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Let Sn = Xl +

	

+ Xn be the nth partial sum of an i.i.d . sequence of
random variables. We describe the limiting behavior of

Tn = max1_<<i<-n(SSi+K(i) -
Un = max0<i-<n-k(SSi+k - 'Si),
Wn = max0<i<n-kmaxl<j<k("Si+j - 'Si)

and
Vn = maxOSi_n-km1nl<j<k(k/J)(Si+j -

for k = k(n) _ [c log n}, and where c > 0 is a given constant . We assume
that the random variables X i are centered and have a finite moment
generating function in a right neighborhood of zero, and obtain among other
results the full form of the Erdos-Renyi (1970) and Shepp (1964) theorems .
Our conditions extend those of Deheuvels, Devroye and Lynch (1986) to cover
a larger class of distributions .

1. Introduction. Let X1 , X2 , . . . be an i .i .d. sequence of random variables,
with 'partial sums So = 0 and Sn = X1 +

	

+ Xn . We are concerned with the
limiting behavior of

Tn = max (Si+K(i)-Si}, Un = max {Si+k Si ) '-
1-ti n

	

0-<i_<n-k

Wn= max max (S + -S},ij i Vn = max min (k/j)(S+1-SJ,i0<-i<_n-k 1_<j<_k

	

0_<i_<n-k 1<_j<_k

where k = ic(n) _ [c log n], with [ u ] -< u < [ u ] + 1 denoting the integer, part of
u, and where c > 0 is fixed .

We shall assume throughout that the following conditions are satisfied :
(A) E(X 1) = 0 .
(B) X 1 is nondegenerate, i .e ., P(X1 = x) < 1 for all x .
(C) t0 = sup{t; 4(t) = E(exp(tX1 )) < oo} > 0.
We will use in the sequel the notation of Deheuvels, Devroye and Lynch (1986),
and define the following quantities :

m(t) _ ~'(t)/~(t),

	

a2(t) = m'(t),

	

0 <_ t < t o ;

A = lira m(t),

	

c0 =1 ft0tm(t)dt;
't t to

	

0

p = p(a) = exp(-1/c) = inf4(t)e-ta = k(t*)e_t*a,

	

m(t* )t
0<t*=t*(a)<to, 0<a<A,

	

0,<-c0<c=c(a)<oo .
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Note that c = c(a) [resp . t* = t*(a)] is a decreasing (resp . increasing) continu-
ous one-to-one function of a E (0, A), such that

lim c(a) = oo,

	

lim c(a) = c0 ,

	

lim t*(a) = 0,

	

lira t*(a) = to .
aJ,0

	

at A

	

aJ0

	

at A

Limiting results concerning increments of partial sums such as U,~ with the
"critical" choice k = [c log n ] are usually called Erdos-Renyi laws after the
best-known theorem of this type due to Erdos and Renyi (1970) who proved
that, for any co < c < oo,

lim (ak)
-1
Un =1 almost surely .

n--> 00

Earlier, Shepp (1964) had proved, under the same assumptions, that

lim (ak) -1Tn =1 almost surely .
n--> 00

These results have been refined by S. Csorgo (1979) and by M. Csorgo and
Steinebach (1981) who showed that, for any co < c < oo,

(ak)
-1
Un =1 + o (k-1/2) almost surely

and

(ak) -1Wn =1 + o (k 1~2) almost surely .
The exact rate of convergence of (ak)_1U, and (ak) - 'Tn has been obtained by
Deheuvels, Devroye and Lynch (1986) . This is given in Theorem A .

THEOREM A. Let c o < c < oo . Then we have

(i) (Un - ak)/log k-~ - (2 t*) -1 in probability;
(ii) lim supra ~(Un - ak)/log k = (2t*)-1 almost surely;
(iii) lim infn ~(Un - ak)/log k = - (2t*) 1 almost surely .

In statements (i)-(iii), U,~ can be replaced by Tn .

The aim of this paper is threefold . In the first place, we consider an arbitrary
c E (c0 , oo ), and we obtain versions of Theorem A valid for W,~ and Vn . This is
achieved in Sections 3 and 4, while, in Section 2, we give a large deviation
estimate which is used in the proofs .

Secondly, we consider the case where 0 < c -< c 0 . This corresponds to the
so-called full form of the Erdos-Renyi theorem, which covers specific distribu-
tions characterized in Theorem B, due to Deheuvels, Devroye and Lynch (1986) :

THEOREM B. co = 0 in all cases except the following two :

(i) A < oo, to < 00 . In this case, ess sup X 1 = oo and

co =1/(Ato - log
(ii) A < 00, to = 00 . In this case, ess sup X1 = A, P(X = A) > 0 and

c 0 = - 1/log P(X1 = A) .
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We obtain in Section 5 the limiting behavior of Tn, Un, Vn and Wn, corre-
sponding to cases (i)-(ii) of Theorem B .

Thirdly, we investigate the limiting distribution of Un , which is evaluated in
Section 6 .

In Section 7, we discuss some applications, with emphasis on Brownian
motion and empirical processes .

Before proceeding with the details of our theorems, we remark that, as will be
shown in the sequel, in all cases, the random variables Tn, Un, Vn and Wn remain
asymptotically very close to each other . This result is somewhat surprising for Vn
which one could have expected to be much smaller that Un and TV .

General references on Erdos-Renyi-Sheep type theorems are to be found in
S. Csorgo (1979) and Deheuvels (1985). It is worthwhile mentioning that if
l = In = [in ], where (in , n >_ 1 ) is a real-valued nondecreasing sequence such
that

N
(i) 1 <- In <- n, n = 1,2, . . . ;N

	

N
(ii) ln/n ,~ ; l,,/log n -~ oo ;N
(iii) (log(n/i)}/log

	

n log n -~ oo ;
assuming, in addition to (A)-(C) that 4(t) < oo in a neighborhood of zero, and
setting a 2 = a2(O) = E(X) < oo, we have

lim {2ia
2 log(n/l) } - 1/2 max {S1

z+ - Si ) =1 almost surely .fl-o°

	

0_<i<n-l

This shows the interest of Erdos-Renyi-Sheep type increments for which the
normalizing factor (ak)-1 characterizes the distribution of X1 , while
(2k2log(n/l )) -1~2 depends upon this distribution through Q 2 = E(X) only .

Finally, we note that our methods can be extended to cover the case where
k = ic(n) = clog n + o(loglog n), as n -~ oo . Expansions for k/log n -~ oo are to
be found in Deheuvels and Steinebach (1986) .

2. Large deviations estimates . We shall make use of the following theo-
rem due to Petrov (1965) .

THEOREM C (Petrov, 1965) .
p(t*)

	

p(t*)

	

n

	

' r I
n=	~(t )

	

*P(Sn >_ na)

	

p

	

exp _

	

=

	

exp(n(log ~(t )_t a)),

uniformly for a E [E, min(A - e, 1/e)], where e > 0 is arbitrary, and (t*) > 0
is a finite number depending upon t* and the distribution o f X1 only. For
nonlattice distributions, one can take (t*) _ (t*a(t*) 2 ~r) -1 , while for lattice
distributions with span H, one can take p(t*) = H(a(t*) 2~r (1-

We shall prove the following large deviation result which has interest in itself .

