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A Note on Approximations in
Random Variate Generation
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MeGill University
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Il rundom varintes with density fare needed in simulations, but randam variates with density
polelose 1o /) are used instead, how does one measure the ceror committed? The uselulness
of the tolal variation eriterion is pointed out, and some examples wre piven,

Wihen the ttal viteiation s liard o compute, pood gpper bounds can be wsed i pliee.
B e are reviewad Lt link the total virdation 1o oiber guaniites soeh as e
pesertion e campesition constants, the aniform de ion, the divergence and sa fonh

1. INTRODUCTION

Consider the situation where one needs random varintes with distribution
function £ on RY, but uses rundom wvariates with distribution lunction 6
instead. The reasons for this replacement are sometimes economicyl
(rundom variates from G are obtainable in less time or with less space}
and sometimes practical (for the particular  application a pood
approximation of F is all that is needed). Sometimes one just doesn't want
to spend a lot of time writing a complicated program for the generation of
random variates from F, Whatever the reason of the replacement may be,
it is neocessary to have a good understanding of the consequences of the
repliicement. How should one measure the poodness of the approximation
for simulation purposes?
Chne of the classical eriteria,

& =sup _E.i.n Gix “___
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It elisadvintaey tint G s non sensitive W logul diserepancivs between
e dhistrabvistions, For example, 300 puls all its mass anilermby o (O, 1]
[23 )] 2= 20— 1] wad 67 pants 201 dds m uniformly on 1,2

s clear that ooe would be reluctont 1o replace oy 6 in nny
semiulatien,

WF and G oare cmtinuons and U is o uniform (001 random varible,
then £ 90 und o ey virtubles  with
fumctions I oand G respectively, This luet is ol course at the basis ol the
fveesion wethod i odom vieite generition, Thus,

rinsdom distribution

A= sup [FYu)—G" )|

LHRCE T |

would be a very gond measure of the goodness of the replacement were it
not for its overemphasis on the tails and other low-probability areas of
the space. For example, if 17 has infinite support and G has compact
support, then A, =

[n this paper we would like to point oul the usefulness of the totel

it fon criterion

A=sup|fdF =) d | (o =cluss of all Borel sets of RY)
i

Araf

as 0 mensure of the goodness of the approximation for simulation
purpases, 11 F and G have densities [ and g, then 1t is easy 1o see et

[ (el —glxndy= [ lgte)—flx)kix

(R} Fn

bl vy

Al il Foand 6 are hoth diserele with probability veclors propse. . and
£ ptze e 0 U indegerss then

|
A= a M.l.”..__u_.lm._... =

| Iy

Y op—g)= Y L —=mh

=,

The total vieccmtion eriterion has o clear physicnl meaning: il X and ¥ are
rundom virinbles with distribution fionetions Foamd G respectively, then
no matter how we choose ooset A Trom the class of Bocel seéls, we are
pugranteed that

PN ea)=P(Yed)|sA

-. _1_”..34

SN AT i
..._... #
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Fhis, the shsolute error ol wll probahility assipnments is hounded, Notice
here wlso thal A& peneralizes &, sinee A, s alsa wosupremum of the sime
kind as A, except that the class o s the class of all sets of the form
{ = x Jx. o xf— oo, ) Inoany case, Ay 5 A

I random varintes are required for the purpose of the Monte Carlo
evaluilion of o functional ‘f_:_:.. (with frz 0, then

|[ el — | hd G|

i) 13

[ [ dFteyde={ [ dGie)di]

0 k= o hixize

il

w_ [ dF{x)— [ dGlx)de=Asuphix)

0 hlxyEr hixEe z

il

Hence, for bounded functions h, we have a clear upper bound on the error
committed il a perfect evaluation of [kdG were possible. For unbounded
functions h, A may be very small und the difference | [ hdF — [ G| may be
arbitrarily large. For example, if F is Cauchy and G is Cauchy truncated
at [ —n,n], and if hix)=|x|, then A=0 as n—von, while §hdF —JhdG =0
for all m

Often the quantity A con be determined without much effort, but in
some cuses it is very hard to compute, In Section 2, we give several
inequzalities thal may help in the determination of upper bounds Tor A In
Section 3. we introduce und discuss a reltive error eriterion, and in
Seetions & and 5 we briefly comment on two popular replicements: the
normal and the Poisson replacements

