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Any Discrimination Rule Can Have an Arbitrarily
Bad Probability of Error for Finite Sample Size

LUC DEVROYE

Abgtraci—Consider the hasic discrimination problem based on a sam-
ple of sze n drawn from the distribution of (X, ¥) on the Borel sefs of
Ridx {0, 1} 110 = R* <} isagiven number, and ¢y, — 0 is an arbitrary
positive sequence, then for any discrimination rule one can find & dis-
tribution for (X, ¥, not depending upon o, with Bayes probability of
errar B suel that the probability of error (R, of the discrimination
rule is larger than &% + ¢, for infinitely many n, We give a formal
proof of this result, which is & generalization of a result by Cover [1].
Furthermore,

sup Rn;’é-

all distributions of
(X, ¥ywithR* =10

Thus, any attempt to find a nontrivial distribution-free upper bound for
R, will fail, and any results on the rate of convergence of Ry, to R*
must use assumptions ahout the distribution of (X ¥

Index Terms—Bayes risk, consistency, discrimination rule, distribu-
tion-free inequalitics, probability of error.

I. TNTRODUCTION

N this paper we will try to clarify the statement that, with-

out assumptions on the distribution of the data, no rate of
convergence (Lo the Bayes probability of error) can be proved
for any discrimination rule,

Let (X, ¥), (X, ¥y ). (Xy, Yy) be independent identi-
cally distributed R9% {0, 1} valued random vectors: The dis-
crimination probfem is concerned with the estimation of ¥
from X and the dara (the (X, ¥;) sequence). A discrimination
rile is a sequence of Borel measurable mappings g4, 82,7
where g, maps 89x(R9x {0, 1})" to {0, I}. The estimate of
Yis

G i o G LR S

and the associated conditional and unconditional prababilities
of error are

L= PP # XXy Yo X ¥)
and
R, =E(Ly).
In any case we have L, =R*, where R is the Bayes risk (or
Bayes probability of error)

R*= P(z(X)# Y).

inf
e R~ a1}
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A discrimination rule is said to be Baves risk consistent if
limy; R, =R* Some discrimination rules are Bayes risk con-
gstent for some distributions of (X, 1) only {e.g., the linear
discrimination rules). It is now known that most nonpara-
metric discrimination rules are Bayves risk consistent for @il dis-
tributions of (X, ¥), c.g., the &, nearsst neighbor and related
rules [9], the k,, nearest neighbor rule based only on the ranks
af all the projections of the X's [2], [7], recursive versions of
the k&, nearest neighbor rule [4], the kernel rule (or potantial
function method) [3], [8], recursive versions of the kernel
rule [6] , and partitioning rules [5].

The next guestion one might ask is whether there are dis-
crimination rules for which R, converges to 8% with a certain
speed [eg., Ry =BT +0(1/n)] regardless of the distribution
of (X, ¥'). The answer is negative in view of Theorems 1 and 2
proved in this paper.

Theorent 1: For any discrimination rule

sup Rn?ﬂ%.

oll distributions of
(A, Yiwith R*=0
Thearem 2: Let ¢, -=0 be an arbitrary positive sequence,
and let D==R* = % be a given number. For any discrimination
rule there exists a distribution of (X, ¥) with Bayes risk R
such that

Ry = min (R" + ¢, %]

for infinitely many .

Theorem 1 states that no nontrivial distribution-free upper
bounds for R, exist. In particular, if ¢, is a given positive
number sequence tending to 0, and if R, =R* + ¢¢,,, then the
constant ¢ must necessarily depend upon the distribution of
(X, ¥). Theorem 2 is a bit different; it states that no inequal-
ity of the form R, =R* +¢¢, can be obtained even if ¢ de-
pends upon the distribution of (X, ¥ )! The reason is thal we
can always find some distribution of (X, ¥7) for which R, =
R*++/8, infinitely often. Theorem 2 refines a result by
Cover [1]. Notice finally that Theorem 2 also applies to the
k-nearest neighbor rules (k fived) for the special case that
R¥=0. For the case R* > 0, Theorem 2 containg no informa-
tion because the k-nearest neighbor rules are not Bayves risk
consistent,

By carefully analyzing the proofs, we see that Theorems |
and 2 remain valid when X has a fixed (but otherwise arbi-
trary) density, Thus, putting restrictions on the distribution
of X alone will not suffice for the study of the rate of conver-
gence of discrimination rules. One needsat least conditions on
the regression functions i (x) = P(¥ = 1'| X=x)
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DEVROYE: DISCRIMINATION RULE AND FROBABILITY OF ERROR

Il. Prooks

We will prove both theorems by constructing an example in
R, in which X has a density with infinite support. One can
easily construct similar examples in R9, or examples in which
X is purely atomic, or examples in which ¥ has a uniform dis-
tribution on [0, 119, The density of X is

flx)y= 2:-_ Bilis,iaplx)
=0

where [ is the indicator function and (Po, Py, ") is a prob-
ability vector. In other words, the density of X is histogram-
shaped with height p; on the interval [7, i+ 1).

