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ABSTRACT

Let f be an unknown possibly multimodal density on R%and let X1, X5,...bea sequence
of independent random vectors with density f. Several recursive estimates of the mode of f are
proposed, and sufficient conditions ensuring their weak and strong consistency are established.

1. INTRODUCTION

In this paper we are concerned with estimating the mode of a density fon R from
a sample Xi, Xz, . .., X, of independent identically distributed random vectors with
density f. Estimates of the mode can be classified as “direct” (when there is a simple
recipe to obtain the estimate Z, from the data) or “indirect” (when first f'is estimated
by f. and then Z, is taken to be any point for which fn(Z,) = max, fu(x)).

Direct estimates for d = 1 were proposed by Grenander (1965), Dalenius (1965),
Venter (1967), Ekblom (1972), Robertson and Cryer (1974), Sager (1975, 1978) and
Chernoff (1964). Dalenius takes the midpoint or the median of the shortest inteval
containing at least k, points; Venter theoretically and Ekblom experimentally study
its properties; Robertson and Cryer robustize the estimate by iterative computation;
and Sager proposes for d > 1 to pick some point inside the smallest set in a certain
class of sets (e.g., spheres, rectangles) that contains at least k, of the data points. The
estimates of Chernoff and Grenander also use the concept of search for the “best”
interval but their criteria are different.

Most authors give conditions on f and k, that ensure the almost sure convergence
of Z, to z, the mode, when z is the unique point for which f(z) = max. f(x). For the
most general theorems, and weakest conditions on f, the reader is referred to Sager
(1978).

Consider now indirect estimates where

fn(Zn) = mfxf;l(x) (l)

and f, is some density estimate. In view of

| /(Zn) = f(2)| = 2sup| fu(x) — f(x)] @
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it is clear that f(Z,) S f(z) almost surely whenever
sup | fulx) — f(x)| = 0 almost surely. 3)

Here — should be read “as n — o”. This observation is applied to the Parzen-
Rosenblatt kernel estimate (Rosenblatt 1957; Parzen 1962) by Parzen (1962), Nada-
raya (1965) and Van Ryzin (1969) and to histogram estimates by Kim and Van Ryzin
(1975). The kernel estimate is given by

121 x—X;
Jalx) = ;igl'};zK(h—n), 4)

where K is a given density on R and h, is a positive number. Sufficient conditions
for its strong uniform consistency, cf. (3), are given by Parzen (1962), Nadaraya
(1965), Van Ryzin (1969), Deheuvels (1974), Foldes and Révész (1974), Silverman
(1978) and Devroye and Wagner (1980). Schuster (1970) showed that f must
necessarily be uniformly continuous for (3) to hold. The estimate defined by (1) is of
small practical value because a time-consuming search is necessary. Also, classical
search methods perform satisfactorily only when f, is sufficiently “regular” (contin-
uous, unimodal, etcetera). A simpler and more direct estimate picks Z, among Xi,
Xz, ..., Xy, such that

flZn) = max fu(X)). ®)
Here the integer A» < n is chosen by the statistician. Thus, to find Z,, f, must be

computed A, times.
We have

PROPERTY 1. If f is uniformly continuous, if \,—>  and if

sup | f(x) — f(x)| 50in probability (almost surely),

then f(Z,,) > max, f(x) in probability (almost surely) for estimate (5).
For the kernel estimate, the strong version of Property 1 is valid when
h. >0,  nhi/logn-> o, (6)

and when K is a Riemann integrable bounded density with compact support (Devroye
and Wagner 1980). We show in Section 4 that it remains true for all bounded
densities K.

PROPERTY 2. Let Z, be the estimate defined by (5). If f is uniformly continuous, if
An 1 o, if K is a bounded density on R and if

h,—>0,  nhi/log A, - w,

then f(Z,,) > max, S(x) in probability. If also

Y exp(—anhy) <o forall a>0,

n=1

then f(z,) 5 max, S(x) almost surely.
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There are situations in which for practical or economical reasons one cannot keep
X1, Xz, ..., X, in memory. Thus, Z, must be recursively computed as a function of
X, and the memory contents at time n — 1. The stochastic approximation algorithms
of Fritz (1973) and Mizoguchi and Shimura (1976) are capable of locating one of the
local maxima of f. If f'is known to be unimodal, their algorithms are very useful. In
general however, even if f is uniformly continuous, f can have a countably infinite
number of local peaks. In the next section we define a simple recursive estimate of
the mode and we show that f(Z,) 5 max, f(x) almost surely under no conditions on
the number of modes or their location.

