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ABSTRACT. We show that for some densities, a bandwidth selection method of Chiu
(1991) for kernel density estimates is not consistent. While the method shows promise for
some densities, it should be used with caution.
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Introduction.

The purpose of this note is to give examples of densities for which one of Chiu’s
(1991) bandwidth selectors is not consistent. We consider an i.i.d. sample Xi,..., X,
drawn from a univariate density f, and estimate f by

fonl) = % POFACES

where K is the kernel (a function integrating to one), Kj(z) = (1/h)K(z/h), and h > 0
is the smoothing factor (Akaike, 1954; Parzen, 1962; Rosenblatt, 1956). The fundamental
problem in kernel density estimation is that of the joint choice of h and K in the absence
of a priori information regarding f. Theoretical studies going back to Watson and Lead-
better (1963) show that the choice of h and K should not be split into two independent
subproblems. Also, the choice of K largely depends upon the smoothness of f.

Watson and Leadbetter started from Parseval’s identity

B [ (o) — 1@ dz = 58 [ lown(®) - o) dt.

where ¢ and ¢, are the Fourier transforms of f and f,;. Let ¥ be the Fourier transform
of the function K}, (note that h is absorbed in this definition). Then the expected Lo
error given above is minimal for the choice
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With this choice, the minimal expected L, error reduces to
p*(1 = |l)
1+ (n—1)]ep[?
These fundamental results were at the basis of a number of fine results:

A. Bullock Davis (1975, 1977) looked at the rate of decrease of the expected L, error
for various rates of decrease of ¢, when 9(t) = £(th) for a fixed form £. Here one is
not allowed to vary the form of the kernel with n. She looked in particular at the
Fourier kernel K (z) = sin(z)/(nzx), and showed it to be nearly optimal for many
densities.

B. Bullock Davis (1977) proposed letting h = 1/t, where ¢ is the smallest ¢ for which
the estimate of the optimal |¢|? equals 1/(n+1). For the Fourier kernel sin(z)/(7x),
this estimate is

B@))° = " ﬁ 1 (% ZCOS(tXi)) + (% Zsin(tXi)) - - 1 =
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Bloxom (1979) provides some encouraging experimental results with this estimate.

C. Wahba (1981) and Hall and Marron (1988) adaptively estimate parameters of the
optimal Fourier transform of the kernel under certain tail conditions on the char-
acteristic function of f. This would require knowledge of the underlying class of
densities.

D. Cline (1988) uses the Watson-Leadbetter result to point out that the optimal
Fourier transform always is symmetric and positive. As the Fourier transform
(say, &) of the Epanechnikov kernel takes negative values, it can always be re-
placed by &, its positive truncation, for a strict improvement in the expected Lo
error.

E. Cline (1990) gives precise asymptotic analysis of the expected Ly error based upon
the Fourier transform approach.

Finally, based upon recent developments in data-based bandwidth selection, several
methods have been proposed for picking the bandwidth that have their origin in the
expressions given by Watson and Leadbetter. Chiu (1991) has a plug-in method that is
based upon the empirical characteristic function

Qpn(t) = ;Z;eltX] .
‘]:

Let A be the smallest positive ¢ such that |¢,(¢)|* < 3/n (where the constant 3 is a design
parameter; Chiu recommends any constant > 1). Then use

0= / £ (|n()]? — 1/n) dt .

This is related to a plug-in method suggested by Park and Marron (1990), in which C is
taken as

where

0= / " 2 (palt)? — 1y (t) dt

and b’ = C's%/13p'9/13 is a pilot bandwidth, C" is a function of f (which in turn is estimated
by the reference density approach) and s is a given measure of the scale of f. This yields
an implicit equation in A, which must be solved. The non-consistency dealt with in this
paper is due to a problem that is endemic in most Lo-based cross-validation methods
including such “solve-an—equation” schemes.



An inequality for empirical characteristic functions.

The literature on empirical characteristic functions contains many strong results
(Csorgo, 1981; Marcus, 1981, Keller, 1988), but none of these really fits our needs, as we
require an inequality for

P {sup |o(t) = en(t)] > ﬁ} :
[t|<a
where # and o depend upon 7 in an arbitrary fashion. For  near 1/4/n, the results of
Csorgo (1981) are useful. For g fixed, we are in large deviation territory (Keller, 1988).
We believe that the following inequality is of independent general utility:

THEOREM 1. Let X be a random variable with characteristic function ¢ and finite first
moment, and let ¢, be the empirical characteristic function based upon an i.i.d. sample
of size n drawn from X. Then, for a > 0, 3 > 0 possibly dependent upon n,

P {s|up o(t) — pult)] > /3} <4 (1 ; S“ET'X') eI 1 o1)
tl<a

where the o(1) term is uniform over all o and 3.