In the proof we will need a family of distributions of X, ¥).
This family will have a parameter z € [0, 1), and the distribu-
lion £3{z} is defined as follows. Let z have binary expansion
0. z¢2¢23, -+, then ¥ =zy where X = integer part of X, and
X has density f. For all D(z), it is clear that 8* = 0 because v
depends upon X. Let us call the probability of error for fixed
z R, (z). The main step in our proof is based upon a random-
ization argument. Let us introduce an independent uniform
[0, 1] random variable Z with binary expansion 0. PAVAY
***. Then we have the following chain of inequalities:

sup R, (z)
= |0, 1)

=E(R,(Z))  (the supremum always exceeds the

mean)
= Plen(X, Xy Zy 0 Xy, 2y, ) # 2y)
= E(PEn(X, X\, Zx, .+, Xp, Zx,)
FZx|X Xy, X))

{when X # X, for all {, then
2y is independent of
EnlX, Xy, Zx )and
takes the values 0 and 1
with equal probability)

] = "
=5 2 il -py)

i=0

1 A
g (i ; ._) o n
20 pe<if(am)
}l :?__- Py
4 Pi=1f{in)
Froaf of Theorem 1. Let pi=1K, 1=i=FK, and =0
elsewhere. Then by (1)

(1)

sup

Ry@)> L 3 p1 - pyy '(1 1)"
z e = == ey y
BT nl 5 By By 5 K

im]

which s arbitrarily close to 3 by the choice of K, Theorem 1

follows since R* =0 for all distributions D(z), z € [0, 1),
Proof of Theorem 2: Let us first note that we carn assume

that ¢, is strictly monotone. If we can prove Theorem 2 for

al @y 40 (! denotes monotone convergence), then we have
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proved it for all sequences ¢, =0, Indeed, Y =sup(y i=
n)+1fn 1 0. Thus, we may find a distribution of (X, ¥) with
Bayes probability of error &% such that RyZmin (R*+4y,,,
3)=min (R* + ¢, 1) infinitely often. .

We begin by showing thal we can find N and (Poifi,--")
such that

: X
pi=1f{2m)
The construction is rather straightforward: let

N=inf(n: n=1,9,<1),

p";a‘{;'"r ﬂ]] ﬂ?Ni

kg=k1:"'=knr_|_ =0,

Assume that n =N, Given ky-y, find &, >k, | and P
ki <i=k, as follows:

1} all py's are positive:
2} the py sequence is nonincreasing (starting with p, );
3) py=1j(2n);

Ky
4) Z pf=4[¢n_¢&14l.}-
I= kﬂ—] +1
Clearly

i 2

By = 1f{1n)

Pi= 2. &+ a4(d-diy,)

i=n

I D

i=ky g+l
=2 (Bi=0iu1)=0n. n=N,
i=n

To make (pg, pq,---) a probability vector, note that

Choose py such that the sum of the p;’s is one.
Consider first the case R* = 0. Let

En {Z} = 51E]J e {z}fl‘:!’m .

maSn

We assume first that R,,(z) = 0 for all = € [0, 1), We will reach
4 contradiction, and must conclude that

sup Tim sup R,,(z)/¢, > 0.
s=2J0,1) m—=w=
Let D, ={z: z €0, 1), ﬁ.,,(z]é 1}, D%-complement of ;.
Clearly, P(ZED3) =0 a5 n = by the Lebesgue dominated

convergence theorem. Let (py,p,,---)bea probability vee-
tor chosen as in the previous construction. By Fatou's lemma
sup  Him sup R, (z)/dy,
=0, 1) n—=
=L (lim sup {Rnt.-'?.:'!r‘-!"n} -r|2 ED0y] )
Pl

