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Introduction

The unilateral stable random variable Sα of parameter α ∈ (0, 1) has Laplace transform

E

{

e−λSα
}

= e−λα , λ ≥ 0.

Its properties are well-known—see, e.g., Zolotarev (1986). A simple random variate generator for Sα has

been suggested by Kanter (1975), who used an integral representation of Zolotarev (1966) (see Zolotarev

(1986, p. 74)), which states that the distribution function of S
α/(1−α)
α is given by

1

π

∫ π

0
e−

A(u)
x du,

where A is Zolotarev’s function:

A(u)
def
=

{

(sin(αu))α(sin((1− α)u)1−α

sinu

}

1
1−α

.

Zolotarev’s integral representation implies that

Sα
L
=

(

A(U)

E

)
1−α
α

,

where U is uniform on [0, π] and E is exponential with mean one. Here
L
= denotes equality in distribution.

This is Kanter’s method.

Since then, a similar generator has been proposed for all stable random variables by Chambers,

Mallows and Stuck (1976), which was again based on Zolotarev’s integral representation of stable distri-

butions. However, clever combinations of unilateral stable random variables can be used to generate any

stable random variable. The purpose of this survey is to convince the readers that the exact simulation of

the stable distribution can be achieved using simple distributional properties of the stable family. We use

this occasion to clarify the literature and to discuss random variate generation for distributions that are

related to the stable law. These include the Mittag-Leffler distribution, polynomially and exponentially

tilted unilateral stable distributions, the weakly stable distribution, and several distributions defined by

Bertoin, Fujita, Roynette and Yor (2006). One of the principal tools is the Mellin transform.

The strictly stable distribution

The stable distribution has many definitions and parametrizations that may seem confusing at

first. Zolotarev (1986) has forms called (A), (B), (M) and (C), all with different parameters. For the

purpose of simulation and for the present discussion, it is important to single out the strictly stable

distribution, Zolotarev’s form (C) (1986, p. 17). It will become apparent that a thorough understanding

of it is helpful. Other parametrizations can be dealt with by minor manipulation, often just a scale and

translation transformation.

The classical parameters are the main shape parameter α ∈ (0, 2], and the asymmetry parameter

β ∈ [−1, 1]. Zolotarev defines two related parameters,

θ =

{

β if α ≤ 1,

β α−2
α if α > 1,
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and

ρ =
1 + θ

2
.

One can describe the strictly stable distribution uniquely using any pair (α, β), (α, θ) or (α, ρ). While

the range of θ and ρ is [−1, 1] and [0, 1], respectively, this full range can only be attained when α ≤ 1.

For α > 1, we have αρ ≤ 1 and α(1 − ρ) ≤ 1, and |θ| ≤ 2/α − 1. We will write Sα,β , Sα,θ, or Sα,ρ,

depending upon the situation. When not explicitly stated, the (α, ρ) parametrization is understood. The

characteristic function ϕ of Sα,θ is defined by

logϕ(t) = −|t|α exp

(

− iπθα sign t

2

)

.

Equivalently, Sα,ρ is defined by

logϕ(t) = −(it)α exp (−iπρα sign t) .

Some special cases:

(i) The extreme strictly stable laws are obtained when |β| = 1. The unilateral stable law has pa-

rameters α < 1 and β = θ = ρ = 1. We will write Sα.

(ii) The symmetric strictly stable law corresponds to β = θ = 0 and ρ = 1/2. We write Sα,1/2. Its

characteristic function is

ϕ(t) = e−|t|α.

(iii) For α = 2, θ = 0, ρ = 1/2, β ∈ [−1, 1], the characteristic function of the strictly stable law is

exp(−t2), which is identical to that of
√
2N , N being standard gaussian. Thus,

S2,1/2
L
=
√
2N.

(iv) The Cauchy law (with density 1/(π(1 + x2))) has characteristic function exp(−|t|), and this

corresponds to α = 1 and β = θ = 0, ρ = 1/2. Writing C for a Cauchy random variable, one

notices that

C
L
= S1,1/2.

