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Let (X, Y) be an IR” x H-valued random vector and let (Xi, Y,),..., (X,, YN) be. a 
random sample drawn from its distribution. Divide the data sequence into disjoint 
blocks of length I , ,..., I,, find the nearest neighbor to X in each block and call the 
corresponding couple (fl, u). It is shown that the estimate m.(X) = 
Cy=, wfli q/C;=, w,, of m(X) = E( YjX) satisfies E(lm.(X) - m(X)(Pj 3 0 (p 2 1) 
whenever E(I YIP) < co, 1,s co, and the triangular array of positive weights {wni) 
satisfies sup,< n w,,,/Cbi wmi4 0. No other restrictions are put on the distribution 
of (X, Y). Also, some distribution-free results for the strong convergence of 
41 m,(x) - WTIX,~ Y, ,..., X,, Y,) to zero are included. Finally, an application 
to the discrimination problem is considered, and a discrimination rule is exhibited 
and shown to be strongly Bayes risk consistent for all distributions. 

1. INTRODUCTION AND SUMMARY 

It is reasonable to expect that with a large amount of empirical data we 
could achieve a good estimate of a regression function. However, with a 
large amount of data, we may be faced with computational burdens in 
processing them. Therefore, a recursive method of estimation may seem 
attractive. In this paper we present distribution-free consistency results for 
the recursive nonparametric regression function estimation problem. 
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Assume that (X, Y), (X,, Y1),..., (X,V, U,) are independent identically 
distributed iRd x R-valued random vectors with E(I YI} < 03. Consider 
estimating the regression function 

m(x) = E( YIX= x) 

from the data, (X,, Y,) ,..., (X,, Y,,,). We propose the following estimate. 
Break the data up into disjoint blocks of length I,, I, ,,.., I,,, and among all Xi 
in the jth block, find the one that is closest to x using the 1, norm (I.11 on iRd 
(in case of a tie, pick the Xi with the lowest index i; another more efficient 
way of handling ties will be mentioned later). Let us call the corresponding 
IRd x R-valued random vector (Xi*, v). The dependency on x is suppressed 
for the sake of brevity. 

If { { wni,***9 We,,}, IZ > I } is a triangular array of positive weights, then we 
propose to estimate m(x) by 

(1) 

when N = 1, + . . + I,, observations (Xi, YJ are available. Note that when 
wni = vi for all n, i, then the computation in (1) can be performed recur- 
sively. That is, there is no need to store all the observations (Xi, Yi), and if 
we are not satisfied with m, we can collect more observations and update 
our estimate. Also, (1) retains the flavor of the nearest neighbor estimates 
(Royall, 1966; Cover, 1968; Stone, 1977), but the processing burden arising 
from the ranking procedure is less. The conditions which we put upon 1, and 
w,,~ are weak: 

We wish to investigate which consistency properties of m, hold without 
additional restrictions on the joint distribution of (X, Y). 

The classical nearest neighbor estimate is defined as (1) except that 
(G, q) ,..., (X$, Y$) is a reordering of (X1, Y,) ,..., (X,, Y,) according to 
increasing values of /IX, - XII. For this estimate, Stone (1977) gives 
conditions on wni insuring that for all distributions of (X, Y) with 
E(I YIP} < co (p > l), -!?(I,,} 4 0, where 
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and p is the probability measure of X. Devroye and Wagner (1980) have 
shown the same result for the kernel estimate 

m,(x) = 
$+f(~) 

n 

under some conditions on the positive number sequence h, and the functions 
K: [Rd+ IR. For the convergence to 0 of ess sup(,) [m,,(x) - m(x)l, we refer to 
Watson (1964), Nadaraya (1964, 1965, 1970), Rosenblatt (1969), Schuster 
(1972), Greblicki (1974), Noda (1976), and Devroye (1978b) for the kernel 
estimate, and to Devroye (1978a) for the nearest neighbor estimate. 

In this paper, (1) is shown to satisfy E{Z,,} 4 0 wherever E{l YIP} < co 
(p 2 1) and Znp 3 0 with probability one (wpl) when Y is almost surely 
(a.s.) bounded. Also, the necessity of condition (3) is investigated. Some 
brief comments on the discrimination problem are given and a discrimination 
rule is exhibited and shown to be strongly Bayes risk consistent. 

2. CONVERGENCE IN L, 

THEOREM 1. Zf E{I YIP} < co (p 2 1) and if (2) and (3) hold, then 
EVn, 14 0. 