=lim sup E((Rp(Z)/¢p) 1z = p, 1)

o o

= lim sup ' P(Z €Dy,




gﬂ{X:XIszI"“ 5 1Xﬂ!zxn]5ézx}
= Tim sup ¢! E(P(Z €Dy, 8n(X, Xy, -

"=

. Zx,)
;EZI|X:X11'I'11 1

Y Py

i=n

=i, 8 X, X1, Zx, ) F,
Z (withj forced in the X'th position) €5,
| X, Xy, o0, Xn)

+An))

= lim sup ri‘.r_[E'(f
P W T e £ AT

= lim sup ¢ £(LS

[Mi=y [X#X;]]

P(Z (with D forced in X th position)
D, Z (with 1 forced in X th position) € D, | X))

= lim sup {2¢,,]_'P( fﬂl X #X).,

M- == I=1

1
(] 1Z (with forced in Xth position) €0, ])
i=0

o
= lim sup (2¢,)™" (Z pill -P;)") (1 - 2P(Z D))
nikiem i=n

=1 (2)
By assumption, the left-hand side of (2)is 0, so we have a con-
tradiction. Thus, there existsa z € [0, 1) and a constant ¢ > 0
such that B, (z) = ey, infinitely often, But ¢, is arbitrary and
can be replaced by /@, , and thus there exists a z € [0, 1) and
¢ > 0 such that R,(z) = ¢ /@, = o, infinitely often.

In the case R* = 1 Theorem 2 hecomes trivial. We may thus
assume that R* € (D, ). We will once again use a family of
distributions D(z), 2= |0, 1}. As before, (pg, p1.--)i5a
probability vector, but now we set pg = 2R*. Let Wand X he
independent random variables where X has density Sand Wis
Bernoulli, taking the values 0 and 1 with equal probability.
Let

ZX

|
W,
For each z we have R* = 1 P(X = 0) =  py, which explains our
choice for pg. Note that the sequence (X, ¥, (X, Vit
(X, ¥,) is known if (X, W), (X, W) - (X, W) is
known. Here the couples (X;, W,) are independent and distrib-

uted as (A, W). The randomization is performed as before,
i.e., by introducing a uniform [0, 1] random variable £, inde-

X =0,
=0,
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(if X+ X;, X#0,weargue as in (1);if X =0,
then ¥ = W is an independent Bernoulli random
varizhle)

=R*+% Z PI“ _p.l')n'
I=1

(3)

The remainder of the proof can be mimicked from the case
R*=0. Define N=inf (n: n=1, ¢, <(1-2RY)B) ky =
ky=-++=ky_; =1. Then construct (ps, p3, ") as before
(nondecreasing from p, onwards) so that

sup R,()>R*+1 L
£ E 0,1} pi = 1f{an)

F{}Rt""}:"uf n=N,

Define p; =1- 2R* - 4y, and note that p, =0, and that
Popy tpy - =2RTH(1- 2RT - dgy) + 4y = 1.

We continue the proof as for the case R*=0. Let R,(z)=
Uy 31 (Rpl2) = R*)ty,, and let (pg, p1, -+ ) be a prob-
ahility vector chosen as indicated above. Assume first that
R, ()0 for all z € [0, 1); we will once again reach a con-
tradiction, and must then conclude that for some z € [0, 1),
lim sup, — « (Ry(z)- R*)/¢, > 0. This would conclude the
proof of the theorem.

Under the said assumption, we have

sup  lim sup (R,(z) - R*)/dy,
= [oy1) A==+
= lim sup £((Ry(Z) - R*) 63 [z b)) @
= s

where D, is defined as in the proof of (2), and X, Y, £, and
W are distributed as indicated in the example preceéding (3).
The right-hand side of (4) can be rewritten as

lim sup 6" (P2 €Dy, gn(X, Xy, Zx, ) F Ex . X 70)

"— =
+PZED,, g,(X, Xyi - ,Zx"}
=W X=0)-R*P(ZeD,)

= lim sup ¢! (% i pi(l=-p)" (1-2MZE DD

H— = i=1

+PZED,) (3 PIX=0)- H*J')

= lim sup ¢p" (% Z Pl -pf}") {1- a0y
i=1

I —+ e

=1

pendent of (X, ¥}, (X, ¥y), =+, (Xy, V). Arguing asin This is the contradiction that we sought.

