε → 0. (3)

The following useful corollary may be easily deduced from Lemma 2.1 and
the fact that f(x) > 0 for µ-almost all x:

Corollary 2.1 Let (εn) be a sequence of positive real numbers such that εn →
0 and nεd

n → ∞ as n → ∞. Then, for µ-almost all x ∈ R
d, one has

nµ (Rεn(x)) → ∞ as n → ∞.

Remark Lemma 2.1 only describes what happens if Rε(x) is in the pos-
itive quadrant of x. Trivially, it also holds for the 2d − 1 other quadrants
centered at x.

The proof of Theorem 2.1 uses a coupling argument. Roughly, the idea is
to replace the sample X1, . . . ,Xn by a sample Z1, . . . ,Zn which is (i) locally
uniform around the point x and (ii) such that the probability of the event
[Xi = Zi, i = 1, . . . , n]c stays under control. This can be achieved via the
following optimal coupling lemma (see for example Doeblin [14] or Rachev
and Rüschendorf [20]):

Lemma 2.2 Let f and g be probability densities on R
d. Then there exist

random variables W and Z with density f and g, respectively, such that

P(W 6= Z) =
1

2

∫

Rd

|f(y) − g(y)| dy.

We are now in a position to prove Theorem 2.1.
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Proof of Theorem 2.1 Fix x for which (2) is true, and define the function
gε as

gε(y) =

{

µ (Rε(x))

εd
if y ∈ Rε(x)

f(y) otherwise.

Clearly, gε is a probability density on R
d. Moreover,

∫

Rd

|f(y) − gε(y)| dy

=

∫

Rε(x)

∣

∣

∣

∣

f(y) − 1

εd

∫

Rε(x)

f(z)dz

∣

∣

∣

∣

dy

≤
∫

Rε(x)

|f(y) − f(x)| dy + εd

∣

∣

∣

∣

f(x) − 1

εd

∫

Rε(x)

f(z)dz

∣

∣

∣

∣

≤ 2

∫

Rε(x)

|f(y) − f(x)| dy

≤ 2εdΦ(ε), (4)

where Φ(ε) is some nonnegative, nondecreasing function which has limit 0 as
ε approaches 0.

According to Lemma 2.2 and inequality (4), there exist random variables W
and Z with density f and gε, respectively, such that

P(W 6= Z) ≤ εdΦ(ε).

Now, define W and Z samples by creating n independent (W1,Z1), . . . , (Wn,Zn)
pairs and assume, without loss of generality, that (X1, . . . ,Xn) = (W1, . . . ,Wn).
Thus, denoting by En the event

[Xi = Zi, i = 1, . . . , n],

we obtain, by construction of the optimal coupling,

P(E c
n) ≤ nεdΦ(ε). (5)

According to technical Lemma 5.1, there exists a sequence (εn) of positive
real numbers such that εn → 0, nεd

n → ∞ and nεd
nΦ(εn) → 0 as n → ∞.

Thus, by choosing such a sequence, according to (5), the probability P(E c
n)
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can be made as small as desired for all n large enough.

To finish the proof of Theorem 2.1, denote by Lεn(x) (respectively L′
εn

(x))
the number of LNN of x in the sample {X1, . . . ,Xn} (respectively in the
sample {Z1, . . . ,Zn}) falling in Rεn(x). Clearly,

Ln(x) ≥ Lεn(x), (6)

and, on the event En,
Lεn(x) = L′

εn
(x). (7)

By Lemma 5.2, since nεd
n → ∞,

L′
εn

(x) → ∞ in probability as n → ∞,

at µ-almost all x. This, together with (5)-(7) concludes the proof of the
theorem. �

Proof of Theorem 2.2 For x = (x1, . . . , xd) and ε > 0, let Cε(x) be the
hypercube [x1−ε, x1+ε]×. . .×[xd−ε, xd+ε]. Choose x in a set of µ-measure
1 such that f(x) > 0, f is continuous at x and µ(Cε(x)) > 0 for all ε > 0.

Fix δ ∈ (0, f(x)). Since f is continuous at x, there exists ε > 0 such that
y ∈ Cε(x) implies |f(x) − f(y)| < δ.

Let the hyperrectangle R(x,y) be defined by x and y. We note that

ELn(x) = n

∫

Rd

(

1 − µ(R(x,y))
)n−1

f(y)dy

= n

∫

Rd

(

1 −
∫

R(x,y)

f(z)dz

)n−1

f(y)dy.

Thus, using the continuity of f at x, we obtain

ELn(x) ≥ n(f(x) − δ)

∫

Cε(x)

(1 − (f(x) + δ)Π|yi − xi|)n−1 dy

= n(f(x) − δ)

∫

Cε(0)

(1 − (f(x) + δ)Π|yi|)n−1 dy
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= n
f(x) − δ

f(x) + δ

∫

C∆ε(0)

(1 − Π|yi|)n−1 dy

(with ∆ = (f(x) + δ)1/d)

= n 2d f(x) − δ

f(x) + δ

∫

R∆ε(0)

(1 − Πyi)
n−1 dy,

where the last equality follows from a symmetry argument. Thus, using
technical Lemma 5.3, we conclude that

ELn(x) ≥ 2d f(x) − δ

f(x) + δ

[

(log n)d−1

(d − 1)!
+ O∆ε(log n)d−2

]

,

where the notation O∆ε means that the constant in the O term depends on
∆ε. Letting δ → 0 shows that

lim inf
n→∞

(d − 1)! ELn(x)

2d(log n)d−1
≥ 1.