Remarks. (i) N o restriction is put on the joint distribution of (X, I’). 
(ii) If wni = ui, all n, i, then (3) reduces to 

/ 

n 
slyi c Vi&O. 

i=l 

This is equivalent to 

I 

n 
v, c Vi&O, 5 v, = aI.- 

i=l n=l 

For the nontrivial implication, note that 

n 

sqt vi 
I 

n 

C vi < s;y vi 
i=l I 

C vi + :yy vi C Yiv 
i=I Ii . j= I 

which can be made arbitrarily small by first picking A large enough and then 
letting n grow large. 
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(iii) The question of the selection of {1,,} and (w,[} is not treated in 
this paper. Note that with wni = vi = i”, a > -1, (3) is satisfied. Thus, the 
sequence of weights can be increasing or slowly decreasing. 

(iv) Consider the case that Y is {l,..., Ml-valued and that Y must be 
estimated from X and the data (the discrimination problem), by, say, g,(X), 
where g, is a Bore1 measurable function g,: IRd x (lRd X {I,..., M))“-+ 
(I,..., M}. For each state (class)j, add up the weights w,,~ that correspond to 
q = j, and let 

where I denotes the indicator function. The probability of error with such 
rules is 

Let L* be the Bayes probability of error: 

L* = inf P{ g(X) # Y}, 

where the intimum is taken over all Bore1 measurable functions g: IRd-+ 
{l,..., M}. It follows from Theorem 4 of Stone (1977) (see also Devroye and 
Wagner, 1980, expression (12)) that E{L,} -+ L* whenever E{Inl} 3 0 under 
the condition that Y is bounded. Thus, from Theorem 1 we obtain 

THEOREM 2. All discrimination rules g, satisfying (4) are Bayes risk 
consistent (E{L,} 4 L*) if (2) and (3) hold. No restriction is put on the 
probability measure .a. 

(v) Theorems 1 and 2 remain valid if ties are handled differently. 
Assume that in the jth block, Xi ,,..., Xi, are all equally close to x and closer 
to x than all the other Xi in the jth block. Replace T in (1) by 

To see this, check first that Lemma 1 remains valid by Propositions 11, 12 
of Stone (1977). The remainder of the proof is not affected at all. 

(vi) A slight improvement over (1) may result if instead of considering 
the nearest neighbor q in the ith block, one considers the s nearest 
neighbors Q(l),...,@(s) and replaces e in (1) by 

a, V(1) + ... + a, c(s), 
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where (a, ,..., a,) is a fixed probability vector. Since X7( 1) is closer to x than 
X32), etc., it is not unreasonable to expect the best performance when 
a, > ... > a,. Of course, Theorems 1 and 2 remain valid for this 
generalization. 

Proof of Theorem 1. The proof of Theorem 1 follows the lines of Stone’s 
proof for nearest neighbor estimates (Stone, 1977). We indicate along the 
way where changes are needed. 

LEMMA 1. For any sequence of nonnegative constants w,,,,..., w,,,,, and 
for any I, ,..., 1,) 

Q 44 E{I V’L 

where p > 1 and a(d) is a constant only depending upon d and q. 

Proof of Lemma 1. The first inequality is an application of Jensen’s 
Theorem. The second inequality follows if we can show that for all i, 
E(I v 1”) < a(d) E{J YIP}. By the definition of p, this is a corollary of Stone 
(1977, Propositions 11, 12). Q.E.D. 

Next. notice that 

i 
(m,(x) - m(x)l”p(dx) < 4p-’ c Vi, 

j=l 

where 

(fi, q) is the ith block couple of observations singled out with respect to x, 
and g is an arbitrary Bore1 measurable function on Rd. Since m is in Lp(p), 
for every E > 0 one can find a function g that is bounded, continuous, and 
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zero outside a compact set such that U, < E (Dunford and Schwartz, 1957, 
p. 298). By Lemma 1, 

E{ U,) < a(d)U, < cl(d)E. 

Thus, we need only show that E{ U,} 4 0 and E{ U,} 4 0 after selection of g. 
Next, if c = supI 1 g(x)\ and if 6 is so small that I/x --y 1) < 6 implies that 

) g(y) - g(x)1 < E for all x, y, then 

E1U2} < i wni(cp p{llx~ -xIl 2 6} + EP) i wni 
i=l I i=l 

< 2&P for large n 

provided that P( /IX,* -XII > 6) 4 0. (Use Toeplitz’s lemma (Loeve, 1963, 
p. 238) and (3)). 

