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On Generating Random Intervals
and Hyperrectangles

Luc DEVROYE*, PETER EPSTEINt , AND JORG-RUDIGER SACK!

We look at the problem of generating a random hyperrectangle in a unit hypercube
such that each point of the hypercube has probability p of being covered. For random
intervals of [0, 1], we compare various methods based either on the distribution of the
length or on the distribution of the midpoint. It is shown that no constant length solution
exists. Nice versatility is achieved when a random interval is chosen from among the
spacings defined by a Dirichlet process. A small simulation is included.

Key Words: Computational geometry; Dirichlet process; Monte Carlo; Random cover;
Random variate generation; Uniform coverage probability.

1. INTRODUCTION

We consider the following problem: Given a set A that is either [0, 1]% or R¢, generate
a random hyperrectangle Hle I, where I, . . ., I; are random intervals with the property
that each € A has equal probability of being covered. The coverage probability p is
specified beforehand. Stated in this manner, there are some trivial solutions, such as:

the all-or-nothing method
generate a uniform [0,1] random variable U
if U <p then return A
else return the empty set

This example shows that we should provide additional restrictions. Before we go
further, however, some observations will help us to better focus. By continuous, strictly
monotone bijections between [0, 1] and IR, it is easy to see that we need only consider
[0,1]. Applying transformations coordinatewise, a similar observation is valid for R¢.
Furthermore, assume that if we can solve a one-dimensional problem with coverage
probability p, then we can solve the d-dimensional problem with coverage probability p®
just by forming the product of d independent intervals. For these reasons we will now
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concentrate on [0, 1]. There is a caveat: If one specifies the shape of the sets in IR, such
as circles or squares, then the d-dimensional problem becomes nontrivial and cannot be
solved by marrying d one-dimensional solutions.

We will present several models. Let (L, R) be the random interval that we are
studying. In some cases we produce closed intervals [L, R}, but the distinction is rather
minor. We thus require of all the methods the following property: Given p,

Pr{z € (L,R)} =p

for all z € (0,1). There are many possible solutions to this problem. Additional issues
that govern a user’s choice include the following:

1. The distribution of the length D = R — L. It is impossible to have D equal a
positive constant and still ensure uniform probability coverage. While ED = p in
all cases, the oscillatory nature of D is to some extent captured in the variance,
var D.

2. The distribution of L, R, and M = (L+ R)/2. Somehow, one feels that M should
be almost uniformly distributed in most cases, but again this is not necessarily
true.

3. The probability that two independently generated intervals are nested could have
a particular significance.

4. The presence or absence of atoms in the distributions of L and R may influence
the attractiveness of certain approaches. It is disappointing to note that uniform
probability coverage is impossible without introducing atoms in both the distri-
butions of L and R.

5. The flexibility in molding and designing the distributions is of the utmost impor-
tance. The more things users can “try out,” the more attractive a method becomes.

6. Intervals generated for the purpose of testing algorithms are to be stored in a
data structure. For example, n intervals induce an interval graph on n nodes, in
which two nodes are connected if their intervals intersect. Random interval graphs
have been studied by Scheinerman (1988, 1990). The edge density is, of course,
controlled by the distribution of (L, R); in all cases of interest to us, the expected
number of edges is ©(pn?), so this can be controlled by the choice of p.

7. Finally, the computational complexity of a method has to be rigorously controlled.

Uniform coverage probabilities are required in several types of statistical simulation
experiments. For example, consider a simulation of customers queuing for bank tellers.
The work shift of a bank teller is a time interval. The collection of work shifts for
all tellers is a set of (not necessarily equal) intervals. A random time shift for a teller
is defined as one in which the teller works at any given time of the day with equal
probability. Collections of random time shifts are advantageous as they assure uniformly
good bank service throughout the day. In a second example, consider an application
that produces city maps from satellite images. Cloud cover causes problems for such a
system. To model the effects of cloud cover before launching the satellite, a random cloud
generator may be used. For simplicity, such a generator could always produce rectangular
clouds. The appropriate probability distribution would be uniform coverage probability,
because that would imply that any given point in the map area has the same probability of
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being covered by cloud. Finally, we should mention the experimental verification of the
performance of algorithms for reporting all the rectangles in a collection of rectangles that
cover a given point z. For expected time performance we require that the rectangles be
iid and that each point x has an equal probability of being covered by a given rectangle.