To show the opposite inequality, we write, using the continuity of f at x,

ELn(x) = n

∫

Cε(x)

(

1 − µ(R(x,y))
)n−1

f(y)dy

+ n

∫

Rd\Cε(x)

(

1 − µ(R(x,y))
)n−1

f(y)dy

≤ n 2d f(x) + δ

f(x) − δ

∫

R∆ε(0)

(1 − Πyi)
n−1dy

(with ∆ = (f(x) − δ)1/d)

+ n

∫

Rd\Cε(x)

(

1 − µ(R(x,y))
)n−1

f(y)dy. (8)

By technical Lemma 5.3, we have

n 2d f(x) + δ

f(x) − δ

∫

R∆ε(0)

(1 − Πyi)
n−1dy

= 2d f(x) + δ

f(x) − δ

[

(log n)d−1

(d − 1)!
+ O∆ε(log n)d−2

]

. (9)

Then, with respect to the second term in (8), we note that

R
d \ Cε(x) =

d−1
⋃

j=0

Cj ,
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where, by definition, Cj denotes the collection of all y in R
d\Cε(x) which have

exactly j coordinates smaller than ε. Observe that, for each j ∈ {0, . . . , d−1},

Cj =
⋃

j

Cj ,

where the index j runs over the
(

d
j

)

possible j-uples coordinate choices smaller
than ε. Associated to each of these choices is a marginal density of f , that
we denote by fj . For j ≥ 1, with a slight abuse of notation, we let Cε(xj) be
the j-dimensional hypercube with center at the coordinates of x matching
with j and side length 2ε. Finally, we choose ε small enough and x in a set
of µ-measure 1 such that each marginal fj is bounded over Cε(xj) by, say,
Λ(ε).

Clearly, for j = 0,

n

∫

C0

(

1 − µ(R(x,y))
)n−1

f(y)dy

= n

∫

C0

(

1 −
∫

R(x,y)

f(z)dz

)n−1

f(y)dy

≤ n(1 − (f(x) − δ)εd)n−1

∫

C0

f(y)dy

≤ n(1 − (f(x) − δ)εd)n−1

(since f is a probability density)

≤ 1/
[

(f(x) − δ)εd
]

,

where, in the last inequality, we used the fact that supx∈[0,1] x(1−x)n−1 ≤ 1/n.
Similarly, for j ∈ {1, . . . , d − 1}, we may write

n

∫

Cj

(

1 − µ(R(x,y))
)n−1

f(y)dy

= n
∑

j

∫

Cj

(

1 − µ(R(x,y))
)n−1

f(y)dy

= n
∑

j

∫

Cj

(

1 −
∫

R(x,y)

f(z)dz

)n−1

f(y)dy
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≤ n
∑

j

∫

Cj

(

1 − (f(x) − δ)εd−jΠℓ|yℓ − xℓ|
)n−1

f(y)dy,

where the notation Πℓ means the product over the j coordinates which are
smaller than ε. Thus, integrating the density f over those coordinates which
are larger than ε, we obtain

∫

Cj

(

1 − (f(x) − δ)εd−jΠℓ|yℓ − xℓ|
)n−1

f(y)dy

≤
∫

Cε(xj)

(

1 − (f(x) − δ)εd−jΠℓ|yℓ − xℓ|
)n−1

fj(yj)dyj.

Using finally the fact that each marginal fj is bounded by Λ(ε) in the neigh-
bourhood of x, we obtain

∫

Cj

(

1 − (f(x) − δ)εd−jΠℓ|yℓ − xℓ|
)n−1

f(y)dy

≤ Λ(ε)

∫

[0,ε]j

(

1 − (f(x) − δ)εd−jy1 . . . yj

)n−1
dy1 . . . dyj

=
Λ(ε)

(f(x) − δ)εd−j

∫

[0,∆εd−j/j ]j
(1 − y1 . . . yj)

n−1dy1 . . . dyj

(with ∆ = (f(x) − δ)1/j).

Therefore, by Lemma 5.3, for j ∈ {2, . . . , d − 1},

n

∫

Cj

(

1 − µ(R(x,y))
)n−1

f(y)dy

≤
(

d
j

)

Λ(ε)

(f(x) − δ)εd−j

[

(log n)j−1

(j − 1)!
+ O∆εd−j/j(log n)j−2

]

,

and clearly, for j = 1,

n

∫

C1

(

1 − µ(R(x,y))
)n−1

f(y)dy ≤ Λ(ε)

(f(x) − δ)εd−1
.

Putting all pieces together, we conclude that, for all j ∈ {0, . . . , d − 1},

lim sup
n→∞

n

(log n)d−1

∫

Cj

(

1 − µ(R(x,y))
)n−1

f(y)dy = 0,
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and, consequently,

lim sup
n→∞

n

(log n)d−1

∫

Rd\Cε(x)

(

1 − µ(R(x,y))
)n−1

f(y)dy = 0.

This, together with inequalities (8)-(9) and letting δ → 0 leads to

lim sup
n→∞

(d − 1)! ELn(x)

2d(log n)d−1
≤ 1.

�

3 LNN regression estimation

3.1 Consistency

Denote by (X, Y ), (X1, Y1), . . . , (Xn, Yn) i.i.d. random vectors of R
d×R, and

let Dn be the set of data defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

In this section we will assume that |Y | ≤ γ < ∞ and that X has a density.
We consider the general regression function estimation problem, where one
wants to use the data Dn in order to construct an estimate rn : R

d → R

of the regression function r(x) = E[Y |X = x]. Here rn(x) = rn(x,Dn) is a
measurable function of x and the data. For simplicity, we will omit Dn in
the notation and write rn(x) instead of rn(x,Dn).

As in section 2, for fixed x ∈ R
d, we denote by Ln(x) the LNN of x in

the sample {X1, . . . ,Xn} and let Ln(x) be the cardinality of Ln(x) (i.e.,
Ln(x) = |Ln(x)| — note that Ln(x) ≥ 1). As stated in the introduction, we
will be concerned in this section with the consistency properties of the LNN
regression estimate, which is defined by

rn(x) =
1

Ln(x)

n
∑

i=1

Yi1[Xi∈Ln(x)].

Our main result is the following theorem:
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Theorem 3.1 (Pointwise Lp-consistency) Assume that the regression func-
tion r is λ-almost everywhere continuous and that Y is bounded. Then, for
µ-almost all x ∈ R

d and all p ≥ 1,

E |rn(x) − r(x)|p → 0 as n → ∞.

The following corollary is a consequence of Theorem 3.1 and the dominated
convergence theorem.