THEOREM 1.

p(t*) n

	

+°° P(Sk ? ka)
P(S1 >_ a, S2 > 2a, . . ., Sn >_ na)

	

p exp

	

,kn n

	

k=1

	

kp
as n -~ oo,
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uniformly for a E [e, min(A - e, 1/e)], where e> 0 is arbitrary, and where
/(t*) is defined as in Theorem C .

We shall make use of the following lemma, due to Sparre-Andersen (1953/1954)
[see, e.g ., Stout (1974), page 342] .

LEMMA A . Let a 0 = Qo =1 and for n >-1, a n = P(S 1 >- a, S2 >_ 2a, . . ., S, >
na) and fin = P(Sn >- na). Then, for any ~sI <1, we have

+00

	

+00 S n
anSn = exp

	

fin-
n=0

	

n=1 n
PROOF OF THEOREM 1 . By Lemma A, we have the straightforward expan-

sion
finan = n +21 Nni I3n 2 +n inenl , n 2 >_ 1

nl +n2=n
For t-i-<k-<n,let

A1(k, n) - (n1 , . . ., n k ) : n i + . . . + nk = n, n 1 , . . ., nk >-1,
ni>nj,j<i,ni>_n1,l>i} .

Let Bi(k, n) be the image of A1(k, n) under the map (n1 , . . ., nk) -,
(n1> . . . > nt•_ 1, nal> . . .> nk) . We have evidently

00 1 k

	

R . . . R
3/2p -nan =

	

Nnl

	

fink 3/2 - nn
k=1 k . i=1 A~(k, n) ni

	

nk

00 1 k

	

k fi
_ ~ E ~ ~n

k=1 k~ i=1 B~(k,n) j=1 nlp
~

'j*i

where ~(m) = f3mVp-m.
By Theorem C, we know that, for all m and a E [E, min(A - e, 1/e)], ~(m) <-

1 < oo, where 1 is an appropriate constant . Furthermore, on B 1(k, n),
njn >-1/k .

Therefore, the above sum is dominated by the series
001

	

k k
,k 3/fl2

Lr

	

Lr
k-1 k . *z

Using again Theorem C, we see that, uniformly in a E [E, min(1- e, 1/e)],
00 Qn

n-1 nP

1
+ kl

00

	

00
~nn

	

1_ k5y2 ~

n~>_i njp'

	

k=1 I•

	

n=1

n < 0 < oo, for some constant 0 .

Nnl	 nk
n l , . . ., nk >_ 1

	

n1 . . . nk
nl+

	

+nk=n

fin
npn J

\ k-1
< Op ,
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It follows that the above series is in turn dominated by
001

~ ~ ~ k 5
/
20k-i < oo .

k= 1 k .

Passing to the limit term-by-term, we see that, uniformly in a E [e, min(A - E,
1/E)],

00 1 k

	

00 a k- i

	

00 filim n3"2p-nan = 'Y(t* )

	

n

	

='Y(t*)eRp

	

n ,
k=1 k . i=1 n=1 np

	

n=1 np

as sought . Here, we have used again Theorem C and the dominated convergence
theorem. This proves Theorem 1 . 0

Proceeding as in Deheuvels, Devroye and Lynch (1986), Corollaries 1 and 2,
we obtain the following Corollaries of Theorem 1 .

COROLLARY 1 . Let a E (0, A) and let yn be a sequence o f numbers satisfying
nyn -~ 0 as n -~ oo . Then, uniformly over all sequences zn with Izn l _< l yn l , we
have

P( .Sn > IZ(a + 2n)) - p~t*

	

n	 ) expl

	

C Ie%p(-Il..Znt'r )

and

P(Si>-a+zn,S2>_2(a+Zn), . . .,Sn>-n(a+Zn))

p(t*)

	

n
...	~ exp( c'gRp(-)1,.Znt* )O(q~ + ,Zn ),	 n		

1

where 0(A) = exp(~k i(P(Sk >- kA))/(k pk(A))} . Furthermore, we have

1 00 P(Sk > ka) l
0 < exp ~	 < lim infL( a + zn) S urn sup L(a + zn)

=1

	

kPk

	

i

	

fl-' 0O

	

n -, 00

00

P(Sk >_ ka)<_

	

1<00 .expS
tk=~

	

kp

PROOF. Corollary I of Deheuvels, Devroye and Lynch (1986) gives the first
statement, while the second follows from the first by Theorem 1 and the
observation that, as n

	

oo, P(S1 >- A, S2 >_ 2X, . . ., Sn >- nX)(0(A))-i
n - iP(Sn >- n X) uniformly for A = a + zn . Finally, note that zn -, 0,
p(a + zn ) -~ p(a) as n -, oo, and, for any fixed k >-1,

P(Sk > k a) -< lim inf P(Sk >- k (a + zn ) )
n-* 00

_< limsupP(Sk z k(a + zn)) s P(Sk >_ ka) .
n- • o0

The conclusion follows by the dominated convergence theorem . 0
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COROLLARY 2 . For all e E R and a E (0, A), we have

*) + o(1))k-(1/2)-( ± (1/2)+E)

	

i

	

log k
(p(t

	

_< nP Sk >- ak + (± 2 + e)	
k

< (e 1i/i(t)

	

~*+ o(1))k-(1/2)-(x(1/2)+E),

and there exist constants 0 < C1 = C1(a) <- C2 = C2(a) < oo, such that

-(1/2)-(±(1/2)+E) -<

	

kS;

	

1

	

log k
(C1 +o(1))k

	

nP min , >-ak+( -1± 2 +e)
1_<j<k 3

	

t

_< (C2 + o(1))k-(1/2)-(±(1/2)+g) .

PROOF. It follows directly from Corollary 1 and the observation that
e(l We>_n >_e k/c.0

REMARK 1. Lemma A yields the simple inequalities
P(Sn > na)

P(S1>a,S2>-2a, . . .,Sn>-na)<_P(Sn>_na),n
which suffice, jointly with Theorem C, for a Chernoff type large deviation result
of the form

limn-ilog P(S1 >- a, S2 >- 2a, . . ., Sn >- na) = limn-ilog P(Sn >- na)
n-~ oo

	

n-~ o0

= log p .

REMARK 2. In Theorems C and 1(resp. Corollaries 1 and 2), it is implicitly
assumed in case where X1 follows a lattice distribution, that na [resp. n(a + zn)]
belongs to the subgroup of R generated by the support of the distribution of X 1 .
Such a simplification does not affect the proofs of our theorems in the sequel,
with the only exception of Section 6, where the assumption that the distribution
is nonlattice is essential in the proofs .