2. RECURSIVE ESTIMATION OF THE MODE

Let 11, #2, . . . be a sequence of positive integers and let Ay, hs, ... and ¢, €2, . . . be
positive number sequences. With so = 0, se = £y + - - - + £, we define the sequences
of random variables Zo, Z,, ... and Wy, W1, ... by

Zy = Xi,
Wk = Xsk+l’ k = 0

_ Wi if fi(We) > f(Zr-1) + &,
Zy= {Zk_l otherwise, 0
where f; is the Parzen estimate of f with X, , ..., X;,:
1 Sk - X;
il =—3 % K(" : ®)
khk i=s,_,+1 hk

The computation of fu(Wi-1) and fi(Zx-1) can be done recursively; Zx can be
regarded as the estimate of the mode after k iterations and W} can be considered as
a candidate estimate at the kth iteration. In spite of its simplicity, the following is
true for the sequence {Z,} defined by (7) and (8).

THEOREM 1. If fis Lipschitz, that is,

sgglf(x) -fW|=Clx—-y| forsome C=>0, ©)
if K is a bounded density on R® with
J Il x| K(x) dx < oo, (10)
and if
tn— 0, hnfen— 0, (11
and

tahde2 5 w
then f(Z,) > max, f(x) in probability for the estimate defined by (7) and (8). If also

Z exp(—atzhiel) < o forall a>0, (12)

n=1

then f(Z,) > max, f(x) almost surely.
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Remarks. (1) The threshold &, measures the statistician’s conservative nature. It is
the handicap given to W,-, in the decision rule (7).

(2) Condition (12) holds if t,he2/log n 5w,

(3) The classical tail condition on K, namely || x ||*K(x) — 0 as || x || = o, does not
follow from (10). Just let

) Ck2
K(x)=} 7f[2*/k2.2*/k2+1/k2](x),
k=1

where ¢ is a normalization constant and .# is the indicator function.

(4) The scheme defined by (7) and (8) can be generalized by considering L
challengers Wi(1), ..., Wi(L) for Z instead of just one challenger W;. Let 1, = L
for all k£ and consider:

Zo= X,
Wi(i) = Xs,+i, l<=i<L k=0,

2, = { Wi 1(9) ihﬁ%: () = max fi(Weri(j)) > flZed) + e (13,

Then Theorem 1 remains valid for (13) as well.

3. A GENERALIZATION

In (7) and (8) we have no control over the choice of the candidate points W,.
Rather than a totally random selection (i.e., Wi = X;,.1), a careful choice of W, (e.g.,
W close to Z;) may accelerate local search towards the maximum of f and thus
increase the accuracy of the estimate. Formally, let T, be an R%valued random
variable independent of X;,.2, X543, ... and let ao, a1, az, ... be a sequence of
numbers from [0, 1]. Replace (7) with

W, = X;,+1 with probability ax,
k Ty otherwise, k = 0,

_ Wi if fiWi1) > f(Zi1) + e,
Zi= {Zk—l otherwise. (14)

THEOREM 2. Let f be a density satisfying (9), let K be a bounded density on R* satisfying
(10), let (11) hold and assume that

tah3el + log a, — oo 15)
and
Z op = ©, (16)
n=1

Then f(Z,) > max. f(x) in probability for scheme (14). If (15) is replaced by (12), then
f (Zn)> max, [f(x) almost surely.

Examples. (1) T, has a normal distribution with centre Z, and variance o% in all
directions.
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(2) We may let or > 0 be a small radius and let T} be the point of gravity of all
those X; with s < i< s and || Xi — Zp_:1|| < . If 1, grows large, T — Z;-, will
roughly follow the gradient of f at Z,:.

(3) T is the outcome of a local search started at Z;-, with the data X,, .1, ...,
X,,. The algorithms of Fritz (1973) or of Mizoguchi and Shimura (1976) can be used
for this purpose.