Theorem 3.2 (Gobal Lp-consistency) Assume that the regression func-
tion r is λ-almost everywhere continuous and that Y is bounded. Then, for
all p ≥ 1,

E |rn(X) − r(X)|p → 0 as n → ∞.

The theorems above are not universal — indeed, we assume that r is λ-almost
everywhere continuous and that X has a density. It is noteworthy that no
universal consistency result is possible. To see this, let X be R

2-valued uni-
formly distributed on the diagonal D = {x = (x1, x2) : 0 ≤ x1 ≤ 1, x2 = x1}.
Then the LNN regression estimate just takes an average over two observa-
tions. If Y is independent of X and uniform on [−1, 1], it is easy to see
that r ≡ 0, yet rn has a constant nonzero variance and does not converge as
n → ∞ to 0 in probability. Equivalently, one could verify Stone’s necessary
and sufficient conditions (Stone [21]) for universal consistency of regression
estimates.

On the positive side, the results do not impose any condition on the den-
sity. They are also scale-free, i.e., the estimate does not change when all
coordinates of X are transformed in a strictly monotone manner. In partic-
ular, one can without loss of generality assume that X is supported on [0, 1]d.

The elementary result needed to prove Theorem 3.1 is:

Lemma 3.1 If r is λ-almost everywhere continuous and Y is bounded, then,
for fixed p ≥ 1,

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p
]

→ 0 as n → ∞,

at µ-almost all x ∈ R
d.
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Proof of Lemma 3.1 Recall that Rε(x) = [x1, x1 + ε]× . . .× [xd, xd + ε].
We can define Rε(x, ℓ), ℓ = 1, . . . , 2d, as Rε(x) for the 2d quadrants centered
at x. We then have Ln(x, ℓ) and Ln(x, ℓ) = |Ln(x, ℓ)|. Also, on the ℓ-th
quadrant, we have the sums

Sn(x, ℓ) =

n
∑

i=1

1[Xi∈Ln(x,ℓ)] |r(Xi) − r(x)|p .

If

E

[

Sn(x, ℓ)

Ln(x, ℓ)

]

→ 0 as n → ∞ for all ℓ,

(with the convention 0 ×∞ = 0 when Ln(x, ℓ) = 0), then

E

[

∑2d

ℓ=1 Sn(x, ℓ)
∑2d

ℓ=1 Ln(x, ℓ)

]

→ 0 as n → ∞,

so that

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p
]

→ 0 as n → ∞.

This follows from the fact that

E

[

A1 + . . . + Ak

B1 + . . . + Bk

]

→ 0

if E[Ai/Bi] → 0 for all i, where the random variables Ai and Bi are non-
negative and satisfy Ai ≤ cBi for some nonnegative c (again, we use the
convention 0 ×∞ = 0). So, we need only concentrate on the first quadrant.

For arbitrary ε > 0, we have

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p
]

= E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p 1[Xi∈Rc
ε(x)]

]

+ E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p 1[Xi∈Rε(x)]

]
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≤ 2pγp
E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)]

]

+

[

sup
z∈Rd:‖z−x‖∞≤ε

|r(z) − r(x)|
]p

(since |Y | ≤ γ).

The rightmost term of the latter inequality tends to 0 as ε → 0 at points x
at which r is continuous. Thus, the lemma will be proven if we show that,
for fixed ε > 0,

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)]

]

→ 0 as n → ∞.

To this aim, denote by Nn the (random) number of sample points falling in

Rε(x). For Nn ≥ 1 and each r = 1, . . . , d, let X
⋆(r)
n = (X

⋆(r)
n,1 , . . . , X

⋆(r)
n,d ) be

the observation in Rε(x) whose r-coordinate is the closest to xr (note that

X
⋆(r)
n is almost surely unique), and consider the set

P(r)
ε = [x1 + ε, +∞[× . . . × [xr−1 + ε, +∞[

× [xr, X
⋆(r)
n,r ]

× [xr+1 + ε, +∞[× . . .× [xd + ε, +∞[

(see Figure 2 for an illustration in dimension 2).

Take finally

Pε =
d
⋃

r=1

P(r)
ε ,

and define the random variable

Qn,ε =

{

+∞ if Nn = 0

the number of sample points falling in Pε if Nn ≥ 1.

It is shown in Lemma 5.5 that, for µ-almost all x,

Qn,ε = OP(1),
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Rε(x)

x

X
⋆(2)
n

X
⋆(1)
n

x1 + ε

x2 + ε

P(1)
ε

P(2)
ε

Pε = P(1)
ε ∪ P(2)

ε

Figure 2: Notation in dimension d = 2. Here Nn = 8 and Qn,ε = 7. Note that
none of the points in the framed area can be a LNN of x.

i.e., for any α > 0, there exists A > 0 such that, for all n large enough,

P(Qn,ε ≥ A) ≤ α. (10)

Now, by definition of the LNN, on the event [Nn ≥ 1], we have

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)] ≤ 1[Xi∈Pε],

and consequently,

n
∑

i=1

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)] ≤ Qn,ε. (11)

Thus, for any α > 0 and all n large enough, by (10) and (11),

E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)]1[Xi∈Rc
ε(x)]

]

17



≤ E

[

Qn,ε

Ln(x)
1[Qn,ε<A]

]

+ E1[Qn,ε≥A]

= E

[

Qn,ε

Ln(x)
1[Qn,ε<A,Ln(x)≥1]

]

+ P(Qn,ε ≥ A)

≤ E

[

A

Ln(x)
1[Ln(x)≥1]

]

+ α.

By Theorem 2.1,

Ln(x) → ∞ in probability as n → ∞,

at µ-almost all x. This implies

E

[

1

Ln(x)
1[Ln(x)≥1]

]

→ 0 as n → ∞,

which concludes the proof of Lemma 3.1. �

Proof of Theorem 3.1 Because |a + b|p ≤ 2p−1 (|a|p + |b|p) for p ≥ 1, we
see that

E |rn(x) − r(x)|p

≤ 2p−1
E

∣

∣

∣

∣

∣

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] (Yi − r(Xi))

∣

∣

∣

∣

∣

p

+ 2p−1
E

∣

∣

∣

∣

∣

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] (r(Xi) − r(x))

∣

∣

∣

∣

∣

p

.