3. The random variable Wn. Throughout, we shall make use of the se-
quence of integers defined by

nj = inf(n. ; [c log n] = j} .

We note in the first place that Vn -< Un -< Wn . In this section, we assume that
a E (0, A) . A straightforward application of Theorem A proves our first lemma
stated below .

LEMMA 1 .

(i) lim supn ~(Wn - ak)/log k >- (2 t*) -1 almost surely.
(ii) lim inf n Q(Wn - ak)/log k >- - (2 t*) -1 almost surely.
(111) For any e > 0, we have, as n -' oo,

P (Wn - ak)/logk >- -(2t*) -1 - e) 1 .
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LEMMA 2. For all e> 0, we have, as n -' oo,

log k

	

el/~ (t*) + 0(1) 1p(t*)
P Wn>-ak+(-2+E)t* _<

	

g

PROOF. By Bonferroni, we have
-1

	

log k

	

k

	

-1

	

log k
PWn >_ak+( 2 +~) * _< n~PS;>_ak+( 2 +Et

	

;=1

	

t

=P1+P2,
where

k-m

	

k

Pl = n >( •) and P2 = n ~ ( •) ,

	

m = [k 1 ''3] .
j=1

	

;=k-m+1

Noting that m2 = o(k), we have by Corollaries 1 and 2, uniformly in

k-m+1-j-k,

log k
nPSj >ak+(-2+E)	

t
-nP %aj+a(k-j)+(-2+

- el/ck

	

(t*)4(t*)-ck-;),

) logk1

t

n p (t*) e-i/cexp(-a(k - j)t*)k(1/2)-E

vq
(

	

1,
-- n~(t*)e -k/°eXpl - (k - j)( at* - - I k- e

which, if summed over j = k - m + 1 to j = k gives a number not exceeding

(eP(t*) + o(1))k-~(1-1/4(t*))-1 .

By Jensen's inequality we also have, for 1- j - k - m,

n 1

	

logk

	

* ; t*«k (1/2) -
P S;>-ak+(_ 2 +E)

t* j -n~(t ) e- k

< e(k+1)/c ~( t*)k- me-t*akkl/2

= el/c 4(t*)-m j .

Summed over j = 1 to j = k - m, the upper bound is
O(k 3~2exp(-[k 1~3 ]logp(t*))) = o(k)

and we are done . 0

LEMMA 3. For any e > 0, we have, as n oo,
P (Wn - ak)/logk - -(2t*) -1 + E) -> 1 .

PROOF. It follows directly from Lemma 2 . 0
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The main theorems of this section follow .

THEOREM 2. For any a E (0, A) or equivalently, for any c = c(a) E (c0 , oo ),
we have, as n -' 00,

(Wn - ak)/log k -, - (2t* )
-1,

in probability .

PROOF . Combine Lemmas 1 and 3.0

THEOREM 3 . For any a E (0, A) or equivalently, for any c = c(a) E (co , oo),
we have

(1)

(ii)

lim sup (Wn - ak)/log k = (2t*) 1 almost surely ;
n-~ o0

lim inf (Wn - ak)/log k = - (2t*) 1
-

almost surely .
n-~ o0

PROOF. (ii) follows from Lemma 1(ii) and Theorem 2, noting that if
P(An) -, 1, then P(An i.o.) = 1 .

For the proof of (i), we remark that Wn is nondecreasing in n and that
Wn <-

	

forn~-n<n~ +1.Thus,fore>0,
log k

	

log j
PW>ak + 1 + e)

	

i .o. < P W +i -1>- a~' + 1 + E

	

i .o.(in 'n -

	

( 2

	

*

	

n~

	

2

	

~ *

	

j) ~
t

	

t

and the latter probability is 0 if the individual probabilities are summable in j,
by Borel-Cantelli. Now by Lemma 2, with e = E' + 1,

P W

	

>_ a)' + ( 1 + E'l
log j = 0('-1-~-

nJ+i -1

	

2

	

1

	

l~

	

),t

which is summable in j for all e' > 0 . In view of Lemma 1(i), this proves
Theorem 3.0

REMARK 3. The limiting behavior in probability and almost surely of
(Tn - ak)/log k, (Un - ak)/log k and (Wn - ak)/log k are the same up to the
first-order terms.

4. The random variable Vn . In this section, we shall consider the events
denoted by
Ai = {S+l-S1 >- a+zk,S1+2-S~2(a+zk), . . .,S+k-Sl >- k(a+zk)},ii

	

ii=0,1, . . .,
where z, is a sequence which will be made precise later on .

We assume throughout that a E (0, A) .

LEMMA 4. We have

lim sup (Vn - ak)/log k < - (2 t*)
-1

almost surely .
n ~ o0



LAWS OF ERDOS-RENYI-SHEPP TYPE

PROOF. We note that Vn _< Vnl+ 1 _ 1 for nj _< n < n~+ 1 . Thus, for e > 0,
log k

PVn>_ak+(-2+E)	1 .0 .t

P Vn, 1 >_ aJ+ (12
log j ,

+ 6) * i .o . (in
t

By Corollary 2 we see, using the same argument as in Theorem 3, that, for any
e>0,

P V .

	

>aJ'+ _1 +e
ogJ

=°(i-1 ) '
-~

n,+l - 1

	

( 2

	

)

	

*t
which is summable in j . The result follows by Borel-Cantelli . 0

LEMMA 5. For any E > 0, we have, as n - 00,

P((Vn - ak)/log k S -3(2t*) -1 + E) -1 .

i))

PROOF. By Bonferroni, we have
n-k

P((Vn - ak)/log k >_ -3(2t*) -1 + E) = P

	

Ai <_ nP(A o ),
i=0

with zk = (- 2 + E')(log k)/(kt* ), e = E'/t*. By Corollary 2 this probability
tends to 0, hence the result follows. 0

LEMMA 6 . We have

hm inf (Vn - ak )/log k <_ - 3(2 t* ) - 1 almost surely .
n - o0

PROOF. It follows from Lemma 5, by the same arguments as in Theorem 3 .
0

Let us now introduce the following notation : For any A > 0, put

?o( A) = 0,

	

~ 1(A) = min{n > 0 ; Sn < nA} .
Since n_ 1Sn -~ 0 as n - oo, the set {h> 0; Sn < nA} is nonempty and T1(A) is
defined as. By induction, assuming that z (A ), . . . , 1(A) have been defined, put

T~(A) = min n > T~_1(A) ; 'Sn -

	

< n - ~~- 1(A))A .

It is straightforward that ~o(A) < T1(A) < . . . defines almost surely an increas-
ing sequence of random variables . Let further

e;=0,(A =?; (A) -T;_ 1(A),

	

J=1,2, . . . .

The random variables B1 , B2 , . . . are independent and identically distributed .
Finally, put

K(n)a =max{j>_0; T~(X)<n}, n =0,1, . . . .