We begin with a few theoretical properties of random intervals that achieve uniform
coverage probability. Then six methods are proposed that culminate in a method where
we generate one of n intervals defined by n—1 random points with a Dirichlet distribution
on [0, 1]. We conclude with a small simulation study that highlights the flexibility of the
Dirichlet process method afforded by its distributional parameters.

2. A FEW THEORETICAL UNDERPINNINGS

The fundamental property is that
ED=E(R-L)=p. (2.1)

This is best seen as
1 1 1
E(R-L)= E/ Ie,rydr = / Pr{z € (L,R)}dz = / pdr=p.
0 0 0

With intervals of the form (L, R) C [0,1], we cannot cover the endpoints 0 and 1.
If one desires that Pr{z € I'} = p holds for z € [0, 1], then I must be of the form [L, R).
As it turns out, in both instances, L must have an atom of weight p at 0 and R must
have an atom of weight p at 1. So, as far as the distribution of (L, R) is concerned, the
differences between open and closed intervals are only cosmetic.

The mean of D is fixed at p, but the variance of D is much less restricted. A trivial
upper bound is obtained by considering that D € [0, 1], and thus varD < p(1 — p).
Equality is achieved by the all-or-nothing method. Random intervals with that much
variability in the length look awkward; somehow, one’s idea of a random interval includes
the notion of a random length with a smooth distribution. If, as p — 0, var D = o(pz),
then D/ED — 1 in probability by Chebyshev’s inequality. Visually, one will notice that
all intervals will have about the same length, leading to uninteresting data for applications.
The aesthetically most appealing cases occur when var D = O(p?) as p — 0. We say
that a,, = O(b,,) if there are positive constants A and B such that Ab, < a, < Bb, for
all n large enough.

Next we observe that the distributions of L and R must have atoms: L has an atom
of weight > p at 0 and R has an atom of weight > p at 1. To prove this, assume that L
has an atom of size g at 0. Then let R’ be the random variable equal to R conditional
on L =0.

p=Pr{z € (L,R)} > qPr{R’ >z} — ¢Pr{R' > 0}
as | 0. Furthermore,

p=Pr{z € (L,R)} <qPr{R' >z} +Pr{0< L <z} — qPr{R' > 0}
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as z | 0. Thus Pr{R’ > 0} = p/q. This implies that g > p. Also,
Pr{R=0}=Pr{L=R=0}=Pr{L=0}Pr{R' =0} =q—p.

It is also futile to consider constant length intervals. Indeed, if 0 < L < R < 1is
such that R — L = ¢ € (0,1) for some constant c, then

sup Pr{z € (L,R)} > inf Pr{z e (L,R)}.
z€(0,1) z€(0,1)
We argue by contradiction, assuming a uniform coverage probability of p. We have seen

earlier that ¢ & Pr{L = 0} > p. Because Pr{c € (L, R)} = p, there exists a small ¢ > 0
such that

Pr{i0<L<c—e<c<R}>p/2.

But then
Pric—c€ (L,R)} >P{0< L <c—e<c<R}+Pr{L=0}> %’3,

which is a contradiction.

It is noteworthy that it is impossible to generate an interval’s midpoint independently
of its length: R — L and (R + L)/2 cannot be independent. The proof is omitted.

If intervals are generated as a first step in the generation of a random interval
graph, then there are simple relations between n, p, and the expected number of edges
in the interval graph. We introduce the notion of a regular interval (L, R): It has the
property that Pr{L = R} = 0 and that no atom of L has weight more than p. All
of the interval-generating schemes given are regular. The all-or-nothing method yields
nonregular intervals. If NV is the number of intersections in the interval graph induced
by n random iid intervals with uniform coverage probability p, and if the intervals are
regular, then EN = ©(pn?). In fact,

p(1 - 2p) (’2‘) <EN< 4p(’2‘) .

The proof is omitted.