Thus, by Jensen’s inequality,

E |rn(x) − r(x)|p

≤ 2p−1
E

∣

∣

∣

∣

∣

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] (Yi − r(Xi))

∣

∣

∣

∣

∣

p

+ 2p−1
E

[

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] |r(Xi) − r(x)|p
]

. (12)

The rightmost term in (12) tends to 0 for µ-almost all x by Lemma 3.1.
Thus, it remains to show that the first term tends to 0 at µ-almost all x. By

18



successive applications of inequalities of Marcinkiewicz and Zygmund [18]
(see also Petrov [19, pages 59-60]), we have for some positive constant Cp

depending only on p,

E

∣

∣

∣

∣

∣

1

Ln(x)

n
∑

i=1

1[Xi∈Ln(x)] (Yi − r(Xi))

∣

∣

∣

∣

∣

p

≤ Cp E

[

1

L2
n(x)

n
∑

i=1

1[Xi∈Ln(x)] (Yi − r(Xi))
2

]p/2

≤ (2γ)pCp E

[

1

L2
n(x)

n
∑

i=1

1[Xi∈Ln(x)]

]p/2

(since |Y | ≤ γ)

= (2γ)pCp E

[

1

Ln(x)

n
∑

i=1

1

Ln(x)
1[Xi∈Ln(x)]

]p/2

= (2γ)pCp E

[

1

L
p/2
n (x)

]

.

By Theorem 2.1,

Ln(x) → ∞ in probability as n → ∞,

at µ-almost all x. Since Ln(x) ≥ 1, this implies

E

[

1

L
p/2
n (x)

]

→ 0 as n → ∞,

and the proof is complete. �

Thus, in particular, since (1) is equivalent to taking a majority vote over
LNN, we have Bayes risk consistency whenever r is λ-almost everywhere
continuous and X has a density. This partially solves an exercise in [12].

In view of Theorem 2.2, averaging in the LNN is never over more than
O((log n)d−1) elements. One cannot expect a great rate of convergence for
these estimates. The same is true, mutatis mutandis, for Breiman’s random
forests because averaging is over a subset of size O((log n)d−1). However,

19



one can hope to improve the averaging rate by the judicious use of subsam-
pling in bagging (bootstrap-aggregation). Bagging, which was suggested by
Breiman in [5], is a simple way of randomizing and averaging predictors in
order to improve their performance. In bagging, randomization is achieved
by generating many bootstrap samples from the original data set. This is
illustrated in the next section on 1-nearest neighbour bagging.

3.2 Random forests and LNN

As stated in the introduction, a random forest is a tree-ensemble learning
algorithm, where each tree depends on the values of a random vector sam-
pled independently and with the same distribution for all trees. Thus, a
random forest consists of many decision trees and outputs the average of the
decisions provided by individual trees. Random forests have been shown to
give excellent performance on a number of practical problems. They work
fast, generally exhibit a substantial performance improvement over single
tree algorithms such as cart, and yield generalization error rates that com-
pare favorably to traditional statistical methods. In fact, random forests
are among the most accurate general-purpose learning algorithms available
(Breiman [7]).

Algorithms for inducing a random forest were first developed by Breiman
and Cutler, and “Random Forests” is their trademark. The web page

http://www.stat.berkeley.edu/users/breiman/RandomForests

provides a collection of downloadable technical reports, and gives an overview
of random forests as well as comments on the features of the method.

Following Biau et al. [8], who study consistency of various versions of random
forests and other randomized ensemble classifiers, a regression forest may be
modelled as follows. Assume that Θ1, . . . , Θm are i.i.d. draws of some ran-
domizing variable Θ, independent of the sample. Then, a random forest is a
collection of m randomized regression trees t1(x, Θ1,Dn), . . . , tm(x, Θm,Dn),
which are finally combined to form the aggregated regression estimate

rn(x) =
1

m

m
∑

j=1

tj(x, Θj ,Dn).
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The randomizing variable Θ is used to determine how the successive cuts
are performed when building the tree, such as selection the coordinate to
split and position of the split. In the model we have in mind, each individ-
ual randomized tree tj(x, Θj,Dn) is typically constructed without pruning,
that is, the tree building process continues until each terminal node contains
no more than k data points, where k is some prespecified positive integer.
Different random forests differ in how randomness is introduced in the tree
building process, ranging from extreme random splitting strategies (Breiman
[6], Cutler and Zhao [10]) to more involved data-dependent strategies (Amit
and Geman [1], Breiman [7], Dietterich [13]). However, as pointed out by Lin
and Jeon [17], no matter what splitting strategy is used, if the nodes of the
individual trees define rectangular cells, then a random forest with k = 1 can
be viewed as a weighted LNN regression estimate. Besides, if the randomized
splitting scheme is independent of the responses Y1, . . . , Yn — such a scheme
is called non-adaptive in [17] — then so are the weights. One example of
such a scheme is the purely random splitting where, for each internal node,
we randomly choose a variable to split on, and the split point is chosen uni-
formly at random over all possible split points on that variable. Thus, for
such non-adaptive strategies,

rn(x) =

n
∑

i=1

YiWni(x),

where the weights (Wn1(x), . . . , Wnn(x)) are nonnegative Borel measurable
functions of x, X1, . . . ,Xn, Θ1, . . . , Θm, and such that Wni(x) = 0 if Xi /∈
Ln(x) and

n
∑

i=1

Wni(x) =

n
∑

i=1

Wni(x)1[Xi∈Ln(x)] = 1.

The next proposition states a lower bound on the rate of convergence of the
mean squared error of a random forest with non-adaptive splitting scheme.
In this proposition, the symbol V denotes variance and E denotes expectation
with respect to X1, . . . ,Xn and Θ1, . . . , Θm.

