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On the Inequality of Cover and Hart in Nearest
Neighbor Discrimination

LUC DEYROYE

Abstraer—=When (X, 040, - -+, (Xg, 8y are independent identically
distributed sandom vectors from IRY x {D 1} disteibuted as (X, 2), and
when ¢ is estimated by its nearest ne:ghbur estimate dypy, then Cover
and Hart have shown that #{ag; = 0} 2= 26 {n(X) (1 - n(XN} =<
IR*1 - R*) where R* is the Bayes probability of error and nix) =
Plo=1|X=x} They have conditions on the distribution of (X, 4).
We give two proofs, one due to Stone and a short original one, of the
sume result for aff distributions of (X, 8).

If tles are carefully taken care of, we also show that P{ﬂ{l} # 8| Xy,
By X E,,} converges in probability to a constant for aff distribu-
fions of (4, &), thereby strengthening results of Wagner and Fritz,

Index Termy—Bayes' rsk, inequality of Cover and Hart, nearest
neighbor rule, nonparametric diserdminaton, probability of error,

I, INTRODUCTION

ET (X, 0),(X,.6,) X, 0,) be independent identi-
Lca]i}' distributed TR? X {0, | }-valued random vectors and
estimate ! from X and the (X5, 0;)s by 8y, the nearest neigh-
bor estimate that is obtained by reordering the (X}, 8;) accord-
ing to increasing values for ||X,— - .1’” and taking f,y from the
nexrest neighbor Xy (ties are broken by comparing original
indexes).

Cover and Hart [1]| have shown the following inequality,
When

'F'.I'JI =‘p{ﬂ(1] ¢G|X|, Ijl11 o 1X:I‘J1Eu]

and

nxy=P{0=1|X=x],
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then

E{Lpy} =Py +0}

= 2E{n(X) (1 - (X))}
<2IR¥(1-R¥) (1)
where
R* = F{min (n(X), 1 - (AN}

is the Bayes probability of error, They require, however, that
X have a density f and that £ and 7 are almost everywhere
continuous. It should be noted, however, that the proof in
Cover and Hart holds for X taking values in a separable metric
space. Stone [4] has implicitly shown that (1) is true for ail
distributions of (X, #). The purpose of this note is to give two
short proofs of (1) and to obtain additional results on the con-
vergence of Ly,

I1. THE Basic THEOREM
Thearem 1:

E{lpy }—

ﬂ—"-’

2E{n(X) (1 - (XN}
< 2IR*(1 - R").

Proof: Fixa version 1 ufP{E = I[X x}, and let X{,} he
the nearest neighbor of x while X7% {1y is the nearest neighbor of
the random variable X. Further, let

Ex)=E{n(X)!
and
rp(x) = ECe) (1 - n(x)) + (1 - E(x)) nlx).
The inequality in Theorem 1 follows from 7(x) (1 - 7(x)) =
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min (77(x), | - nlx}) X (1 - min (n{x), 1 - n(x})) and Jensen’s
inequality.

MNext,
[ralx) = 20(x) (1 - n(x))|
= | Hx) - nlx)|
i) - nlx) ) (2)

We will show for almost all x{i) (g is the probability mea-
sare for A7), that (2} tends to 0 as # ==, By the dominated
convergence theorem, we may then certainly conclude that
E{|r(X) = 2u(X) (1 - n(X))|} == 0. The theorem then
follows because

E{ra(X)} = ELEX) (L - 7(X)) +(1 - HX)) (X))
=E{nXE) (1 - n(XN+ (1 - (X0 i)
=& {.Lni.‘- {,3]

When [ is the indicator function and a >0 is § constant, we
hawve

E{[ (X - nlx)]}
= P{|| X5 - x|| > a}

" flnt'_vj - n(x)| pidy)

x, b i 4
Wi p) )

+ .sup
o<bsd

where @ 2> 0 is arbitrary and &5, , is the closed sphere centered
at x and radius r. The last term in (4) tends to Dasa—0 for
almost all x() by a thearem on the relative differentiation of
measures (Wheeden and Zypmund [6, pp. 185-190]). The
first term on the right-hand side of (4) tends to 0 for all
a >0 whenever x & support(p). But pl(support(p)) =1 (see
[1]) and the theorem is proved.

We will sketch a second proof that is essentially due to
Stone [4]. Again, we will show that

Ef|nx{) - ax)|} (5)

For fixed ¢ >0, find g: TRY = [0, 1], ¢ continuous, such that
E{|g(X)- n{X)|} <e (see [6, p. 149]). Estimate (5) from
above by

E{|n(X{) - ey}
+E{|g(X{) - ()|}
+E{|g(X) - n(x)[}.