Clearly, 

where B, = (x: P{llX, -X1( < S(X= x) >p). For almost all x@), we know 
that P{I(X, -X/J < 61X=x} > 0. Thus, by the Lebesgue Dominated 
Convergence Theorem, P{X @ B,} + 0 as /I--t 0. First, find /I small enough 
and then 1, large enough so that the last expression is small. 

Finally, assume that I Y( < y a.s. so that I Y - m(X)1 < 2y a.s. Since for 
each x, q - m(e),..., c - m(Xz) are independent and since 

Yy - m(XT) = i C,[ Yij - rn(Xij)], 
j=l 

where {(X,, Y,), 1 <j < li} is the ith block of observations and 

c, = 
i 

1 if Xii is the nearest neighbor to x in the ith block 
0 otherwise, 

and since the Yij - m(Xij) are independent zero mean random variables, we 
may write for 1 <p < 2, 

@I u, U”” 
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For p > 2, use the fact that 

To complete the proof of Theorem 1, we only have to show that E{ U,} 
can be made arbitrarily small even if Y is not as. bounded. Let 
Yi = Y: + Y;, where 

yi = yil[-p,vj(yi) and , y!’ = y.1 
I [-y.p]c(Yi). 

Further, let m’(x) = E{ rI IX, = x}, m”(x) = E{ Y: IX, = x}, and note that 
m(x) = m’(x) + m”(x) for almost all x01). Now, it is straightforward that 

The first term tends to zero as n + co for all finite y. The last term is not 
more than 

2p- ‘a(d) E{ ( Y;, - rn”(X,)lP) 

<2 2p-244 (Et1 Y,lp~,--y,y,‘.(Y,)J +E(Im”(X,)IP\) 

92 2P-‘W)E{I Y~Ip~,-y.y,4Y,)l +O as y-00, 

by the finiteness of E{I Y, I”}. Q.E.D. 

6X-3/10/4-6 
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3. NECESSARY CONDITIONS FOR CONVERGENCE IN IL, 

We have shown that the sequence of weights { wnj/Cr= 1 wni, 1 <j < n, 
n = 1, 2,...] is universally consistent in Stone’s sense (Stone, 1977, p, 598) 
(that is, E{Z,,} 3 0 whenever p > 1 and E{l YIP} < co). Conversely, if 
E{Z,,} 3 0 for all distributions of (X, Y) with E{J YIP} < co (p > l), then 

for all Bore1 functions f on Rd (a is a constant not depending upon n or f or 
cl>, and 

in probability for all a > 0 (Stone, 1977, Corollary 1). Thus, if I, 5 co, the 
sequence of weights { wn,/CFz 1 wni, 1 Q j < n, n > 1 } is universally consistent 
if and only if (3) holds. 

4. STRONG CONVERGENCE 

In this section we study the strong convergence of Znp under the condition 

IYl<c< 00 wpl (5) 

but with no other restriction on the joint distribution of (X, Y). We prove 

THEOREM 3. Let (5-6) hold: 

f, exp{--al,) < co, all a > 0. (6) 

Assume that the positive weights wai satisfy 
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then I,,p 4 0 wpl for all p > 1. If W,i = v, > 0 for all n, i, then I,,,, 3 0 wpl for 

all p > I if one of the following conditions is satisfied: 

(ii) (;yt vi/j$, vi) lOIS log 12 3 0. 

(8) 

In discrimination, the weak convergence of L, to L* only guarantees that 
for fixed large n, “most” data sequences Xi, Y, ,..., X,,,, YN have a probability 
of error associated with them that is close to L*. In practice, only one data 
sequence X,, Y, ,..., X,, YN ,... is available, and we would really want to 
know if for this sequence L, + L* as n--t co. We will see that for the rules 
given here, this is the case for almost all sequences (that is, L, 4 L* a.s.), 
regardless of the joint distribution of (Xi, Y,). 

From Theorem 3 and Stone’s Theorem 4 (1977) we can deduce 
Theorem 4. All discrimination rules g, satisfying (4) are strongly Bayes risk 
consistent (L, 3 L* wpl) if (6) holds and one of the conditions (7), (8(i)), 
(8(ii)) is satisfied. No restriction is put on the probability measure. 