Z. PRACTICAL INEQUALITIES FOR A

Let fand g be densities on R, and let us define the lollowing constints:

e=olf, p)=1i m_“.,_“.”_ finf is taken over all x with flx) =00
¥ .___n..n."_
SR |- ) R ; ;
__,__u__,_.:.iu_:?a {inl is tuken over all x with glx)=0),
x* B

These constanls are often casier to determine than f|f— g 1t is clear thul
[Sg/e and that [ =fg. Thus, il « is close to |, then g/2 would be a
cundidate the ¢hioice of the dominating eurve i the rejecrion method is
considered for the generation of random viriates with density f. Sinnilarly,

"
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feguaftty | Let £ and G have densities | and g on RY, Then
A= il —a | =,

Prowf Ny

: ; (x)
= | (fix)—pixidx= [ fix) i y=|

Porm I P H._...“_
Incquality | now lollows by syiminelry.

Another guantity that is often easly compuiel

A, —sup L x) = glx))]

although it hus v obvions physical  interpretation for sim

purposes, We just mention the following simple fnequalities relating A
M

i

1

Inequality 2 (Serfling, 1979) Let Foand G have densities ( and o on
R,

Let
Cro=inlits | fixddx=1);
Il =1
Coomupt [ i (s o) =)
and
= "] M._._._ _
The

i) ASueef, A
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i) A< 26 AL )

In the inequalitics, ¢, ,, and ¢, may be replaced by ¢, , and o,

Proof

I {fte)—glxipix = L X =glx)udx
i=u lail =i

(]

+ | ) =gle)x S ot'A, +ep 07

Nxll=r

The terms on the right-hand side are egual H __11"& roel (B &),
Reosubstitution gives (i), Also, when =0 oulside the Hlx .n:. then A
“A .. which proves {i).

Let ug mention unother inequality that has proven useful in information
thenry, and might be ol some nse here,

Inequality 3 (Kullback (1967), Csiszar (1969), Kemperman (1969)).  Let
Foand G have densities f und g on B Then

.__HT.. Lz
b. _‘___.A_M___ﬂ..r.mn.wm.m_. 3

It should be noted that since | —x <log 1/x, we always have

m,uLME _r% dx = H?:cm

fixd
#lx)

i,

Finally, since an L. norm is often easier to handle
cite

i an Ly norm, we

Inequality 4 Let F and G have densitics [ and g on B Then

....... ede=11 .
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Prood When o D= then, by Holder's imeg

s [Vt | e

J. A RELATIVE ERROR CRITERION

For “unlikely™ sets A, the knowledge that [[ /=] gl=4A is nol very
helpful, We recall here thint ¢ s abhsolutely continvous with respect to [l
whenever .?.__...:_ we hiyve ._.._n (0 For such densities g owe define the
relative crror &y

Spi=sup | [ fixddx = [ gledds]f | fixdx
“l A A 4

s = [t [ it
| I

Al .“_ §oen

_
.,.::_,.“ _Iu_....I_J. :_
L

When £ 15 not abselutely continuous with tespeet to f) then A =, In

el T
any case, we have that A=A For uny Borel set A we ure guaranteed
that

= Ay Vo= [ g8y S0+ A0 [ s
] |

When A is small, we therclore Bnow that Sand g Bisve guite similar tails,

Fxwonle Lev 1N V) be o orandom veetor uniformly distributed |
bl chrede, and et (U0 B random vector unilsemly distrtbuted in
[= 1005 100 ko than X7Y bos depsity S0 =a"" (04 2%y, uind 1hat
UV has depsity wlel=muxg), et 10 b clear that  a=mn/d,
=2 Also, A= mas (h=a = D =a/2 = 1 =06, Clearlv thereplacemen)
ol £ by g Tor simelalion purposes i outragecus, bul nevertheless, the
fact that A= 00 indicates that hotl densities must

i ks

wve simi
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el By tnking sels o that are spheres centered ol v wath rndivg

=0 e note Uhid T glmost all x (with respeet to f )

[ gtxddss § fix r__.,,.l..n_“..,,. ) HER {2)
i )| Sy

(his ds known as the Lebesgue density theorem: see Wheeden  and
Zyemund, 19770 Let Lbe the sel ol all x with flx)= 0, and Tor which (2) s
vithid, Dheline Turther