=

=0,

(6)
Stone [4, p. 613] has shown that for any function fE L' (1),
EL A eld) E{| X)) (7)

where a(d) >0 is a constant depending upon d only. Thus,
the frst and third terms of (G), summed together, are not
greater than (ald)+ 1)e.

For 111 x EsuppurL{,u} wi have ']‘U} —= a.5., and thus
#(X{)) " g(x) ns., so that the second term of (6) tends
to O by the dununutud convergence theorem. Since e > was
arbitrary, we may conclude the proofl of the theorem,

Remark 1; We have in fact shown that

Fplx) = 2n(x) (1 - n(x))

for almost all x(u).
Remark 2: If g and ki, are uniformly bounded Borel mea-
surable functions of their arguments, then it is true that

E{|g(XTy) - g(x)| MalX,y, -
for almost all x( ), and

(8)

| 2==0

(9]

Xp, x)

H o=

g, X — 0,

Al X, (10)

for all distributions of X.
Remark 3: The proof given above work for [RY, but it is nod
clear how they can be generalized to separable metric spaces.

LlI. THE CoNpiTioNAL ProsamLiTy oF Erronr

For general u, L, does not converge to a constant in proba-
hility. For example, take p({0})=1,7{0)= L. Clearly,

it i
Ly _If[ﬂ“=ﬂ| * ]‘f!rs, =1
and convergence to a constant is thus excluded. Nevertheless.

we have the following.
Theorem 2 I g has no atoms, then

Loy = 2E{n(X) (1 - n(X))}

in probability.

Neote: Wagner |5] has shown Theorem 2 for the special case
that g has a density 1 and that » and f are almosi everywhere
continuous. Ford =1, he has shown that

Ly ==+ 2E{n(X) (1 - n(X))} as,

under the same assumptions. Fritz [2] proved the as. con.
vergence of Ly to 2E {5(X)(1 - (X))} when g has no atoms
and 7 is almost everywhere continuous (). Our Theorem 2
in contrast, holds for afl nonatomic measures p and all 7,

The proof of Theorem 2 will be postponed until Theorem 3.
To take care of the atomic part of y, Stone [4] proposed re
placing fi;;, by &, where ) is defined as follows,

Rearder the {T“ Iﬂ' }’5 to obtain {‘.“J_ IEI”Jj l=i=n. If

14 - & = -XH

- ||XI:;£1-!} T

Xoo — X

then let # be the integer most hequeml}r oeolurting among
fyys =+ * Uy (in case of a tie, § is taken arbitrarily among the
integers involved in the tie). Define

=P #0]X,,0, ., X, 0.}
A =set af atoms of y
and for general Borel sets A from IR?,
R*(BY= £ xem min ((X), 1 - n(X N},
LBY=E{l|yeg 20(X) (1 - n(X))}.
Thus, Thearem 1 can be rewritten as
E{Ly, === L(IRY)

and the Baves probability of error is R* =R*(IRY). In fact,

J'J -

R*(+) and L{-) can be considered as finite measures on the
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Borel sets of LR‘I_. but this matter will not be pursued any
{urther,
Theorem 3:
Ly 2==+ R*{4) + L(A®)
in probability and
E{Lp} #==+ R*(A) + L(4A°)
where A% is the complement of 4.

Remark 4: R*(4) is the portion of the Bayes probability
of error due to the atomic part of p; L(A%) is the portion of
the asymptotic nearest neighbor probability of error due to
the nonatomic part of . Clearly,

R¥*IRY) < R4 )+ L(A°) < LIRT) = E{20(X) (1 - n(X))}

{the asymptotic nearest neighbor prabability of errar for ;)
so that, in a sense, § is always better than 0.
Remark 5: I p is nonatomic, then [, =1, as. because
i= 1y 05, Therefore, Theorem 2 is a corollary of Theorem 3.
Remark 6: If p is atomic, then L, = R* as. by Lemma 4
below,

IV, LEmmas NEEDED TO PrRovE THEOREM 3

In this section, we give some lemmas, all of a measure-
theoretical nature, that will be used further on. The proofs
can be found in the Appendix,

Lemma 1 is an extension of the dominated convergence
thearem.

Lemma 1 [3]: Let |f,| =e¢<e be a sequence of Borel
measurable functions of x, X, 8, - -, X, 0., and let

Lol X=X 80 fix)as.
for almaost all (), then
E{|fa(X, X1, 0400+, Xy, ) - X))
|y, 0y, o, Ky, ) 2

i Dt

0a.s.

The sample X,, - - -, X, partitions IR? up into at most n sets
Ajn, * 0 A, where A;, is the collection of all x = R? for
which X, is the nearest neighbor among X;,-- -, X,,. Lemma
2 below states that for all nonatomic measures, the g-measure
of these sets tends to 0 a.5. uniformly in £ as i —==,

Lewa 2 51 2 T pis a nonatomic finite measure, then

I ==

sup  wldg,) Oas.