PROOF. Define

g
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We find numbers ¢; < ty < --- < t; with the property that t; = —q, tx = «, [t; —ti1] < 7.
Clearly, we can assure this with £ < 1+ 2a/y. We begin with

’Y:

P {Sup |o(t) = en(t)] > ﬂ} <P { sup |o(t) = ¢(s)| > ﬁ/3}

[t|<a [t—s|<~y

+P{ sup |on(t) — @n(s)| > ﬁ/3}

t—s|<vy

+ 2P {let) = enlts)| > 5/3}

o LTI+ IIT .

Note that
o(t) — p(s)| < E|1— X < B[t — s)X| < HE|X| <
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when |t — s| < . Therefore, I = 0. Next, we let Y be the random variable that puts
mass 1/n at each of the X;’s in the sample drawn from X. Then
|n(t) = @u(s)| < E[L =7
<E|(t—s)Y|

1 n
| S|"§
Therefore,
R B
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by the law of large numbers. Finally, we let ( and n be the real and imaginary parts of
the Fourier transform ¢. Let (, and 7, be the corresponding empirical functions. For
example, (,(t) = (1/n) Y, cos(tX;). Then, for fixed ¢;,

P{lo(t:) — en(t)| > B/3} < PLIC(t:) — Calti)| > B/6} + P {[n(t:) — ma(t:)| > B/6}
< 4efnﬁ2/72

by Hoeffding’s inequality for bounded random variables (Hoeffding, 1963). This concludes
the proof of Theorem 1. ]

The main result.

In the Theorem below, we describe a simple class of densities for which Chiu’s
method is non-consistent. No attempt was made to obtain a general result.

THEOREM 2. Let f be a density with finite first moment, and with real unimodal char-
acteristic function ¢ satisfying p(t) ~ t~¢ as t — oo, where ¢ < 1/2 is a fixed constant.
Then, if H is the bandwidth choice for Chiu’s method, we have

liminfE/\an—ﬂ >0.
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AN EXAMPLE. The condition of the theorem is satisfied for the random variable X =
Z — 7' where Z and Z' are i.i.d. gamma random variables with parameter a < 1/4 (note
that ¢(t) = 1/(1 + t2)%).

OTHER MODES OF CONVERGENCE. We can’t give an Ly version of the Theorem, as
J f?# = oo for the densities under consideration. It should come as no surprise that it is
precisely for these densities that problems occur, as the design of the method is Ly-based.
This raises the interesting question of whether we should test for the finiteness of [ f?
before applying an Ls-based bandwidth selector. Nevertheless, f,g is undesirable by any
standard as we will show that nH — 0 in probability, so that we won’t even have pointwise
convergence at any point.

OTHER BANDWIDTH SELECTORS. Chiu’s bandwidth selector shares its anomalous be-
havior with most of the L, cross-validation criteria. For example, a similar non-consistency
was pointed out in Devroye (1989) for the original Ly cross-validation method (Bowman,
1974; Rudemo, 1974). For a survey of other methods in this class, and for some fixes, see
for example Jones and Kappenman (1992) or Marron (1988, 1989). Also, we have not
considered Chiu’s stabilized method or one of its modifications (Chiu, 1992).

PROOF. If the constant C in Chiu’s method is such that C/n* — oo in probability, then
nH — 0 in probability as well. By necessary conditions for consistency (Devroye and
Gyorfi, 1985), this implies that for any kernel,

liminfE/\an —f]>0.
n—o0
Define a constant z with

o s 4c
- >z )
2 5—2¢c

Define « as the solution of
o(t)y=n""%.
Note in particular that as n — oo, & ~ n*/°. Define 8 = (1/2) infjy<a [@(t)| = (1/2)¢() =
(1/2)n*. Let A, be the event that
sup [@(t) — ¢n(t)] < B .
[t|<a

If A, holds, then for t € [—a, a],

enlt)] > [t)] = 5> inf [o(t) ~ > %n_z .
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For n large enough, and [t| < «, ¢,(t) > 4/3/n, and thus A > a. As on [—a, «, under
An, on(t) > (1/2)¢(t) and 1/n < (1/8)¢?%(t), we see that

1 (8%
€2 [t lpu(@P - Lm) d

™ Jo
1 [0}

> = [ le)? - 1m i
1 [0

> L [ us)p(e) 2 dt
™ Jo

065720

85— 20)1
,n/(z/c)(572c)
8(5—2¢)m

By our choice of z and ¢, the exponent of n on the right-hand side is greater than 4. We
conclude that if P{A,} — 1, then for any constant M,

lim P{C > Mn'} =1,

n—oo
or, equivalently, for any constant € > 0,
lim P{nH <e}=1.
n—oo
To prove that P{A,,} — 1, invoke Theorem 1. The constants o and (3 there are the same
ones we introduced in the proof of Theorem 2. Note that 3 = (1/2)n* with z < 1/2, and
that /3 grows polynomially with n. Thus, P{A,} — 1 as required. O

Acknowledgment.