1371
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It is noteworthy that, if i = r _ 1(A ), then, for all l = 0,1, . . ., 03(X) - 1, we have
Si+l - 5i

It follows that, for all j >-1,

P(Bj(A) > n) = P(S1 >- A, S2 >- 2A, . . ., Sn >- nX),

	

n=1,2 , . . . .

	

0

LEMMA 7. For any A > 0, we have

max 0(X) > k C {Vn >- kA } c

	

max

	

0(X) > k} .
1<j<Kx(n-k)

	

1<j<Kx(n-k)+1

PROOF. We have { Vn >- k A } = Un oAi for a + z k = A. Assume that, for some
i s 0 -< i < n - k, the event A i holds, i .e ., we have Si+ 1 - Si ? A, 5i+2 - Si
2 A, . . . , Si+k - Si ~ kA .

There always exists a j >- 0 such that Tj(A) <- i < Tj+ (X) . We must have then
Si -

	

>- (i - Tj(A))A, and hence Si+i - STj~a) = Si+1 - Si + Si -
ST~~ ) >- (i + l - -rj(A))A for l = 1,2, . . ., k . This implies that Tj+ 1(X)> i + k, and
hence that 03+ 1(X)> k . Note here that j < K (n - k) which suffices for proof of
half of our lemma .

Conversely, if for some j: 1 < j < K (n - k) we have 03(X) > k, then
Ai holds for i =

	

(X). The proof is completed by the observation that
i + k < Tj(A) < n . Finally, the event {max 1 < j < K~ (n - k)0j(A) > k } is void for
K~(n-k)=0.0

LEMMA 8. Let 0 < y < S <A . Then, for any n = 1,2, . . ., we have K 7(n) <-
KS(n) . Furthermore, there exists an increasing function g(y) of y E (0, A) such
that

lim n-1KY(n) = 1/E(91(Y)) = g(Y) almost surely .
n- • ao

PROOF. It is straightforward that T1(6) -< T 1 ( y) and that TD( y) = TD(S) = 0 .
Likewise, if ;(y) < Tj(6) < ;+ 1(-y), then we must have Tj+ 1(S) < Ti + 1(y) . It
follows that there exists an l such that T1 (6) = Ti+ 1(-y) . This implies that the
sequences are embedded, i.e ., { ;(-y) ; i >- 0 } C {(6) ; Tj j >- 0), and hence that
K 7(n) <- K S(n) . Next, we use the fact that {O3 (-y), j >- 1} is i .i .d. and that

00

	

00

E(el(Y))= ~P(01(y)>n)=1+ ~P(S1>-y,S2?2y, . . .,Sn?ny)<00,
n=0

	

n=1

since, for 0 < Y <A, P(S1 ? y, S2 ? 2-y, . . ., Sn >_ n y) _ O(n-3/'2Pn(Y )) as
n -~ oo . [Observe that E (8 1(y )) ~, as Y 1' .] This with the elementary renewal
theorem completes the proof of Lemma 8 .0

LEMMA 9. Let zn - 0 as n - 00 . Then, for any a E (0, A), there exist
constants 0 < C < D < oo, such that

P max 03(a + zn) > k i .o . =1 P(Vn >- k(a + zn ) i .o .) =1
1<JSCn
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P max Bj(a + zn) <- k i .o . = 0 = P(Vn < k(a + z n ) i .o .) = 0 .
1 Jj Dn

PROOF. Let A = a + zn . By Lemma 7, P(max 1 <_ j < KX(n-k)ej(A) > k i.o .) _
1 P(Vn -> k A i.o .) =1 . Hence, the first part of Lemma 9 will be proved if we
find 0 < C < 00 such that P(K ~,(n - k) < Cn finitely often) = 1 . Take, without
loss of generality, y = a/2 < a + z n in Lemma 9. We have then K7(n) -< K(n)

~and n-1K(n) - g(y) a.s. as n - oo. If we choose C = g(y)/2, we are done. The
second part of Lemma 9 can be proved by the same argument, taking now
D = 2G(6), where S: a < S < A is fixed. We have used here the fact that
n-k~n,asn-00 .0

LEMMA 10 . We have, for any E > 0,

lim sup (Vn - ak )/log k >- - (2 t*)
-1

almost surely ;
n-> o0

lim inf (Vn - ak) /log k >- - 3(2t*)
-1

almost surely ;
n -~ 00

P((Vn - ak)/log k >- -3(2t*)
-1

- e) - 1, as n - 00 .

PROOF. Let A = a + zn = a + (kt *) _
1(
- 2 - E)log k. By Corollaries 1 and

2, we have, as n - 00

P( 91(A) > k) >_ P(Sl >_ A, S2 >_ 2A, . . ., Sk >_ kA) >_ (Cl + o(1))kEn-1

It follows that, for a fixed D > 0,

P~ max Bj(A) <_ k) _ (i - P(B l(A) > k))~D"~ s exp(-[Dn]P(91(X) > k))
1<_i_<Dn

< exp(-DC Ik`(1 + 0(1))) .

It follows that, for any E > 0 and D > 0,

~P( max 9i(a + zn .) <11 < oo,
lsi_<Dn~

By Borel-Cantelli, this implies that P(max 1 < i < Dnet( a + zn ) < k i.o .) = 0. We
have used here the fact that z n is constant for nj < n < n3+ 1 . By Lemma 9, this
suffices for proof of (ii), which implies in turn (iii) .

For (i), let C > 0 be as in Lemma 9, and take

A=a+zn =a+(kt* ) -1 ( - 2-e)logk.

By Corollaries 1 and 2, we have now, as n - 00,

P(9 1(A) > k) >- (C1 + o(1))k1-~n_1
.

Let mj = [j max(1,1/C)] . It follows that

~P e[cm .] (a + zm .) > K(m) = 00,
J
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which implies by Borel-Cantelli that P(max 1 < < on8J(a + zn ) > k i.o .) =1. The
proof follows by Lemma 9 . 0

Combining Lemmas 4, 5, 6 and 10 we have

THEOREM 4. For any a E (0, A), or equivalently, for any c = c(a) a (c o , oc),
we have

(*)

(i)

(ii)

lim (Vn - ak)/log k = - 3(2 t*) 1, in probability ;
n-4 00

lim sup (Vn - ak )/log k = - (2 t*) -1 almost surely ;
n ~ o0

lim inf (Vn - ak )/log k = - 3(2t*) 1 almost surely .
n-4 00

REMARK 4 . Even though the limiting behavior of (Vn - ak)/log k differs
from that of (Un - ak)/log k, it is remarkable that

lim k-1Tn = lim k-1Un = lim k-1Vn = lim k-1Wn = a almost surely .
n-oo

	

n~ oo

	

n~ oo

	

n~o0

5. The full form of the Erdos-Renyi theorem. In this section, we shall
prove the following theorem .

THEOREM 5. Assume that c0 > 0. Then, for any c E (0, c o ], we have
lim k -1Tn = lim k -1Un = lim k-1Vn = lim k -1Wnn~ oo

	

n~ oo

	

n~ oo

	

n~ o0

1 /1
=A+-~--o ~c

PROOF . We shall consider successively case (ii) and case (i) of Theorem B .