Proposition 3.1 For any x ∈ R
d, assume that σ2 = V[Y |X = x] is inde-

pendent of x. Then

E [rn(x) − r(x)]2 ≥ σ2

ELn(x)
.
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Proof of Proposition 3.1 We may write, using the independence of Dn

and Θ1, . . . , Θm,

E [rn(x) − r(x)]2 ≥ E [V[rn(x)|X1, . . . ,Xn, Θ1, . . . , Θm]]

= E

[

n
∑

i=1

W 2
ni(x)V[Yi|X1, . . . ,Xn, Θ1, . . . , Θm]

]

= E

[

n
∑

i=1

W 2
ni(x)V[Yi|Xi]

]

= σ2
E

[

n
∑

i=1

W 2
ni(x)

]

≥ σ2
E





1

Ln(x)

(

n
∑

i=1

Wni(x)

)2




(by the Cauchy-Schwarz inequality)

= σ2
E

[

1

Ln(x)

]

,

where, in the last equality, we used the fact that
∑n

i=1 Wni(x) = 1. The
conclusion follows from Jensen’s inequality. �

Proposition 3.1 is thrown in here because we know that ELn(x) ∼ 2d(log n)d−1/(d−
1)! at µ-almost all x, when f is λ-almost everywhere continuous (Theorem
2.2). Thus, under this additional condition on f , at an x for which Theorem
2.2 is valid, we have

E [rn(x) − r(x)]2 ≥ σ2

ELn(x)

∼ σ2(d − 1)!

2d(log n)d−1
,

which is rather slow as a function of n.

As mentioned above, there are two related methods to possibly get a better
rate of convergence:

(i) One can modify the splitting method and stop as soon as a future rect-
angle split would cause a sub-rectangle to have fewer than k points. In
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this manner, if k → ∞, k/n → 0, one can obtain consistent regression
function estimates and classifiers with variances of errors that are of the
order 1/[k(log n)d−1]. In a sense, this generalizes the classical k-nearest
neighbour (k-NN) approach (Györfi et al. [16, Chapter 6]).

(ii) One could resort to bagging and randomize using small random sub-
samples. In the next section, we illustrate how this can be done for the
1-NN rule of Fix and Hodges [15] (see also Cover and Hart [9]), thereby
extending previous results of [8]. A random subsample of size k is
drawn, and the method is repeated m times. The regression estimate
takes the average over the m Y -values corresponding to the nearest
neighbours. In classification, a majority vote is taken. It is shown that
for appropriate k and m, this 1-NN bagging is universally consistent,
and indeed, that it corresponds to a weighted 1-NN rule, roughly speak-
ing, with geometrically decreasing weights (fore more on weighted NN
rules, see Stone [21], Devroye [11] or Györfi et al. [16]). Because of this
equivalence, one can optimize using standard bias/variance trade-off
methods, such as used, e.g., in [16].

4 The bagged 1-NN rule

Breiman’s bagging principle has a simple application in the context of nearest
neighbour methods. We proceed as follows, via a randomized basic regres-
sion estimate rn,k in which 1 ≤ k ≤ n is a parameter. The predictor rn,k

is the 1-NN rule for a random sample Sn drawn with (without) replacement
from {X1, . . . ,Xn}, with |Sn| = k. Clearly, rn,k is not generally universally
consistent.

We apply bagging, that is, we repeat the random sampling m times, and
take the average of the individual outcomes. Formally, if Zj = rn,k(x) is the
prediction in the j-th round of bagging, we let the bagged regression estimate
r⋆ be defined as

r⋆(x) =
1

m

m
∑

j=1

Zj,

where Z1, . . . , Zm are the outcomes in the individual rounds. In the context of
classification, Zj ∈ {0, 1}, and we classify x as being in class 1 if r⋆(x) ≥ 1/2,
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that is
m
∑

j=1

1[Zj=1] ≥
m
∑

j=1

1[Zj=0].

The corresponding bagged classifier is denoted by g⋆
n.

Theorem 4.1 If m → ∞ (or m = ∞), k → ∞ and k/n → 0, then r⋆
n is

universally Lp-consistent for all p ≥ 1.

Corollary 4.1 If m → ∞ (or m = ∞), k → ∞ and k/n → 0, then g⋆
n is

universally Bayes risk consistent.

Remark In the theorem, the fact that sampling was done with/without
replacement is irrelevant.

Before proving Theorem 4.1, recall that if we let Vn1 ≥ Vn2 ≥ . . . ≥ Vnn ≥ 0
denote weights that sum to one, and Vn1 → 0,

∑

i>εn Vni → 0 for all ε > 0
as n → ∞, then the regression estimate

n
∑

i=1

VniY(i)(x),

with (X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)) the reordering of the data such
that

‖x − X(1)(x)‖ ≤ . . . ≤ ‖x − X(n)(x)‖
is called the weighted nearest neighbour regression estimate. It is universally
Lp-consistent for all p ≥ 1 (Stone [21], and Problems 11.7, 11.8 of Devroye
et al. [12]). In the sequel, to shorten notation, we omit the index n in the
weights and write, for instance, V1 instead of Vn1.

Proof of Theorem 4.1 We first observe that if m = ∞, r⋆
n is in fact a

weighted nearest neighbour estimate with

Vi = P(i-th nearest neighbour of x is chosen in a random selection).

To avoid trouble, we have a unique way of breaking distance ties, that is, any
tie is broken by using indices to declare a winner. Then, a moment’s thought
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shows that for the “without replacement” sampling, Vi is hypergeometric:

Vi =























(

n − i

k − 1

)

(

n

k

) , i ≤ n − k + 1

0, i > n − k + 1.

We have

Vi =
k

n − k + 1
.
n − i

n
.
n − i − 1

n − 1
. . .

n − i − k + 2

n − k + 2

=
k

n − k + 1

k−2
∏

j=0

(

1 − i

n − j

)

∈
[

k

n − k + 1
exp

( −i(k − 1)

n − k − i + 2

)

,
k

n − k + 1
exp

(−i(k − 1)

n

)]

,

where we used exp(−u/(1 − u)) ≤ 1 − u ≤ exp(−u), 0 ≤ u < 1. Clearly, Vi

is nonincreasing, with

V1 ≤
k

n − k
→ 0.