(1}, we have
sup  Ru(z)=E(Ry(2))

zE [0,1)
=E{P(EH(X1X]1 Y1-1..‘ -an Yﬂ'}
QEY|X,X1,"‘,XH}]

=E(xa0) 1 Hix o)l :
(ix =01 2 Hpx=a) M= 1X% X0 2
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A Model for Radar |
Adaptive Digital Filt

VICTOR 5. FROST, stupent MEMBER, 1EEE, JOSEPHINE ABRBOTT

K. S SHANMUGAN, SENIOR MEMBER, [EEE,

Absrracr—Standarg image Processing techniques which are used to en-
hance noncolerent optically produced images are not applicable {g
radar images due to the coherent nature of (he radar imeging process,
A model for the radar imaging procoss is derived in this paper and a
method for smoa thing noisy radar images is also presenteg,

The imaging model shows that the radar image is corrupted by multi-
Micative noise. The model legds
(minimum MSE) filter fre smoothing radar images, By
astimated parameter values the filter is mada
vides minimum MSE estimates ingide homogeneaus areas of an fmage
while preserving e edge structure. It is shown that the filter can he
casily implemented in the spatial domain and i computationnlly «ffj-
cieat. The performance of the adapfive filter i companed (gualitativoly
and quan ttatively) with severad standard fil forg using real and simulated
radar images,

fndex Terms—Aduptive filtering, image enfiancement, minimum mean

muere error (MMSE), multiplicative noise, radar image modealing, radar
image Processing, speckie reduction, synthetic aperture radar (SAR),

LARGE number of image restoration ang enhancement

A techniques have heen Proposed in recent years for re.

moving a variety of degradations in recorded images of ohjects

and scenes. These degradations result from the nonideal Tidi-
ture of practical imaging systems. The design of optimum

L INTrontcrioy

Manuseript recsivad September g, 1980; revised September
This work was supported by
Fresident's Fund, NASA under
Research Offjce under Contraci DAAG29-77.G-0n7s.

The uuthory gre with the Remaie Sensing ]'_:!hl:-mmr}'. Center for -
garch, Inc,, University of Kansus, Lawrence, K§ Ba045,

21,1981,
the Colifornia Institute of Technology
Contract NAS T-100, 4nd the .8, Army

e
_“_——'-iﬁ____

VOL, PAMI4, NO, 2, MARCH 1952 157

[#] C. ). Stone, “Consistent nanparametrie regression,” Amn. Sratisr
vol. 8, pp. 595-643, 1977,

Luc Devroye was horn in Tienen, Belgium, on
August 61948, He received the Ph.p, degree
from the University aof Texas, Austin, in 1976,

In 1977 he bocame an Assistant Professor gt
the School of Computer science, MeGill Uni-
varsity, Montreal, PO, Conadn. He i intee-
ested in varions applications of Probabifity
theory and mathematical statisties such as
nonparametric. estimation, prababilistic algo-
rithms, the computer generation of random
mumbers, and the Strong convergence of ran.
dom pracessos,

mages and Its Application to
ering of Multiplicative Noise

STILES, stupenT MEMBER, IEEE.
AnND JULIAN . HOLTZMAN, MEMBER, 1EEE

image restoration and enhancement techniques requires o
mathematical model of the Imaging process, This Paper pre-
sefits:a model for the noise in radar images and uses the maodel
to develop an adaptive algorithm to smoath noisy nonstation-
ary images,

Itnaging tadars. specifically the synthetic aperture ragar
(SAR), are beginning to make use of the digjtal lechnigues,
and digitally correlated SAR images are now becoming avail-
able. However, aptimum  technigues for digitally processing
radar images are not fully developed due 1o a lack of under-
standing of the properties of radar images from g digital image
processing perspective, Thus, there is an Important need for
developing statistical models for radar noige and for using
them in deriving appropriate algorithms for processing radar
images,

This paper Presents a model and 3 model-based image en-
hancement technique which is specifically designed for active
microwave sensors utilizing coherent Imaging techniques. The
model portrays the observed radar image as corrupted by
multiplicative-convolved noise.. That is, the desired informa-
tion, the terrain backseatter, is multiplied by g stationary ran-
dom process which Tepresents the effects of coherent Fading
[1]-[3]. The product signal is then processed (convalved)
with the point spread function of the radar system (o produce
the observed image,

This model can e applied to the design of digital image en-
hancement algorithms th rodgh several approaches, The proge.
dure used here was 1o develop a minimum mean squarg error
(MMSE) filter in estimate the terrain backscatter from the
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