I would like to thank the referee.

References

H. Akaike, “An approximation to the density function,” Annals of the Institute of Statis-
tical Mathematics, vol. 6, pp. 127-132, 1954.

B. Bloxom, “A Fourier integral density estimate: a Monte Carlo study,” Communica-
tions in Statistics B, vol. 8, pp. 391-396, 1979.

A. W. Bowman, “An alternative method of cross-validation for the smoothing of den-
sity estimates,” Biometrika, vol. 71, pp. 353-360, 1984.

S.-T. Chiu, “Bandwidth selection for kernel density estimation,” Annals of Statis-
tics, vol. 19, pp. 1883-1905, 1991.



S.-T. Chiu, “An automatic bandwidth selector for kernel density estimate,” Biometrika,
vol. 79, pp. 771-782, 1992.

D. B. H. Cline, “Admissible kernel estimators of a multivariate density,” Annals of Statis-
tics, vol. 16, pp. 14211427, 1988.

D. B. H. Cline, “Optimal kernel estimation of densities,” Annals of the Institute of Sta-
tistical Mathematics, vol. 42, pp. 287-303, 1990.

S. Csorgd, “Limit behavior of the empirical characteristic function,” Annals of Probabil-
ity, vol. 9, pp. 130—144, 1981.

K. B. Davis, “Mean square error properties of density estimates,” Annals of Statis-
tics, vol. 5, pp. 1025-1030, 1975.

K. B. Davis, “Mean integrated square error properties of density estimates,” An-
nals of Statistics, vol. 5, pp. 530-535, 1977.

L. Devroye, “On the non-consistency of the L2 cross-validated kernel density esti-
mate,” Statistics and Probability Letters, vol. 8, pp. 425433, 1989.

L. Devroye and L. Gyorfi, Nonparametric Density Estimation: The L1 View, John Wi-
ley, New York, 1985.

P. Hall and J. S. Marron, “Choice of kernel order in density estimation,” Annals of Statis-
tics, vol. 16, pp. 161-173, 1988.

P. Hall and J. S. Marron, “Choice of kernel order in density estimation,” Annals of Statis-
tics, vol. 16, pp. 161-173, 1988.

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Jour-
nal of the American Statistical Association, vol. 58, pp. 13-30, 1963.

M. C. Jones and R. F. Kappenman, “On a class of kernel density estimate bandwidth se-
lectors,” Scandinavian Journal of Statistics, vol. 19, pp. 337-349, 1992.

H.-D. Keller, “Large deviations of the empirical characteristic function,” Acta Scientiar-
ium Mathematicarum Hungarica, vol. 52, pp. 207-214, 1988.

M. B. Marcus, “Weak convergence of the empirical characteristic function,” Annals of
Probability, vol. 9, pp. 194-201, 1981.

»

J. S. Marron, “Automatic smoothing parameter selection: a survey,” Empirical Eco-

nomics, vol. 13, pp. 187-208, 1988.

J. S. Marron, “Automatic smoothing parameter selection: a survey,” in: Semiparamet-
ric and Nonparametric Economics, ed. A. Ullah, pp. 65-86, Heidelberg, 1989.

8



B. U. Park and J. S. Marron, “Comparison of data-driven bandwidth selectors,” Jour-
nal of the American Statistical Association, vol. 85, pp. 6672, 1990.

E. Parzen, “On the estimation of a probability density function and the mode,” An-
nals of Mathematical Statistics, vol. 33, pp. 1065-1076, 1962.

M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,” An-
nals of Mathematical Statistics, vol. 27, pp. 832—-837, 1956.

M. Rudemo, “Empirical choice of histograms and kernel density estimators,” Scandina-
vian Journal of Statistics, vol. 9, pp. 65—78, 1982.

G. Wahba, “Data-based optimal smoothing of orthogonal series density estimates,” An-
nals of Statistics, vol. 9, pp. 146-156, 1981.

G. S. Watson and M. R. Leadbetter, “On the estimation of the probability density,” An-
nals of Mathematical Statistics, vol. 34, pp. 480-491, 1963.