Remarks. (i) Condition (6) holds if l,/log n 4 00. 

(ii) For sequences wni = vi (all n, i), (7) is satisfied when 

which in turn follows from 

if log n/z= i vi is eventually monotone. When vJC;= i vi is monotone, then 
(8(i)) implies n’12v,/(C~z’=1 vi) 4 0. This should be compared with (8(ii)). 

(iii) All sequences v, = n’, -1 < a, satisfy (8(i)) and (8(ii)). 

(iv) When {log log n/z= i j} v is eventually monotone, then (8(ii)) is 
equivalent to (( 1 + v,)/z= i vj) log log n 4 0. The proof follows the lines of 
Remark (ii) of Section 2. The condition (5) is too strong in general. For the 
limited scope of this paper and for applications such as discrimination, it is 
all that is needed. Theorem 4 is the first distribution-free strong Bayes risk 
consistency result that the authors are aware of in the literature. 

Proof of Theorem 3. The notation of Theorem 1 is inherited, but instead 
of Vi, we will use U,(n) to make the dependency on n explicit. By choice of 
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g, U,(n) = U,(l) can be made arbitrarily small. Also, E( U,(n)) < E by 
choice of g. Thus, 

However, note that U,(n) -E{ Uj(n)} can be written as 

where 

(9) 

Thus, Z, , Z, ,..., Z, are independent zero mean uniformly bounded random 
variables. 

Therefore, by a Theorem of Chow (1966), 

2 W,iZi 

I 

n 

C W,iLo w Pl 
i=l i=l 

whenever (7) holds. If wni = vi, all n and i, then 

n 

I 

n 

2 ViZi C vi-lto w Pl 
i=I i=l 

from the boundedness of Z, , Z, ,..., 

by Kolmogorov’s strong law of large numbers (see Loeve, 1963, pp. 238). 
We now show that the same is true if just 

SUP Vi log log n 
i<n I 

5 Vi ~ 0. 
i=l 

From Loeve (1963, pp. 253) we know that (10) follows from X:=1 v, = 00, 
Iv,Z,I G Ci”=l vi for all n large enough (which is the case here since 
I Z,I < b < co and (8(ii)) is assumed), and 
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In view of E{Z,} = 0, JZ,I ,< b, E{Zz} <b* and an inequality of Bennett 
(1962, p. 39) the kth term of (11) is not more than 

for some a > 0. These terms are summable with respect to k for all a > 0 
when 

or when 

The random variables U,(n) and U,(n) are treated differently. Note that 
U,(n) = l U&r, x) &dx) and U,(n) = l U,(n, x) ,@x), where U,(n, x) and 
U,(n, x) are random variables and Bore1 measurable functions of x. Both are 
uniformly bounded by b, say. If for almost all x @), U,(n, x)+ 0 wpl, it 
follows that U,(n) 3 0 wpl. That is, let (Q, y, P) be the probability space of 
(Xi, Y, , X,, Y2 ,...) with probability element w  E R. By Fubini’s theorem, 
P{w: U,(n, x) + 0) = 0 for almost all x(u) if and only if the set 
((0,x): U,(n,x)+O} has PX ~1 measure zero, and this is true if and only if 
,u(x: Uz(n, x) + 0)) = 0 for almost all o(P), say w  E R’. For every w  E R’ 
U,(n) 3 0 by the Lebesgue Dominated Convergence Theorem, and since 
P(Q’) = 1, the claim follows. Thus we need only show that for all 
x E support @), U,(n, x) % 0 wpl and U,(n, x) -+ 0 wpl. 

First, U,(n, x)4 0 wpl if Ig(X,*) -g(x)1 G 0 wpl in view of (3) and 
Toeplitz’s Lemma. It is easy to check that (3) holds if either (7) or (S(i)) or 
(8(ii)) hold. Now, 

. < pwc -XII > 4 (for some 6 > 0) 

< exp(-PU 

where /I = P{I\e -XII < S} and p > 0 since xE support 01). Thus, 
( g(Xz) - g(x)1 4 0 wpl by the Borel-Cantelli Lemma. 

Next, U4(n, x) can be written in the form (9) with Zi = c - m(XT). Since 
yT - m(XT) . . . . Y$ - M(X~) are independent zero mean uniformly bounded 
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random variables, conditions (7), (8(i)) or @(ii)) imply that U,(n, x) % 0 wpi 
for all x E support (jf). 

This concludes the proof of Theorem 3. 
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