3. METHODS
3.1 METHOD NUMBER 1: UNWRAPPING THE CIRCLE

We begin with a simple method obtained by considering the interval as wrapped
around the perimeter of a circle. The open-interval and closed-interval versions of the
algorithm follow. Only the open intervals are analyzed.
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Figure 1. The Unwrap-the-Circle Method.

unwrap-the-circle method: closed cover
input parameter: z € [0,1]
generate U uniformly on [-z,1]
return [0,1]N[U,U + 2]

unwrap-the-circle method: open cover
input parameter: z € [0,1]
generate U uniformly on [-z,1]
return (0,1)N(U,U + 2)

The coverage probability p is trivially related to the parameter 2: For fixed z > 0,

z

Pr{z € (L,R)} = P

for all z € (0,1). To prove this we note that every point z € (0,1) has probability
z/(z + 1) of being covered by the open random intervals (this is certainly true before
the intersection with [0, 1] and remains true after the intersection).

This method has the advantage that all of the intervals, except those near the end-
points, have equal length. By choosing z, the coverage probability can.be any number
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Figure 2. The Random Version of Unwrap-the-Circle Method. a = .3, b = a(1 - p)/p.

between 0 and 1. It is easy to see that D/ED — 1 in probability as p — 0. Sometimes
more control is desired over the lengths. Nevertheless, the collection of generated inter-
vals does not appear very natural. For example, nested intervals occur only when one of
the endpoints is zero or one. Note also that M is not uniformly distributed on [0, 1].

3.2 METHOD NUMBER 2: A RANDOMIZED UNWRAP-THE-CIRCLE METHOD

We replace z in the previous section by a random variable Z > 0. Given Z, the
expected length of a generated interval is Z/(Z + 1). Thus we need to choose the

distribution of Z such that
Z
Bz} ="

A brief example might illustrate this: Let Z be beta of the second kind with param-
eters a and b; that is, with density

za—l

&= Baparae 20

Then Z/(1 + Z) is beta (a,b), with mean a/(a + b) = p. The parameters a and b can
be picked to achieve equality here. For example, for any a, pick b = a(1 — p)/p. A beta
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Figure 3. The Random Version of Unwrap-the-Circle Method. a = 8, b = a(1 - p)/p.

variate B can be generated by the methods described in Devroye (1986), Cheng (1978),
or Schmeiser and Babu (1980), and a beta of the second kind is obtained as B/(1 — B).
In general, if Z has distribution function F', then D has distribution function given by

[o o)
Pr{D < 7} = F(z) + 20E {(Z + 1) Iz5,} = F(z) + 22 / y—iTF(dy) .
x
In general, if a user specifies a desirable distribution for D, then one has to solve this
equation for F', provided that a solution exists.

The freedom obtained by looking at a family of distributions for Z, such as the beta
family suggested earlier, can be used to specify a desired variance for D if it is feasible
(i.e., var D < p(1 — p)). The parameters in the family could be selected to achieve the
given variance. For the beta family given previously, take the situation that p — 0, while
a/(a+b) = p. Thus b ~ a/p. Straightforward variance calculations show that if we take
a ~ p" for a fixed constant ~y, then several asymptotic behaviors may arise:

e v < —1: var D = ©(p*); the intervals are of nearly constant size.

e —1 < v <0: var D = ©(p*7); the intervals are of nearly constant size.

e v = 0: var D = ©(p?); the intervals are of intermediate variability: the oscillations
are of the same order of magnitude as the interval sizes.
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e v € (0,1): var D/p? — oo; the interval sizes are highly variable.
e v = 1: var D = ©(p); the interval sizes are extremely variable.

3.3 METHOD NUMBER 3: THE REJECTION METHOD

The next method is based on the goal of generating intervals in which L and R
are nearly independent—outright independence is achievable only in the trivial case that
L = R with probability one. L and 1 — R are generated independently with a given
distribution function F until L < R.

rejection method
given is a distribution function F on [0,1]
repeat
generate L,1 — R independently with distribution
function F
until L< R
return (L,R)