15i=H
anid

E{ sup F-[(A.l'u}} = 0,
1=is=n

Remark 7: For any finite measure g we thus have

sup p(Adz NA9) == 0as.

1£i<n
and
E{ sup p(Ady, NA49)} 0.

I=i®n

We will also need some result on the “separation”™ of the
atomic and the nonatomic parts of g, Lemma 3 below to

7

some  degree qualifies’ the statement that almost all “non-
atomic” x's have “nonatomic” nearest neighbors X7, with
probability tending to 1 as i -+ e,
Lemma 3:
T aeX _—
PA||xE - )| =]

==

X - x|, xea} ==,

Lenma 4;

Pli#6,XE4

I —= o=

A2 R¥(4) as.

“.{11' Hlv shgh II:I';I': ﬂrr }

Lentma 5:
P{B+£6, XEA X, 01, , X, 0} 222 [(4°)
in probability when

Pl # 8, XEA®| Xy, 8, -+, X, 0,) == L(4°)

in probability.

We can now handle the atomic and nonatomic parts of the
probability of error separately. The basic results are that for
Xed, i is asymptotically Bayes (Lemma 4), and that for
X¢&4,0and ET{EJ are asymptotically equivalent (Lemma 5).

AFPENDIX

Proof of Lenvma 2: We first recall that for any compact
set K CIRY,

ValK) = |l - x|| 2= 0 as.

[5].

sup
KN support{p)

Let W, =supy <jcq uldy). Arguing again asin [5], we have
for arbitrary ¢ >0, for all n = 1 and for arbitrary compact K,

[ValK) <e€] € [W, <u(K)+sup p(Sy, )]
&

where 5., is a closed sphere centered at x with radius ¢.
Choose K such that p(K°) < 5/2 where & >0 is given. Since
supg p(Sy o)+ 0 as e =0, it is clear that by choosing e suffi-
ciently small we can ensure

[ValK) < €] € [W, <5].
Ir‘—:

Hence, W, =0 a.s. and £ {1, ] 2== 0.

FProof of Lentima 3: We will show that for almost all x £ 47,
PI|| X5 - x| = || X% - »]|} ===>0, and Lemma 3 then
follows by the dominated convergence theorem.

Without loss of generality we can assume that x € support(u)
because p{support{p))=1. Let p be the measure on [0, ==}
corresponding to || Xy - x|, and Tet A* be the set of atoms of
r, Clearly,

PLLG) - ol = 168 -} <P X3y -5]| €44
<Pl|lx5 - x| >a)

+ sup w4 0 [0,6])e([0,b])

i R B |

for arbitrary @. The last term in this expression is arbitrarily
small by choice of 4 [6, Corollary 10.50] and the first term
tends to O as # —== hecause x € support({u). This concludes
the proof of Lemma 3.

Proaf of Lemma 4: When n(x)< |
have P{&=0, X=x|X,.0,,--

?J(I},;_.t{{.r}]'.‘.‘-*l], we
“5 Aps Ol = pl{x}) as.
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by the strong law of large numbers, If n(x)>1 - n(x), then Cleady, £{U,(1)} == 0 by Remark 2. If Ayy is defined

it tends to 0 as. asin Lemma 2, and
Thus,
P{ﬁ#ﬂ,XE-"'!-JXI:Hip”'vXn-Eu} I*(B:J:Lr AT ﬂ{r'}ﬂ{dx:” fot &R ancl ek Ufmd,
=1§4 (H{I}P{Q=U1X=I|Xliﬂlr_"1'*:!!!&.11} then
(1 -nE)PI =1, X =x| X, 6, Xy, i
n{_m T Fiuls wfal) Ua(2)=| 3 Ug=1) - n(X) v(d )
== 2 u({x}) min (n(x), 1 - n{x)) as. el
XE4
and
by Lemma 1. ] = £ 12eayl v
ﬁﬂﬂfﬂff.fm!?lﬂ'j_‘ E{Uﬂ {-—]} E{E{{n {2:’[‘111"{2r 11’?1}}
o n
|P{'[:II FOLXEAT X, 00,0 -, Xy, O} :E{Z HAX) (1 - n(X;)) f’:f_fliu}}
- Pl # 60, X €A X, 00, -, X, 0} g
- = f1 50 A
<P(]|x3 - XI| =% - x|, S AL
XEA®| X 01,0, X,y B} S0  (Lemma2).
-
v Thus, L,(2) “— L(A%) in probability, thereby completing
in probability { Lemma 3), the proof of Theorem 3.
Froof of Theorem 3: Let us define L(1), L,(2), L2(2) as . o
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