Remarks. (1) If f(Z,) - max, [(x) in probability, if a, 5 0, if f is uniformly
continuous, and if |7, — Z.-1|| = 0 in pro‘t’{ability, then f{( W,) > max, f(x) in
probability. (In Example 1, it suffices to let 6, — 0.) This follows from the inequality

P{f(W,) < max f(x) — ¢} < a, + P{f(T,) <max f(x) — ¢}
< o + P{f(Zn-1) <max f(x) — &/2} + P{| Tn — Zn-1|| > &}

where § > 0 is chosen small enough.
(2) The estimate due to Loftsgaarden and Quesenberry (1965), when used in (5),

leads to the following mode estimate: pick Z, = X; among X, ..., X,, such that
D,; = min Dn_,', (17)
1=<j=A,
where Dy, is the distance from X; to its k,th nearest neighbour among X, ..., X,.

From Property 1 and a result due to Devroye and Wagner (1977) (see also Deheuvels
1974 and Moore and Yackel 1977) it is readily seen that f(Z,) 5 max, f(x) almost
surely whenever f is uniformly continuous, A, — ®, k,/n— 0 and kn/log n> o
Recursive versions of (17) in the sense of (7) would be less practical because at the
nth stage we would need memory depth &, but k, 5 o is needed to ensure the
consistency of the estimate.

4. PROOFS

Proof of Property 1. Pick any z € R with f(z) = max, f(x). For ¢ > 0 find § > 0
such that || y — z|| = 6 implies f(y) > f(z) — ¢/3. If ¢ = P{|| X1 — z|| < 8}, then

P{ min X —z|>8)<(1—-o"50,
1=i=A,
and thus
P(f(Z:) < max f(x) = &} < P(sup | fu(x) — f(x) | > ¢/3)
+P{min || Xi—z|>8} 0.
The almost sure convergence part follows from
P{kl;ln {f(Zy) < mxaxf(x) —€}}

=P(U (uplfi) —/@|>e/H} +P(__min Xz >5)
and the given assumptions. Q.E.D.

Proof of Property 2. We will use the notation of the previous proof. For arbitrary
e > 0 and for all n so large that nh§ = 12 Mx/e (Mx = sup, K(x)) we have
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P{f(Z,) < mfxf(x) —gl=e M+ P{lililsl; | fn(Xi) — f(Xi) | > €/3)}

= e M + MP{| fu(X1) — f(X1) | > &/3}
< e M 4 MP{| fu(Xn+1) = f(Xns1)| > €/6}
< e ™ + Ausup P{| fu(x) — f(x)| > ¢/6}

and

P{kLZJn {f(Zx) < mjle(x) - e}} = exp(—cA») + kin )\ksgp P{| fe(x) — f(x)| > ¢/6}.

Clearly, for n large enough, sup. | f(x) — &{ f,.(x)} | <&/12, cf. Nadaraya (1965), Van
Ryzin (1969), Devroye and Wagner (1978), in view of the uniform continuity of f
and h, > 0.

Notice next that f,(x) is the average of n independent identically distributed

random variables
1 x—-X;
Y= — K[ —Z
s ( R )

with £{Y?} < MxM;/h;, My = sup; f(x), | Y:| < Mk/h;. By the inequality (Bennett
1962)
P{| fa(x) — E{fa(x)} | > €/12} =2 exp(—cznhﬁ(e/IZ)z),

where ¢ = [2(MxM; + M;e/12)]" . For large n this is also an upper bound for
P{|fu(x) — f(x)| > ¢/6}. Since the bound is uniform in x, we see that f(Z,) 5
max, f(x) in probability when A, 5 ® and }\,.exp(—anhd) — 0 for all @ > 0.
The convergence is almost sure if A, — o and the sequence
{A.exp(—anhg)} is summable for all a > 0.

LemMA 1. Let {a,}, {bn} and {c.} be nonnegative number sequences with b, < 1 and
ani1 < an(l — by) + cp foralln = 0.