We are only concerned for now with the open intervals and z € (0, 1). The efficiency
of the rejection method can be measured by the expected number of iterations (V) until
we obtain L < R. The distribution function F' should be picked in such a manner that
we have uniform probability coverage at the level p. We chose F' with the following
properties:

e F is continuous and nondecreasing on (0, 1).
o F(0)=q%el-1/p,
e For z € (0,1/2], F(z)F(1 — z) = ¢. (This implies that F(1) = 1 and that
F(1/2) = 4)
With this choice we claim that the rejection method is valid (i.e., Pr{z € (L,R)} = p

for all z € (0, 1)), and that EN = p/q. If L and 1 — R are independent with distribution
function F', then

Pr{zr € (L,R)} = F(z)F(1-z)=¢q

for all z € (0,1). Also, the probability of a successful pair in a particular loop of the
iteration is given by

I

1
Pr{L < R} / F( - z)dF(z)
0

_ _9
_ /0 o T @ FO)

1
/ 2aly+q
e Y

qlog(1/q) +gq
q

o

Il



ON GENERATING RANDOM INTERVALS AND HYPERRECTANGLES 299
Thus

Pr{zr € (L,R),L< R} Pr{z e (L,R)}
Pr{L < R} ~ Pr{L <R}

Pr{z € (L,R)|L < R} =

Finally, by results on rejection algorithms, the expected number of iterations is EN =
1/Pr{L < R} =p/q.

The choice of F is trivial: Take F'(0) = g, and let F increase in a continuous manner
until it reaches the value /g at z = 1/2. Then define F' on (1/2,1) by continuation
based on the equation F(1 — z) = q/F(x).

3.4 MEeTHOD NUMBER 4: THE CONDITIONAL METHOD

Assume that F' is a distribution function as in the previous section. We will show
that the following loopless algorithm is valid.

conditional method
given is a distribution function F on [0,1]
generate U and V independently and uniformly on [0,1]
generate L:
if U<p then L0
else [ « Finv (qe(U—p)/p) = finv (e(U—l)/p)
define R+ 1- F™(VF(1- L))
return (L,R)
We call this the conditional method because we first generate L and then generate R
conditional on L. In multivariate random variate generation, a survey of applications of
this methodology can be found in Johnson (1987) or in chapter XI of Devroye (1986).

We first show that the algorithm is correct. Return to the method of the previous section,
and let L and R be as given there.

Pr{L =0} + [ <, Pr{R 2 y|L = y} dF (y)
Pr{L < R}
g+ f0<y5x F(1-y)dF(y)
a/p
4+ Jocy<s 3/ F(y) dF(y)
a/p
p+plog(F(z)/F(0))

p+plog (_125;:_)) , ze€l0,1].

Pr{L <z|L< R} =

Call the latter distribution function G. The recipe given for L in the conditional method
algorithm corresponds to using the inversion method for G. Given L, the distribution
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o

Figure 4. The Conditional Method.

function of 1 — R is F, restricted to [0,1 — L]:

F)  gcy<i-1L.

Pr{l_RSyiL}:F(l——L)’ Sy=s

The recipe for R in the algorithm given previously corresponds once again to the inversion
method. The uniform probability coverage follows from the correctness of the algorithm
of the previous section.

One particular example stands out because of its simplicity. Consider the distribution
function F(z) = q'~2 in the rejection method algorithm. It satisfies all the necessary
conditions as F'(0) = ¢, F' is nondecreasing, and F(z)F(1 — z) = ¢ for all z € [0, 1].
In the conditional method algorithm, we obtained the distribution function for L as

G(z) =p+plog(F(z)/q) =p+z(1-p).

This is easily seen to be a mixture of an atom of size p at the origin and a uniform
density on [0, 1] carrying weight 1 — p. The distribution function of (1 — R)/(1 — L)
given L is

Pr{i_ﬁ sx|L} =¢07h0m, 0<o<1.
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This is a mixture of an atom of size ¢!~ at the origin and an exponentially increasing
density on (0,1). Using the fact that minus the logarithm of a uniform [0,1] random
variable is exponentially distributed, we see that, given L, R is distributed as

. E
L+mln(1—L,—1—/—pTl-> )

where E is a standard exponential random variate. The conditional method is thus sim-
plified as follows:

conditional method (worked out example)
generate U and V independently and uniformly on [0,1]
if U<p then L+~ 0 else LV
generate an exponential random variate FE
R—L+min(l-L,E/(1/p—1))
return (L,R)