CASE (ii) . We have to = oo, ess sup X1 = A, P(X = A) > 0 and co
-1/log P(X 1 = A) . It follows that we need to prove that

lim k-1Tn = lim k -1Un = lim k -1Vn = lim k -1Wn = A almost surely .
n -~ oo

	

n ~ oo

	

n ~ oo

	

n ~ o0

It is straightforward that Tn - kA, and that Vn < U,z < Wn - kA. Hence, for
Zn = Tn , Un , Vn or Wn , we have

lim sup k -1Zn - A almost surely .
fl -4 00

In view of the inequality Vn < Un - Wn , we need only to prove that, for any
c E (0, c 0 ), we have

almost surely .
0

lim infk-1Tn >- A almost surely
n~ o0

lim inf k -1Vn >- A almost surely .
n ~ o0
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To prove (*) and (**), we cut Sn into [n/k] pieces of length k each and let
n

ni - k(a+1)

	

ki,

	

i=1,2, . . .,
k

-1.

The event (1~i = kA) is equivalent to X~ = A for j = ki + 1, ki + 2, . . ., k(i + 1) .
It follows evidently that {~1 i = kA} Vn -> kA and Tk i ~ ic(ki )A . Hence, we are
done if we show that

P n
[n/2kJsi<[n/k]

We have used here the fact that ic(k [ n/2 k]) k as n - 00 . But we have, for
p = P(X1 = A),

n
P

	

n

	

(7i < kA} < (1- pk)tn/2k1-1 < exp - -- -1 pk
[n/2kJsi<[n/k]

	

2k

we have

1 1
Cta = A+ t (~

0

n

	

[clon ] ))
g

<_ e exp - 2 c log n
ex	

-c0

< e2expl -

- 1 I +L t0 =
Ca 1

lni<kA}1 .0. =0=

nl -C/Co

2clogn

which is summable in n when c E (0, c 0 ). The result follows by Borel-Cantelli . 0

REMARK 5. We have just proved that, whenever 0 < c < c 0 , then there
exists almost surely an n0 such that n >- n0 implies k - l17 = k - lUn = k-1Wn =
A. This, in turn, shows that P(k-1Tn = A i.o .) =1 .

CASE (i) . We assume now that t0 = t*(A) < 00, c0 = c(A) =1/(At 0 -
log 4(t 0)), A < 00 .

LEMMA 11 . Let c E (0, c0 ). Then, for arbitrary > 0, use have

1 1

	

1
P Wn >- A+-- --

	

+E k i.o .
to c

	

co
=0

PROOF. We have
k

	

k

	

c _

	

~( t0 )k+1

P(Wn>-Ck)-<n~P(Sj>-Ck)-<n~4(to)e ckto<n
i=1

	

i~l

	

~(t0) _ 1
by Jensen's inequality. By choosing C so that

1
- + log 4(to) + tae,
c

P(Wn > Ck) < 4( t0)(4(t0) -
1)~le(k+1)/ce-k(to~+1/~)

_ 4(t0)(4(t0) - 1)' le l/ ce-xtoE .



1376

	

P. DEHEUVELS AND L. DEVROYE

But since the right-hand side is summable in k (not in n), we can use a
subsequence argument as in the proof of Theorem 3 and apply the Borel-Cantelli
lemma. This proves Lemma 11 .0

LEMMA 12. Let c E (0, c o ) . Then, for arbitrary > 0, we have

1 1

	

1
P(Vn <_ (A+ ~ (~ -

o

	

0

PROOF. Let O (X) be defined as in Lemma 6 . Let > 0 be fixed and put
1 1

	

1

	

1 1

	

1
=A+- --

	

-~ and µ=A+- --

	

+~.
to c

	

co

	

to c

	

co

By the same arguments as in Lemma 6, we have (see, e.g ., Remark 1)
P(B l (A) > k) = P(S1 >- A, S2 >_ 2A, . . ., Sk >_ kA) >_ k -1P(Sk >_ kA) .

Next, we need to obtain a lower bound for P(Sk >- kA) . This can be obtained by
the following "ghost sample" argument. Let k' be an integer defined by

µk
k +k=1+

	

, whereB=A-S<Aisfixed(B>0) .B
Thus, k' increases as (µ/B -1)k . Since P(Sk , > -2ek) -p 1 by the weak law of
large numbers, and - 2 Ek + B(k' + k) >- - 2 Ek + µk = A k, we have

P(Sk >- kA) P(Sk >- kA)P(Sk -+k - 5k> -2Ek)

>-P(Sk>-B(k'+k)-2Ek,Sk-+k-Sk>-2~k)

>-P(Sk>-B(k'+k)+2Ek,Sk,+k-Sk>- -2Ek)

>- P(Sk ,+k >- B(k' + k)) .

Now, for any small S > 0, we have by Theorem C, for any fixed R > 0,

P(Sm >_ (A - S)m) - m-1/2 P(t*)expl -

>- Rm-1/2exp -

	

, as m oo,
~o I

where t ' ~ = t * (A - S) and c = c(A -6)> c(A)=c0 .
It follows that there exists a positive constant v such that, as n oo,

P(Sk >_ kA) z uk -1/2expl - A -
µk

4S)

m~
ci

0

which in turn proves that (by absorbing the small terns) for any S > 0,
µk

P(91(~) > k~ >_ ex(_	co(A - S)
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By this inequality, using the same argument as in the proof of Lemma 10, we get

P sup o(X) - k - exp(-[Dn]P(0 1(A) > k))
1_<i_<<Dn

/

	

µk
5ex(p -(Dn-l)expl-

co(A-5~~,

I

	

1

	

µ
5 exp -expl (1 + o(1))k~ c

	

co(A - S)

where we have used the fact that k-llog(Dn - 1) = c -1(1 + 0(1)) as n - oo, for
a fixed D > 0. By the argument of Lemmas 7-10 and Theorem 4, we are done if
we can prove that

1

	

µ
>0.

c

	

co(A-S)

But, by our choice of µ = A + to 1(c-1
- 4 1 ) +

log
1

	

µ
C coA

PITn SIA+
1

	

1

1

C

1

	

1

	

1
0 1+- tA

( ~

1

	

1 l~

	

1

	

e
c

	

c o 1-j

	

co toA

	

coA

1

	

1 ~ log 4( t o )

	

e
c

	

ca

	

Ata

	

caA >0'

for all e > 0 small enough . It follows that for such a choice of
also S > 0 small enough such that

to

1

1

C

11

µ
>0

C

	

co(A - S)

	

'

as sought. This concludes the proof of Lemma 12 .0

LEMMA 13. Let e E (0, to ). Then, for arbitrary > 0, we have

lke

	

i .o .I
1

	

1

noting that co 1 = A t0 -

1 1

	

1 1

	

1
P Tn >_ A+---~

Co J

-

	

+ e I k i .o .

we can choose

-0.