Also,

∑

i>εn

Vi ≤
k

n − k + 1

∑

i>εn

e−i(k−1)/n

≤ k

n − k + 1
.

e−ε(k−1)

(1 − e−(k−1)/n)

∼ e−ε(k−1) → 0 as k → ∞.

For sampling with replacement,

Vi =

(

1 − i − 1

n

)k

−
(

1 − i

n

)k

=

(

1 − i − 1

n

)k
[

1 −
(

1 − 1

n − i + 1

)k
]

∈
[

e−(i−1)k/(n−i+1)

[

k

n − i + 1
− k(k − 1)

2

(

1

n − i + 1

)2
]

,
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e−(i−1)k/n .
k

n − i + 1

]

,

where we used 1−αu ≤ (1− u)α ≤ 1−αu + α(α− 1)u2/2 for integer α ≥ 1,
0 ≤ u ≤ 1. Again, Vi is nonincreasing, and

V1 = 1 −
(

1 − 1

n

)k

≤ k

n
→ 0.

Also
∑

i>εn

Vi =

(

1 − ⌊εn⌋
n

)k

→ 0

since ε > 0 is fixed and k → ∞.

Remark For ε > 1, note that uniformly over 1 ≤ i ≤ εn,

sup
1≤i≤εn

∣

∣

∣

∣

Vi

e−ik/n . k/n
− 1

∣

∣

∣

∣

→ 0,

so the weights behave as ρ exp(−ρi), ρ = k/n.

For m < ∞, m → ∞, the weights of the neighbours are random variables
(W1, . . . , Wn), with

∑n
i=1 Wi = 1, and, in fact,

(W1, . . . , Wn)
L
=

Multinomial (m ; V1, . . . , Vn)

m
.

We note that this random vector is independent of the data!

In the proof of the consistency result below, we use Stone’s [21] general consis-
tency theorem for locally weighted average estimates, see also [12, Theorem
6.3]. According to Stone’s theorem, consistency holds if the following three
conditions are satisfied:

(i)

E

[

max
i=1,...,n

Wi

]

→ 0 as n → ∞.
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(ii) For all ε > 0,

E

[

∑

i>εn

Wi

]

→ 0 as n → ∞.

(iii) There is a constant C such that, for every nonnegative measurable
function f satisfying Ef(X) < ∞,

E

[

n
∑

i=1

Wif(Xi)

]

≤ C Ef(X).

Checking Stone’s conditions of convergence requires only minor work. To
show (i), note that

P

(

max
i=1,...,n

Wi ≥ ε

)

≤
n
∑

i=1

P(Wi ≥ ε)

=

n
∑

i=1

P (Bin (m, Vi) ≥ mε)

=
n
∑

i=1

P (Bin (m, Vi) ≥ mVi + m(ε − Vi))

≤
n
∑

i=1

V [Bin (m, Vi)]

(m(ε − Vi))
2

(by Chebyshev’s inequality, for all n large enough),

≤
∑n

i=1 mVi

m2(ε − V1)2
=

1

m(ε − V1)2
→ 0.

Secondly, for (ii), we set p =
∑

i>εn Vi, and need only show that E[Bin (m, p)/m] →
0. But this follows from p → 0. Condition (iii) reduces to

E

[

n
∑

i=1

Vif(Xi)

]

,

which we know is bounded by a constant times Ef(X) for any sequence of
nonincreasing nonnegative weights Vi that sum to one (Stone [21], and [12,
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Chapter 11, Problems 11.7 and 11.8].

This concludes the proof. �

5 Some technical lemmas

Throughout this section, for x = (x1, . . . , xd) and ε > 0, Rε(x) refers to the
hyperrectangle

Rε(x) = [x1, x1 + ε] × . . . × [xd, xd + ε].

Lemma 5.1 Let Φ : (0,∞) → [0,∞) be a nondecreasing function with limit
0 at 0. Then there exists a sequence (εn) of positive real numbers such that
nεd

n → ∞ and nεd
nΦ(εn) → 0 as n → ∞.

Proof of Lemma 5.1 Note first that if such a sequence (εn) exists, then
εn → 0 as n → ∞. Indeed, if this is not the case, then εn ≥ C for some
positive C and infinitely many n. Consequently, using the fact that Φ is
nondecreasing, one obtains nεd

nΦ(εn) ≥ nεd
nΦ(C) for infinitely many n, and

this is impossible.

For any integer ℓ ≥ 1, set eℓ = Φ(1/ℓ) and observe that the sequence (eℓ) is
nonincreasing and tends to 0 as ℓ → ∞. Let ϕℓ = ℓd/

√
eℓ. Clearly, the se-

quence (ϕℓ) is nondecreasing and satisfies ϕℓ/ℓ
d → ∞ and [ϕℓ/ℓ

d]×Φ(1/ℓ) =√
eℓ → 0 as ℓ → ∞.

For each n ≥ 1, let ℓn be the largest positive integer ℓ such that ϕℓ ≤ n, and
let εn = 1/ℓn. Then the sequence (εn) satisfies

nεd
n ≥ ϕℓn/ℓd

n → ∞
and

nεd
nΦ(εn) ≥ [ϕℓn/ℓd

n] × Φ(1/ℓn) → 0

as n → ∞. �

Lemma 5.2 Suppose that µ has a probability density f . For x ∈ R
d, let gε

be the probability density defined by

gε(y) =

{

µ (Rε(x))

εd
if y ∈ Rε(x)

f(y) otherwise,
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and let Z1, . . . ,Zn be independent random vectors distributed according to
gε. Let (εn) be a sequence of positive real numbers such that εn → 0 and
nεd

n → ∞ as n → ∞. Then, denoting by L′
εn

(x) the number of LNN of x in
the sample {Z1, . . . ,Zn} falling in Rεn(x), one has

L′
εn

(x) → ∞ in probability as n → ∞,

at µ-almost all x.