3.5 METHOD NUMBER 5: THE ORDER STATISTICS METHOD

Epstein and Sack (1992) proposed the following method: If p = 1/n for some integer
n, then partition [0, 1] into n intervals induced by a random iid sample of size n—1 drawn
from the uniform distribution. Pick one of these intervals uniformly at random. Then,
for any fixed z € (0, 1), the coverage probability is exactly p. If an ordered sample is
generated directly in order (see Devroye 1986, chapter V), then this method takes O(n)
time. This is a special case of a more general paradigm given in the following.

the partitioning method
generate an ordered sample 0=Xp < X; <--- < X1 < X,, =1
(from any distribution, regardless of dependence)
generate Z uniformly in {0,1,...,n—1}
return (L,R) — (Xz,Xz+1)

Among all possible distributions for the X;’s, the uniform distribution occupies a
special place, because the properties of its spacings are well understood. The length
R — L is beta (1,n — 1) distributed, with mean 1/n. Because the kth smallest uniform
order statistic in a sample of size n — 1 is beta (k,n — k) distributed, we can obtain
an O(1) expected-time version of the algorithm, provided that all of the beta variates
are generated by a uniformly fast algorithm (Cheng 1978; Devroye 1986; Schmeiser and
Babu 1980).

the order statistics method
generate Z uniformly in {0,1,...,n -1}
if Z=0 then L0
else L — beta (Z,n-2)
if Z=n-1 then W «1
else W « beta (1,n—Z2-1)
define R— L+ (1- L)W
return (L, R)
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D — . R -'l

Figure 5. The Dirichlet Process Method. v = .2.

Thus far we can only achieve coverage probabilities that are 1/n for some integer
n. To get around this we replace n — 1 by a Poisson random variate N with parameter
A > 0; that is,

Ai
Pr{N =i} = i—'e_)‘, i>0.

This can be done in constant expected time by algorithms such as those given in Ahrens
and Dieter (1980, 1982, and 1987), Ahrens, Kohrt, and Dieter (1983), Devroye (1981,
1987), Pokhodzei (1984), Schmeiser and Kachitvichyanukul (1981), or Stadlober (1988).
For fixed z € (0,1), we have

Pr{z € (L R)}=E{ 1 }: 1-e?

’ N+1 A
By varying A from 0 to oo, any coverage probability between 1 and 0 can be obtained
in this manner. If the coverage probability p is given, we have to solve the equation p =
(1—e=*)/\. For large A, N is very concentrated around ), so that the resulting intervals
behave roughly the same as those of the raw-order statistics method. Unfortunately, this
method does not have any flexibility with regard to the distribution of either L or the
interval length D.
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Figure 6.  The Dirichlet Process Method. v = 4.

Assume that n — 1 is replaced by a negative binomial random variable N with
parameter 2 defined by

Pr{N = i} = (i + 1)(1 - 9)%¢" (i > 0).

This choice is convenient because the coverage probability (p) is easily seen to be

1 = ; def
E{d——t=> (1-¢’¢=1-¢=p.
{N+1} i=0(1 q9)°q g=p

Also, N is easily generated as the sum of two independent geometric random variables,
each of which is obtainable as | —E/log(q)| (Devroye 1986).

3.6 METHOD NUMBER 6: THE DIRICHLET PROCESS METHOD

One may control the variability of the intervals much better by using properties of
Dirichlet processes (see Wilks 1962; Aitchison 1963; Basu and Tiwari 1982; Devroye
1986, chapter XIV.4; Narayanan 1990). The partition of the previous section follows a
Dirichlet distribution, in which each spacing is beta (v, v(n — 1)) distributed, and v > 0
is a variability parameter.
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Figure 7. The Dirichlet Process Method. v = 20.

the Dirichlet process method
generate Z uniformly in {0,1,...,n—1}
if Z=0 then L0
else L — beta (vZ,v(n— 2))
if Z=n-1 then W1
else W — beta (v,v(n—Z —1))
define R— L+ (1-L)W
return (L,R)