1

PROOF. It follows along the same lines as Lemmas 11 and 12, using the
techniques of Deheuvels, Devroye and Lynch (1986) [see also Deheuvels and
Devroye (1983)] . Details will therefore be omitted . 0
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REMARK 6. The full form of the Erdos-Renyi and Shepp theorems is
obtained by combining Theorem 5 with Theorem A. We note that the result
corresponding to case (i) of Theorem B was overlooked by several authors .

6. The limiting distribution of the Erdos-Renyi statistic . In this sec-
tion, we assume - throughout that c = c(a) E (c0, oo ) . We will limit ourselves to
the evaluation of the limiting distribution of U,~ as n oo, noting that our
methods can be extended to the other random variables in the study . Throughout
this section, we assume that the distribution of X1 is nonlattice . Our main result
is as follows .

THEOREM 6. There exists a constant L E (0,1], depending upon a and the
distribution of X1, such that, for ally E ~,

lim P((Un - ak)t* + 21ogk - log(n0 i(t*)e-k/~} < y) = exp(-a-'') .
n-~ o0

Note for further use that ne-k/c oscillates between 1 and el/c (this is due to
the fact that c log n - [c log n] fluctuates between 0 and 1) . The proof is
captured in the following sequence of lemmas .

LEMMA 14 . For ally E R, we have, as n oo,

P Un -< ak - (2t*)logk-i + y/t* >- exp(-ne-(p(t*) + o(1)}e-'') .

PROOF . By an association inequality of Deheuvels and Devroye (1984),
Lemma 10, and noting that for 0 < p < 1, (1- p)'~ >- exp(- np/(1- p)), we
have

P max (S +ki- Si ) <- x >- Pn(Sk _< x)
0<i-n-k

>- exp(-nP(Sk > x)/(1 - P(Sk > x ))) .

Let x = ak - (2 t*) - ilog k + y/t* . By Corollary 1, we have
p(sk > x) ~ (t*)e-k/~e_y 0, as n - oo,

which suffices for proof of Lemma 14.0

LEMMA 15 . Let x = ak - (2t*) llog k + y/t*. There exists a constant q E

(0,1) and an n0 < oo, such that, for all n >- n 0 , we have, for 1 <- j -< k,

P(Sk>x,Sk+j-%>x)-2q'P(Sk>x) .

PROOF. We start with the inequality [see Deheuvels, Devroye and Lynch
(1986), Lemma 4]

P(Sk > x,Sk+j -S,> x.) --< P(Sk _j > r) +P(% > x- r)P(Sk > x) .

Next, we choose an arbitrary /3 E (0, (t*)_ flog 4(t*)), and let, in the inequality
above, r = x - /3j. By densen's (or Markov's) inequality,

P(Sj > x - r) = P(Sj > fij) < e-j/" ,

where c' = c($) is defined via_ the relation a-1/c' = inf t, o4(t)e- to < l .



i=1

	

J=1 i=1
For the left-hand side, we first choose an integer J = I + K >_ I, and consider
the events

LAWS OF ERDOS-RENYI-SHEPP TYPE

	

1379

By Corollary 1, we have, uniformly in 1 _< j < k 1/3 , as n oo,
k

	

1/2
P(Sk-j > r) ~ (t*)e-(k-j)/ce-ye-(«-T)jt*

k

	

P(Sk > x ) ej/c-(«_Thjt*
~

= P(Sk > x)exp( j{/3t* - log
Also, by Jensen's inequality, we have, uniformly in k1/3 < j < k, as n oo,

P(Sk -J > r) < 4(t*)k-je-t*r - ~(t*)-'e-k/~k1/2e-yej~t*

5 P(Sk > x){( 1 + 0(1))/~~t*)}k1~2e'{~`•- ~°gaga*>}

<_ P(Sk > x){(1 + 0(1))/p(t*)} .13/2e'{fit*-losa(t*)}

5 P(Sk > x)exp
1
l 1+ ~ {at* - log

1
where > 0 is fixed. It follows that there exists no (depending on > 0) such
that, for n >- n 0 ,

P(Sk>x,Sk+j-%>x) <_2P(Sk>x)q',
where q = max{e-1/c', exp((1/(1 + e)){/it* - logfr(t*)})} < 1 as desired . 0

In the sequel, it will be convenient to let x = ak - (2t*)_ 1log k + y/t*, and
Ai= {Sz+k-Si>x}, i=0, . . .,n-k.Note that {Un >x} =UnUJ01A, and that,
forl <_j-k,

P(Aj nAj+j)=P(Sk >x,Sk+j -Sj >x) and P(A ti)=P(Sk >x) .

LEMMA 1F). Let e > 0 be fixed . There exists an integer I ~ 1 such that, for
any integer r >_ 1, there exists an na such that ii z n o implies

rk(1 - e)

	

I

	

1

	

''k

	

1

	

rk(1 + e) I

	

1
	 P UA~I <_P UA 1 I 5

	

I	 PI UA ti I .
i=1

	

1

	

i=1

	

1

	

Iti=1

	

1

PROOF. The right-hand side inequality is straightforward by Bonferroni if
we note that

rk

	

N+1 I
U 1 l .

1
U A(j-1)J+
i=1

By Bonf erroni, we have
rk

	

M
P UAi >_P UBj >_MP(B 1) -

	

P(Bj nB1) .
i=1

	

j=1

	

1<j<l_<M

U A1 c A(j-1)I+i

J =

where N = [rk/I] .

1, 2, M- [rk/J] .
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Next by Lemma 15, we see that, for n >_ n 0 , if I j - ll K < k,

P(Bj n B1 ) _< 2I2P(A o )q13- l1K ,

and hence

P(BJ n B 1 ) _< 2MI 2P(A o ) q iK
1<j<l<M

	

i=1

2
- 2I 2P(Ao )	k qk(1 - q (M-l~k) ,1-q

while MP(B 1 ) >_ MP(A 0 ) .
Choose now K = [EI/4], and observe that, for I -~ oo, 12q"/(l - q")

while J/I -~ 1 + E/4. This enables us to select an I such that, uniformly over r
with rkP(A 0 ) _< e/4, we have

rk

	

1

	

,

	

E ,

	

pTt(l - E
P~ U A 1 I >_ MP(B1)1 - 2 I z	j	P(B l), as sought .