SEPA D 160 PR 100
il T

Clearly,

1
Agzmax | =g, —=11]

i

When fand g are both continuous and strictly positive on RY, then o =o'
and =", Thus, in that eose, (1) s valid with equality. Tn other words, (1)
cannol be improved upon except possibly in some uninteresting cuses,

Optimization 1t happens  sometimes  that one  can choose  the
approximating density g from o family of densities g, where 0 is u
parameter, In view of the fact that @ and f are simple functions of @ only,
we mily Lry Lo minimize

: l
min| | —a,——1

B

iwhich would mimimize the upper bound lor A: see incquality 1), In some
pases, we may try to minimize

|
miax| 1 = ____, -1

{which would minimize A, in most coses; see The previous remurk),

4. THE NORMAL APPROXIMATION

Schefle's theorem (1947) states that if g, is a sequence of densities on R
with g, (x)=flx) a5 n—o for almost all x, then _,_Fni.-__:.,_ ._;..T.: a5 M
—scn. This property is valid for all densities [ Unlortunutely, no rate of
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derived frony o

COTVT LU ¢ iv theorem, and one wsoally Bls back
e e eegealives of Sectmon 2o Iy
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thien the density

are nee

ol Lhe norielieed sum

Wik i,

sitlisfies A, =sup, |

xh=—flx *_ 3 where s the stundaed novmal densily
ir and only if g, is hoveded Torsome a2 1 (Goedenko, 1954 Petrov. 1936,
Petrow, 1975, ppo 1981 By dnequality. 20 this o would also anply the
convergence fo 0 ol A T partieular, 11 we assume Lt e va i

and Ul h_._.__..____ v e then e
thi

inee s |
wonmversal o constant o sl

AL T dymsslbesup _.”__".__.":.._.x.h..___

aned

Acsmire ymaxd 1 sup gl (x ”:5__;_...‘.___

{Sahaidarava, 19661 Tn Tact, Tor

ple n V2 Bs optimal because

yimmetricil distributions for X, the

- A T

ELX T 2
I_ ﬁ. 1 et 1)

6/ 2an

A {1 +de

(Sirazdinov and Mamotov, 19621 Only Tor symmetric random varinbles
can we hope to do better: for example, il g, is the uniform density o
_“Ifx._m, .r____..,”:. ther A=00u),

Most of the previvus resulls carry aver o the diserete case, Perhaps the
moast famous resull here s due lo Prohoray {(1961) Let gy be the i-th
probability of the binsmad G pd distibution (O<p<1 s fixed], let e
the normal density and let g be the integrul of f between (-npdfo ind
(14 | =np)fo where at=up(l —p) then

| vl —=2p 1
_.PH._W..._F|¢.__I|.._||H_....Tn_ - -

Juptl=p)  wapetl —p)

e T o e b, W A T T PP = P T o
4 = LT R :
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whore
I

e= (1440 M) >0,126,
?&.u__ﬂ

Wo should point out here that for the computer generation of binomial
(o, ) random varisbles when noig large, the normal approximution is now
vhsolete and abmost always inadmissible in view of the constant average
time procedures of Ahrens and Dieter (1980) and Devroye (19804, 1980b).

5, THE POISSON APPROXIMATION

Il p is the i-th binomial (m,p) probability and g, is the i-th Poisson (np)
prodahility, then

| ﬂﬁ .
auww_sé__umﬂhu

for all o (Romanowska, 1979). Thus, the binomiul distribution is close 1o
he Poisson distribution for small p. However, no approximation of the
binomial by the Poisson distribution or viee versa is necessary in view of
the pniformly Tast algorithms known for both distributions {Ahrens anid
Dicter, 1980b;  Atkinson, 1979; Schmeiser, 1980; Devroye, 1981).
However, there are situntions where the Poisson approximation may be
helpful, for example, for the computer generation of

"
X=3Y X
=1

where n s large and Xy,..., X, are independent {0, 1 }-valued random
variables with P{X,=1)=z, Indeed, if ¥ is a Poisson (}.{., ) random
sariable, then it is known that

| ; : i %
buMM,EmiTm:n:_m ¥z
I i=1
(LeCam, 1960). For example, when go=e/i%, >0, and X=X (n=m)
and when X is approximated by o Poisson (en?f6) rundom varinble ¥
then

e W B S Y e i o T s b S P R T L
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Woliest =100 then A= 10 " and the Porsson approximilio

acceptabbe,
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