(1)1]’2 bn—ooandz Cn < o, then an, — 0.

n=1

(i) If Y bn = ® and c,/bn—> 0, then a, — 0.
n=1
Proof. By iterative computation, for 1 < p, <n,

a,,+1<Zc,H(l 1)+00H(1_J)

=0 =i+l Jj=0

= (2 c:) H (1-5)+ 2 ¢ + acexp(— Z b))

i=0 J=pp+1 i=p,+1 J=0

= (io c)exp(— Z b) + E ¢i + aoexp(— Z b))

J=pp+1 i=p,+1 Jj=0
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which tends to 0 as n — o if p, —> o and ¥/, +1 b;—> oo. Such a sequence can be
found since the b, are not summable. This proves part (i). Part (ii) is due to
Braverman and Rozonoer (1969). Q.E.D.

Proof of Theorem 1. Consider n so large that &, < ¢, Ch, f [ x| K(x) dx < }en
and f,he, > 8Mx where e > 0 is arbitrary and C is the Lipschitz constant. If
an = P{f(Z,) < max f(x) — ¢},
then
an = P{f(Z,,-l) < maxf(x) — & Zn = Zn-,
or f(Wn-1) <max f(x) — & Z, = Wh1}
=< P{f(Zn-1)) <max f(x) —¢, and f(W,-1) <max f(x) — e
of | fu(Zn-1) = f(Zn-1)| > Y& — 4en OF | fu(Wa)) = f(Wn1)| > e — }en}
+ P{f(Zn-1) Z max f(x) — ¢, f(Wp-1) <maxf(x) —¢, Z, = Wy_1)
< aoi(1 = y(1 = P{|flZn-1) = f(Zn-1) | > }e)
= P{| fu Waet) = (W) | > $¢)))

+ P{|fl(Zn-1) = f(Zn-1) | > Yen} + P{| fu(Wn-1) = f(Wooi) | > hen}

by the independence of W,-, and Z,-;. Here y = P{f(X)) > max, f(x) — }¢} is
strictly positive by the continuity of f. We will put this inequality in the form

@< ana(1 — y(1-6,) + 0, (18)
where 8, > 0. By Lemma 1, we may then conclude that a,—> 0. By the arbitrariness

of ¢ > 0 the weak convergence of f(Z,) to max; f(x) then follows.
Clearly,

P{| fuZn) = f(Zn-2) | > }en} + P{| fuWad) = f(Wad) | > hes)
=2 sup P{| fa(x) = f(x)| > %en}

<2 sgp P{|fa(x) = E{fu(x)} | > }en} (19)

if tuhnen > 8Mx and if for all x, | f(x) — €{fu(x)} | < }&.. Now,

/&) = £ () | = |fx) - f it K("—hf—y-) f03) x|

= f Clx —y||h;dK<x—h——y) dy = Cth [l x| K(x) dx < }e,.

We have already established an upper bound for (19). Thus, (18) is true with

_ _ tn(ken)’hs
0.=4 CXP{ m}
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The almost sure convergence follows from a,— 0 for all e > 0, Y6, < (for which
(12) is needed) and

P{kLZJn (f(Zy) < max f(x) - e} }
< P(f(Z) <maxf(x) =&} + 3 P(f(Zu-) <f(Z0)}

=a,+ Y (P{|fess(Zr) — f(Z) | > derr} + P{| farrs(Wr) — f(Wi)| > ders1})

k=n

<apt Y Op1— 0.
ot 2 b= (20)

Q.E.D.
Proof of Theorem 2. Trivial calculations show that for n large enough, we have
an = an—l(l - anY(l - 0n)) + 0n,

where a,, 0,, y are defined in the proof of Theorem 1. Convergence in probability of
f(Z.,) to max, f(x) follows whenever ¥, a, = % and 8,/a»—> 0, or if ¥ o, = 0 and ¥,
0, < o (Lemma 1). Under the latter conditions, we know that the convergence is
almost sure as well, cf. (20). Q.E.D.

RESUME

Soit f une densité inconnue possiblement multimodale définie dans R4 et soit X1, Xz, ... un
échantillon aléatoire ayant une densité égale a f. On propose plusieurs estimateurs récursifs du
mode de f; et on présente des conditions sous lesquelles ces estimateurs sont faiblement ou
fortement consistents.
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