Note for further use that our construction implies that any choice of I exceeding
the value previously chosen will also satisfy the conclusions of Lemma 16 . D

LEMMA 17. Let Ai = {Si+k - Si > ak - (2t*) -11og k + y/t*} and Ci =
{S1+k - Si > ak - (2t*)_ flog k}, i = 0,1, . . ., n - k . For any fixed integer I >_ 1
and y E R, we have

OA)

	

I
lim p(

	

i P U Ci = e y .
n-> 00 i=1

	

i=1

PROOF . By Corollary 1, for all i >_ 0, P(A) = P(A 0 ) P(C0)e_y = P(Ci)e_y
as n -~ oo . Also, by the inclusion-exclusion principle,

I

	

I
P UAi = ~ P(A)- ~; P(A i n A3 ) +

i=1

	

i=1

	

1 -<i<j<I
+(_1)r+iP(A1 n . . . nA t ) .

Since I is constant and P(A0) < P(Uf 1A i ) _< IP(A), the proof will follow if we
show that, for any 2 _< j _< I and 1 < i t < . . .

	

~ I, we have, as n -~ oo,

P(A il n . . . nA1 .) _ (1+ o(1))P(Cil n . . . f Ci;)e "+ o(P(A0)).

For m = 0,1 or 2, let ~m = {integers in the interval Jm}, where Jo = ( i3 , it + k],
J1 = (i 1, ij ] and J2 = (i1 + k, ij + k] . For n large enough, # o = k - r = k -
(i3 - i1 ), #~ 1 = #~ 2 = r, where r >_ 1 is independent of n and #gym denotes the
cardinality of gym. For m = 0, 1 or 2, let Tm = ~ l E ~mXl . It is straightforward
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that, for n large enough,
e(s ) = P(A il n . . . nA)To = x _ s ) = P(Cil n . . . nCi )T0 = x _ s _ y/t* )J

	

J

is nonincreasing and right-continuous in s . For instance, for j = 2, we have
exactly 8(s) = P(T1 > s)P(T2 > s). In general, we have as an upper bound

0(s) _< P(T1 > s)P(T2 > s) = P(Sr > s) 2 .
Let m = k113 . By integrating with respect to s, we have

f+~e(s)dP(To>_x-s)= f~eaP(To zx-S)

+ f e(S)dP(To >-x-S)

By integrating Il by parts, we obtain
I1=6(m)P(To>_x-m)-8(-m)P(To>_x+m)

m
+

	

P(To >_x-s)d8(s)=h 1 -I12+I13 •
-m

Next, we see that, as n - oo,

Ill _< P(S>_ x - m)P(S, > m) 2 <_ P(Sk > x)P(S,. > m).

= o(P(Sk > x)) = o(P(Ao)) .
Likewise, by Corollary 1, as n - oo,

I12 s P(Sk_,r z x + m) = o(P(A o )) .
Using the same arguments, we get

I2_<P(Sk_,.>_x-m)P(S,>m)2+P(Sk_,.>x+m)

= o(P(Ao) ),
For the remaining term, we use again Corollary 1 to show that, uniformly in
~si _< m = k113 , we have P(T0 >_ x - s) P(T0 >_ x - s - y/t*)e-y. By using
once again the same argument in reversed order, this shows that, as n -~ oo,

m
P(A zl n • • • nA 1 .) _ (1 + 0(1))

-m
P(TO >_ x - s) d8(s) + o(P(Ao))

'
= o(P(A o )) + (1 + o(1))e-y

m
x

	

P(To>_x-s-y/t*)d8(s)
-m

_ (1 + o(1))e-yP(CL~ rl . . • r CL.) -{- o(p(Ao)),
as sought . 0

LEMMA 18. There exists a constant r > 0, depending upon the distribution
of X1 only, such that, for ally E R, we have, as n - oo,

P(Un < ak - (2t*)logk-1 + y/t*) _< exp(-ne - k1'T(ip(t*) + o(1)}e-y) .

n -~ oo .
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PROOF . Let, as usual, A i = {Si+k - S1 > x } and x ak - (2 t *) - llog k +
y/t*. By Lemma 15 and Corollary 1, we have

(i)

	

P(A1) = P(A 0 ) = p ~ ( t*)e-k/~e y~

(ii)

	

P(A 1 n A;) = p 2 ,

	

l i - jl > k ;

(111)

P(Un _< x)

P( B;

P(A i n A3 ) < 2pq 1 ,
where q E (0,1) is a constant .

Let m = [(n - k)/2k], and Bj = n
independence of the B3 's,

o Ai'
n-k

	

m

	

m

	

m
A~ < P flB3 = jl P(B;) < exp - P(B;) .

t=0

	

j=1

	

J=1

	

j=1

Also, by the Chung-Erdos (1952) inequality and our assumptions, for any
1 5 j -< m, we have

	(kp)2	(kp)2	

kp + Ll <- i # ; < kP(A i f A3)

	

kp + (kp) 2 + 4kp> l >> 1q l

kp(1 - q)

	

kp(1- q)
_

=P

1 ACj-1)2k+h

I

1_<li - jl<k,

1 < j < m. Then, by the

as n -~ oo since kp -* 0 .
1-q+4q+kp

	

1+3q
Since m >- (n - k)/2k -1 n/2, we obtain the stated result without further
work, together with the lower bound r >- 2(1- q)/(1 + 3q) . 0

PROOF OF THEOREM 6. Let 0 < E < 4 be fixed. By Lemma 16, there exists an
integer I = IE >-1, such that, for any integer r >-1, there exists an n E, r such that
n >- n E, r implies

rk(1

	

1

	

rk

	

rk(1 + e)

	

1
	 P UAi ~ P UAi <	P U A .i

I

	

i=1

	

i=1

	

I

	

i=1

Let r >-1 be fixed, and let m = [(n - k)/(r + 1)k] . Consider the events
rk

	

k

D; - U A(;-1)(r+1)k+l and Ej - U A(;-1)(r+l)+rk+l,

	

f = 1,2	
l=1

	

l=1

The events {D3 , j >- 1) (resp . {E3 , j ~ 1)) are independent . It follows that
n-k

	

m

	

m

P(Un <x)-P flAi -<P flDj' = flp(DC)
i=0

	

j=1

	

J=1

mrk(1- E)

	

1
< exp -	P U Ai

i=1
Note that mrk nr/(r + 1) as n -* oo . Choose r such that mrk(1 E) >-

(1- 2e)n . Lemma 17 implies the existence of n E (depending upon a through
I = IE ) such that

1

	

1
(1- 2e)P U A i > (1- 3E)e-"P U Ci ,

i=1

	

i=1
for n ~ nE .



By all this, for any n _> max(n E, li e, r ),

(6.1)

	

P(Un <_ x) 5 exp -(1 3

By a similar argument,
m+2

P(Un <x) >_P flDc

~(6.2)

	

J=1
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m+2

- P UE,
r= 1

i=1

_< exp~-(1 3

z (1 - P(Dl)) "`+2 - (m + 2)kP(A o ) .
We now make use of Lemma 14 which (jointly with Corollary 1) implies the

existence of an absolute constant S2 > 0 such that, for n large enough, we have
P(Un _< x) >_ exp(-nStP(Ao )) .