We see that the length D is beta (v,v(n — 1)), so that in view of ED = p, we must
have p = 1/n. Interestingly, we have the following simple expression for the variance:

n—-1 _p(l-p)
n?(vn+1) 14+v/p

var {D} =

This restricts the design slightly as 1/p must be an integer. By making v as a function of
P, however, we obtain virtually unlimited freedom in the choice of var { D}: Any variance
in the allowable range (0,p(1 — p)) is achievable by letting v vary from oo down to
0. When p — 0 and v — oo, then D/ED — 1 in probability, as var {D} ~ p?/v,
leading to low variability. The case v = 1 corresponds to the order-statistics method.
For v constant, var {D} = ©(p?), which is the most interesting case, as (n — 1)D and
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Figure 8. The Dirichlet Process Method. v = 1.

D/ED both tend in distribution to a gamma (v, 1/v) random variable. For small v, the
variance is gigantic: If v — 0 as p — 0, then we have var {D}/E2D — oo.

For general p, we may define n = |1/p|, and use the order-statistics method or the
Dirichlet process method in which n is used with probability ¢ = n(n + 1)p — n, and
n + 1 is used otherwise. Observe that the coverage probability is

}__n(n+1)p—n+ 1+n—n(n+1)p

Pr{N =1
r{ : n n+1

This manner of mixing keeps the variability of the interval sizes to a minimum.

4. RANDOM SQUARES

Random squares in the plane pose a serious challenge. Suppose that we were to
generate a uniform coverage random interval of (0,1) with coverage probability ,/p.
Assume that its length is D. This would fix the size of the square at D x D. To fix the
position of the square with respect to the other coordinate, we would need yet another
random interval, with uniform coverage probability ,/p and length D. But we know that
fixed-length intervals do not lead to uniform coverage probabilities. Also, we cannot play
very much with the length of D because ED = ,/p. This leaves us nowhere, and an
entirely new approach is necessary for random squares.
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5. EXPERIMENTS

As we were mostly interested in computational geometric applications, we generated
a number of random hyperrectangles with various methods. In all cases we wanted a
uniform coverage probability of p = 1/100. This is achieved by demanding a uniform
coverage probability of p’ = 1/10 for z intervals on [0, 1] and for y intervals on [0, 1]
separately. If we choose n = 100 independent random rectangles, then, as the number
of rectangles covering any point z € (0,1)? is binomial (100,1/100), the expected
number of rectangles covering any point is just one. Also, the expected uncovered area
is precisely the probability that a given = € (0, 1)? is not covered; that is, (1—1/100)%,
which is close to 1/e. This provides a quick visual check of correctness, but it is also a
nice calibrator in comparisons.

Four methods were tested:

1. The unwrap-the-circle method. This shows that, except near the borders, all the

rectangles are in fact equisized squares. See Figure 1 (p. 295).

2. The randomized version of unwrap-the-circle, in which Z is a beta random vari-
able of the second kind with parameters a and b = a(1—p)/p. The first parameter
was varied; for a = .3, the rectangles vary widely in size. This is reduced when
a = 1, while for a = 8 and up the rectangles have comparable sizes and tend to
be more and more square shaped. See Figures 2 and 3 (pp. 296 and 297).

3. The conditional method based on the distribution function F(z) = ¢!~ given in
the text. See Figure 4 (p. 300).

4. The Dirichlet process method. The size n in the order-statistics method is picked
automatically as described in Subsection 3.6. The variability parameter v is
changed from v = .2 (high variability in size and shape of the rectangles), to
v=.5 v =4, and v = 20. For v = 1 we obtain the standard order-statistics
method. For the higher values of v, the rectangles become more and more like
squares, and their sizes become increasingly similar. See Figures 5-8 (pp. 302-
305).

The methods were coded directly in the Postscript language and sent to the printer.
This means that the Postscript laser printer itself does all the work, from generating
the necessary random variates to graphics computations. The host computer does no
compilation or interpretation. This approach leads to short, fresh code, and can be carried
out without any compilers or graphics packages. Also, one has the full power of the
Postscript language at one’s fingertips while keeping things simple. This often leads
to striking displays not otherwise possible through standard software. For a beautiful
introduction to Postscript, start with McGilton and Campione (1992).

[Received August 1992. Revised May 1993]
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