Proof of Lemma 5.2 To ligthen notation a bit, we set pε(x) = µ(Rε(x)).
Choose x in a set of µ-measure 1 such that µ(Rε(x)) > 0 for all ε > 0 and
npεn(x) → ∞ as n → ∞ (by Corollary 2.1 this is possible).

The number of sample points falling in Rεn(x) is distributed according to
some binomial random variable Nn with parameters n and pεn(x). Thus, we
may write, for all A > 0,

P(Nn < A) ≤ P(Nn < npεn(x)/2)

(for all n large enough)

= P(Nn − npεn(x) < −npεn(x)/2)

≤ 4/ (npεn(x))

(by Chebyshev’s inequality),

from which we deduce that Nn → ∞ in probability as n → ∞. This implies
that

E

[

1

(log Nn)d−1
1[Nn≥2]

]

→ 0 as n → ∞. (13)

Now, denote by Km the number of maxima in a sequence of m i.i.d. points
chosen uniformly at random from (0, 1)d. Using the fact that the Zi’s which
fall in Rεn(x) are uniformly distributed on Rεn(x), we note that L′

εn
(x) and

KNn have the same distribution. Therefore, the theorem will be proven if we
show that KNn → ∞ in probability as n → ∞.

A straightforward adaptation of the arguments in Barndorff-Nielsen and So-
bel [4] and Bai et al. [2, 3] shows that there exist two positive constants ∆1

and ∆2 such that, on the event [Nn ≥ 2],

E[KNn |Nn] ≥ ∆1(log Nn)d−1 (14)
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and
V[KNn |Nn] ≤ ∆2(log Nn)d−1. (15)

Fix A > 0 and α > 0, and let the event En be defined as

En =
[

Nn < e(2A/∆1)1/(d−1) ∨ 2
]

.

Since Nn → ∞ in probability, one has P(En) ≤ α for all n large enough.
Using (14), we may write, conditionally on Nn,

P(KNn < A|Nn) ≤ P (KNn < E[KNn |Nn]/2 |Nn) 1Ec
n

+ 1En .

Thus, by Chebyshev’s inequality and inequalities (14)-(15),

P(KNn < A|Nn) ≤ ∆

(log Nn)d−1
1Ec

n
+ 1En

for some positive constant ∆. Taking expectations on both sides, we finally
obtain, for all n large enough,

P(KNn < A) ≤ E

[

∆

(log Nn)d−1
1[Nn≥2]

]

+ α,

which, together with (13), completes the proof of the lemma. �

Lemma 5.3 Let ∆ ∈ (0, 1). Then, for all n ≥ 1,

n

∫

[0,∆]d
(1 − Πyi)

n−1dy =
(log n)d−1

(d − 1)!
+ O∆

(

(log n)d−2
)

,

where the notation O∆ means that the constant in the O term depends on ∆.

Proof of Lemma 5.3 The proof starts with the observation (see for ex-
ample Bai et al. [2]) that

n

∫

[0,1]d
(1 − Πyi)

n−1dy =
(log n)d−1

(d − 1)!
+ O

(

(log n)d−2
)

. (16)

To show the result, we proceed by induction on d ≥ 2. For d = 2, we may
write

n

∫

[0,∆]2
(1 − y1y2)

n−1dy1dy2
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= n

∫

[0,1]2
(1 − y1y2)

n−1dy1dy2 − n

∫

[0,1]2\[0,∆]2
(1 − y1y2)

n−1dy1dy2

= log n + O(1) − n

∫

[0,1]2\[0,∆]2
(1 − y1y2)

n−1dy1dy2

(by identity (16)).

Observing that

n

∫

[0,1]2\[0,∆]2
(1 − y1y2)

n−1dy1dy2

≤ 2n

∫

[0,1]

(1 − ∆y)n−1dy

≤ 2/∆

yields

n

∫

[0,∆]2
(1 − y1y2)

n−1dy1dy2 = log n + O∆(1),

as desired. Having disposed of this preliminary step, suppose that, for all
positive ∆ ∈ (0, 1),

n

∫

[0,∆]d
(1 − Πyi)

n−1dy =
(log n)d−1

(d − 1)!
+ O∆

(

(log n)d−2
)

. (17)

Then, for d + 1,

n

∫

[0,∆]d+1

(1 − Πyi)
n−1dy

= n

∫

[0,1]d+1

(1 − Πyi)
n−1dy − n

∫

[0,1]d+1\[0,∆]d+1

(1 − Πyi)
n−1dy

=
(log n)d

d!
+ O

(

(log n)d−1
)

− n

∫

[0,1]d+1\[0,∆]d+1

(1 − Πyi)
n−1dy

(by identity (16)).

With respect to the rightmost term, we note that

n

∫

[0,1]d+1\[0,∆]d+1

(1 − Πyi)
n−1dy
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≤ nd

∫

[0,1]d
(1 − ∆Πyi)

n−1dy

= n(d/∆)

∫

[0,∆1/d]d
(1 − Πyi)

n−1dy

=
d(log n)d−1

∆(d − 1)!
+ O∆

(

(log n)d−2
)

(by induction hypothesis (17))

= O∆

(

(log n)d−1
)

.

Putting all pieces together, we obtain

n

∫

[0,∆]d+1

(1 − Πyi)
n−1dy =

(log n)d

d!
+ O∆

(

(log n)d−1
)

,

as desired. �

For a better understanding of the next two lemmas, the reader should refer
to Figure 2.

Lemma 5.4 Suppose that µ has a probability density f . Fix x = (x1, . . . , xd),
ε > 0, and denote by Nn the (random) number of sample points falling in

Rε(x). For Nn ≥ 1 and each r = 1, . . . , d, let X
⋆(r)
n = (X

⋆(r)
n,1 , . . . , X

⋆(r)
n,d ) be

the observation in Rε(x) whose r-coordinate is the closest to xr. Define the
random variables

Mn,r =

{

+∞ if Nn = 0

X⋆(r)
n,r − xr if Nn ≥ 1.

Then, for µ-almost all x,

Mn,r = OP

(

1

n

)

,

i.e., for any α > 0, there exists A > 0 such that, for all n large enough,

P

(

Mn,r ≥
A

n

)

≤ α.