Using the fact that (m + 2)k - n/(r + 1) and that nP(Ao) - i(t*)ne-k/°e-y S

~(t*)el'`e-y enables us to choose r so great that, uniformly over ~y~ < yo fixed,
we have from (6.2) that

P(Un _< x) + (m + 2)kP(Ao)
_< P(Un s x){1 + (m + 2)kP(A o )exp(nSZP(A o))}

_< P(Un s x)/(1 - e),
which in turn gives

(1 - P(DI))m+2 ~ P(Un S x) + (m + 2)kP(Ao) 5 P(Un < x)/(1 - e) .
Consequently,

(6.3)

	

P(Un <_ x) >_ (1 - e)(1 - P(Dl

))
m+2

>_ (1 - e)exp(-(m + 2)P(D1)/(1 - P(Dl ))) .

Recall that P(D l ) = P(U~k 1A 1) _< ( rk/n)(nP(Ao)) = O(k/n) uniformly over
lyl ~ yo • It follows that (m + 2)P(Dl)/(1 - P(D l)) _ (m + 2)P(Dl)(1 +
O(k/n)) as n -~ oo . By the same arguments as above, we can therefore show the
existence of nt' such that n >_ nt' implies, for all r sufficiently large,

rk
(m + 2)P(Dl )/ 1 - P(Dl)) _< (1 + E)

k(r + 1) P U
(1 + 2e) j PI UAi _< (1 + 3e) ne-y_<

	

(Uc).i

=1

	

\i=1

Combining this with (6.1) and (6.3) we get

(1 - e)expl -(1 + 3e) ~-y P~' U Ci I

J
< P(Un _< x)

t

	

j

	

li-1 1
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Observe that P(U 1C1 ) is independent of y. We will now prove that, for a fixed
I, the limit 01 = limn ~P(U(=1C1)/{IP(C0)} exists . The proof of this result is
similar to that of Lemma 17 and consists in showing that, for any 2 -< j -< I and
1 < i 1 < < i~ -< I, the limit lim n ~P(C~l r1 . . . r1C1 )/P(Co ) exists . For this,
we use the notation of the proof of Lemma 17 with y = 0 (so that A z" = C1,

i = 0,1, . . .), and observe that there exists a fixed integer r and a bounded
nondecreasing function B( •) independent of n such that
P(Cil n . . . ncz .) _ (1 + 0(1))

k1/3
P(Sk _ r >- x - s) d8(s) ; as n -* oo .'

	

-k 113
By Corollary 1, P(Sk_ r >- x - s) _ (1 + o(1))P(Sk >- x)exp(r/c - art* +

st*), where the "o(1)" term is uniform over ~si -< k 113. It is now straightforward
that

lim P C n • • • n C1 )/P(C0) = exp r- art* 00 est* d8(s) .(

	

t,

	

"

Note that P(C0 ) -< P(Ui= 1Ct ) -< IP(Co), and hence that 1/I -< 01 -< 1 . By all
this, for all n sufficiently large, we have

(1 - E)exp(-(1 + 4E)iXjnP(Co)e '') S P(Un _< x)
-< exp(-(1- 4E)01nP(Co)e- ") .

Using again Corollary 1, we see that nP(C0 )

	

( t *) ne - k/c as n -~ oo . Finally,
the proof of Theorem 7 is completed by the remark that, by Lemmas 14 and 18,

1-< lim inf z 1 lim sup 01 _< 1,
I-* oo

	

I- o
which implies the existence of a convergent subsequence 011 - 0 E [r,1] as
l -~ oo . Since e> 0 (resp . I) can be chosen as small (resp. as great) as desired,
the proof follows . 0

REMARK 7. In the case where the distribution of X1 is lattice with span H,
Theorem 6 is invalid if y is not restricted to be such that

ak - (2t*)(((log-1 k)/2) + log{no (t*)e- } + y)
belongs to the subgroup of R generated by the support of X1 . We will not state
here the corresponding result, noting that our methods enable us to treat this
case also.

7. Applications. We limit ourselves in this section to the following simple
examples .

EXAMPLE 1 (The Wiener process) . Revesz (1982), followed by Ortega and
Wschebor (1984), have studied the random variable

(T)= , sup (W(b+t)-W(t)},
OstsT-b

where {W(t), t >- 0} is a Wiener process, and where b = b T is a nondecreasing
function of T. We shall be concerned here with the case where

bT = c log T,
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where c > 0 is a given constant . Under these conditions, we have

THEOREM D (Revesz-Ortega-Wschebor).
(i) lim sup ((T) - 2 clog T)/log log T = c/8 almost surely ;

T-> o0

(ii) lim inf ((T) - 2clog T)/log log T = - c/8 almost surely .
T-> oo

PROOF. (i) follows from Theorem 1 in Ortega and Wschebor (1984), while (ii)
follows from Theorem 2 .1 in Revesz (1982). 0

It is worthwhile to compare Theorem D with the following corollary of
Theorem A .

COROLLARY 3 . Let X1 , X2 , . . . be independent standard normal random
variables, and let k be [clog n], c > 0. Then

lim sup (Un - 2 c log n)/log log n = c/8 almost surely ;
n-~ o0

lim inf (Un - 2clog n )log log n = - c/8 almost surely ;
n-~ o0

(Un - 2 clog n)/log log n - - c/8 in probability .

A comparison between Theorem D and Corollary 3 shows that the results are
in agreement . We note here that without loss of generality one can put Xn =
W(n + 1) - W(n ). This gives Un -< (n) . We note also that similar results could
be obtained for the modulus of continuity of W( . ) .

EXAMPLE 2 (Spacings). Let U1, U2 , . . . be a sequence of independent and
uniformly distributed on (0,1) random variables . Denote the order statistics of
Ul, . . . , Un by

0 = U0,n < U1,n < . . . < Un,n < 1 = Un+l,n •

For any k = 1,2, . . ., n, the maximal k th spacing Kn = K(k) is defined as
Kn =

	

max

	

( L1+k,n

	

i Uk, n}OSt-n+1-k
Note here that Kn corresponds to the modulus of continuity of the empirical
quantile function of U1 , . . ., Un . The limiting behavior of Kn when k = [ clog n]
can be deduced from the fact that the random variables Uti+1, n - Uti, n , i =
0, . . ., n are identical in distribution with Xti/E i o Xl , where X0, X 1 , . . ., X, is a
sequence of independent and exponentially distributed random variables [see,
e.g., Deheuvels and Devroye (1984)] . As a simple corollary of Theorem A, we
have

COROLLARY 4 .

nKn -(l+a)clogn

	

l a+1
log log n

	

2 a
in probability,
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where a > 0 is arbitrary and c > 0 is related to a via the equation
1

exp -- _ (1 + a)e -a .
c

PROOF . By the central limit theorem, n-1~1 0Xl - 1= OP(n 1/2 ) . The
result follows by applying Theorem A to the sequence X 0 , . . ., X,~ . 0

Strong versions of this result are detailed in Deheuvels and Devroye (1984) .
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