32



Proof of Lemma 5.4 Note first that X
⋆(r)
n is almost surely uniquely de-

fined. Choose x in a set of µ-measure 1 such that µ (Rε(x)) > 0 and set
pε(x) = µ(Rε(x)). For any r = 1, . . . , d, let T r

ε (x) be the d − 1-dimensional
rectangle defined by

T (r)
ε (x) = {y = (y1, . . . , yr−1, yr+1, . . . , yd) ∈ R

d−1 : xj ≤ yj ≤ xj + ε, j 6= r},

and let

f (r)
ε,x(z)

=
1[0≤z≤ε]

µ (Rε(x))

∫

T
(r)
ε (x)

f(y1, . . . , yr−1, z, yr+1, . . . , yd)dy1 . . . dyr−1dyr+1 . . . dyd

be the marginal density of the distribution µ conditioned by the event [X ∈
Rε(x)]. Note that we can still choose x in a set of µ-measure 1 such that,

for any r = 1, . . . , d, f
(r)
ε,x(xr) > 0 and f

(r)
ε,x(z) satisfies (3) at xr, i.e.,

∫ xr+t

xr

f (r)
ε,x(z)dz = tf (r)

ε,x(xr) + tζr(t), with lim
t→0+

ζr(t) = 0.

Since Nn is binomial with parameters n and pεn(x), we have for any r =
1, . . . , d and t > 0,

P(Mn,r ≥ t)

= E [P(Mn,r > t|Nn)]

≤ E
[

1[Nn>0]P(Mn,r > t|Nn)
]

+ P(Nn = 0)

≤ E

[

(

1 −
∫ xr+t

xr

f (r)
ε,x(z)dz

)Nn
]

+ (1 − pε(x))n

=

[(

1 −
∫ xr+t

xr

f (r)
ε,x(z)dz

)

pε(x) + 1 − pε(x)

]n

+ (1 − pε(x))n

=

(

1 − pε(x)

∫ xr+t

xr

f (r)
ε,x(z)dz

)n

+ (1 − pε(x))n

≤ exp

(

−npε(x)

∫ xr+t

xr

f (r)
ε,x(z)dz

)

+ exp (−npε(x))

= exp
(

−ntpε(x)
(

f (r)
ε,x(xr) + ζr(t)

))

+ exp (−npε(x)) .
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This shows that

Mn,r = OP

(

1

n

)

,

as desired. �

With the notation of Lemma 5.4, we define the random variable

Qn,ε =

{

+∞ if Nn = 0

the number of sample points falling in Pε if Nn ≥ 1,

where, in the second statement,

Pε =

d
⋃

r=1

P(r)
ε

and

P(r)
ε = [x1 + ε, +∞[× . . .× [xr−1 + ε, +∞[

× [xr, X
⋆(r)
n,r ]

× [xr+1 + ε, +∞[× . . . × [xd + ε, +∞[.

Lemma 5.5 Suppose that µ has a probability density f . For µ-almost all x,

Qn,ε = OP(1).

Proof of Lemma 5.5 For Nn ≥ 1, denote by Q
(r)
n,ε the number of sample

points falling in P(r)
ε , and set Q

(r)
n,ε = +∞ otherwise. Then, clearly,

Qn,ε =
d
∑

r=1

Q(r)
n,ε.

Therefore, the result will be proven if we show that, for µ-almost all x and
all r = 1, . . . , d,

Q(r)
n,ε = OP(1).

We fix x for which Lemma 5.4 is satisfied and fix r ∈ {1, . . . , d}.
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Let α > 0. According to Lemma 5.4, there exists A > 0 such that, for all n
large enough,

P

(

Mn,r ≥
A

n

)

≤ α.

Denoting by En the event
[

Mn,r <
A

n

]

,

we obtain, for all t > 0,

P
(

Q(r)
n,ε ≥ t

)

= E
[

P
(

Q(r)
n,ε ≥ t|Mn,r

)]

≤ E
[

1EnP
(

Q(r)
n,ε ≥ t|Mn,r

)]

+ P(E c
n)

≤ E
[

1EnP
(

Q(r)
n,ε ≥ t|Mn,r

)]

+ α

(for all n large enough)

≤
E

[

1EnE[Q
(r)
n,ε|Mn,r]

]

t
+ α

(by Markov’s inequality).

With respect to the first term in the last inequality we may write, using the
definition of En,

1EnE[Q(r)
n,ε|Mn,r]

= n1En

∫ ∞

x1+ε

. . .

∫ ∞

xr−1+ε

∫ xr+Mn,r

xr

∫ ∞

xr+1+ε

. . .

∫ ∞

xd+ε

f(y)dy

≤ n

∫ ∞

x1+ε

. . .

∫ ∞

xr−1+ε

∫ xr+A/n

xr

∫ ∞

xr+1+ε

. . .

∫ ∞

xd+ε

f(y)dy.

Let

g(r)
ε,x(z)

=

∫ ∞

x1+ε

. . .

∫ ∞

xr−1+ε

×
∫ ∞

xr+1+ε

. . .

∫ ∞

xd+ε

f(y1, . . . , yr−1, z, yr+1, . . . , yd)dy1 . . . dyr−1dyr+1 . . . dyd,

35



and observe that we can still choose x in a set of µ-measure 1 such that
g

(r)
ε,x(z) satisfies (3), i.e.,

∫ xr+t

xr

g(r)
ε,x(z)dz = tg(r)

ε,x(xr) + tζr(t), with lim
t→0+

ζr(t) = 0.

Thus, for δ > 0, we can take n large enough to ensure

n

∫ xr+A/n

xr

g(r)
ε,x(z)dz ≤ A(1 + δ)g(r)

ε,x(xr).

Putting all pieces together, we obtain, for any t > 0, δ > 0, α > 0, and all n
large enough,

P
(

Q(r)
n,ε ≥ t

)

≤ 1

t
A(1 + δ)g(r)

ε,x(xr) + α.

This shows that
Q(r)

n,ε = OP(1).

�
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