Remark 1. A scale factor. Zolotarev’s form (C) defines the strictly stable law via

logϕ(t) = −λ|t|α exp

(

− iπθα sign t

2

)

,

where λ > 0 is a scale parameter. It is easy to see that ϕ is the characteristic function of

λ1/αSα,θ.
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Remark 2. Zolotarev’s form (B), weakly stable law. Zolotarev’s form (B) includes the strictly

stable law, and is in fact identical to his form (C) for α 6= 1. The characteristic function is

logϕ(t) =

{

−|t|α exp
(

− iπθα sign t
2

)

, if α 6= 1,

−|t|π/2− iβt log |t|, if α = 1,

where β ∈ [−1, 1] in the case α = 1. This law is referred to as the weakly table law. The random variable

with parameters α = 1 and β ∈ [−1, 1] is denoted by Wβ .

Let us use accents to denote independent copies of random variables. The symmetric difference

Sα,ρ − S′
α,ρ

has log characteristic function

logϕ(t) = −2|t|α cos

(

πθα

2

)

.

This is distributed as
(

2 cos

(

πθα

2

))
1
α

Sα,1/2.

For any constant δ ∈ [0, 1],

δ
1
αSα,β + (1− δ) 1

αS′
α,β

L
= Sα,β ,

where
L
= denotes equality in distribution. This is the remarkable property that uniquely characterizes the

strictly stable family. Finally, we have a simple mirroring property:

Sα,β
L
= −Sα,−β, Sα,ρ

L
= −Sα,1−ρ, Sα,θ

L
= −Sα,−θ.

Because of this, the distributions of stable laws could just be studied on the positive halfline.

The shifted Cauchy distribution.

Writing C for a Cauchy random variable and U for a uniform [0, 1], it is easy to verify that

C
L
= S1,1/2

L
= tan (πU)

L
= tan

(

π

(

U − 1

2

))

.

The shifted Cauchy Cρ, ρ ∈ [0, 1], is is defined by

Cρ
def
= S1,ρ

L
= − cos (πρ) + sin (πρ)C

L
= sin

(

πθ

2

)

+ cos

(

πθ

2

)

C.

In other words, the strictly stable laws with α = 1 are all shifted Cauchy random variables. We note that

Cρ
L
= −C1−ρ. Observe also the degenerate cases S1,0 ≡ −1 and S1,1 ≡ 1. Also, C1−ρ

L
= Cρ + 2 cos(πρ).

Using C
L
= 1/ tan(πU)

L
= tan(πU), trigonometric manipulation leads to

−S1,ρ L
=

sin(π(U + ρ))

sin(πU)

L
=

sin(π(U − ρ))
sin(πU)

L
=

cos(π(U − ρ))
cos(πU)

L
=

cos(π(U + ρ))

cos(πU)
.

For later reference, the density of Cρ or S1,ρ is

sin(πρ)

π

1

x2 + 2x cos(πρ) + 1
, x ∈ R,
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and parametrized with θ, it is

cos(πθ/2)

π

1

x2 − 2x sin(πθ/2) + 1
, x ∈ R.

The distribution function of the latter is

1

2
+

1

π
arctan

(

x− sin(πθ/2)

cos(πθ/2)

)

,

which provides another explanation of the distributional identities above.

Remark 3. Weakly stable distribution. It is easy to see that the weakly stable random variable

W0 is distributed as (π/2)C. We will return to the weakly stable laws in a later section.

If a random variable Xa for |a| < 2 has a density proportional to 1/(1 + x2 + ax) on R, then

1/Xa
L
= Xa and −Xa

L
= X−a. If its support is the positive halfline, then we have 1/Xa

L
= Xa. From this,

we deduce that

Cρ
L
=

1

Cρ

L
= −C1−ρ

L
= − 1

C1−ρ
,

or,

S1,ρ
L
=

1

S1,ρ

L
= −S1,1−ρ

L
= − 1

S1,1−ρ
,

with 0 ≤ ρ ≤ 1. It is also easy to see from the ratio of sine representation above that P{S1,ρ ≥ 0} = ρ.

If we define the random variable X+ as X conditioned on X ≥ 0, and X− as X conditioned on X ≤ 0,

and if Bρ is Bernoulli (ρ), then

S1,ρ
L
=

{

(S1,ρ)+ with probability ρ,

(S1,ρ)− with probability 1− ρ
L
=

{

(S1,ρ)+ with probability ρ,

−(S1,1−ρ)+ with probability 1− ρ
L
= (S1,ρ)+Bρ − (S1,1−ρ)+(1−Bρ).

The multitude of relationships within the shifted Cauchy family explains many results in chapter 3 of

Zolotarev (1986).

It is useful to introduce Lamperti’s law (Lamperti, 1958), which is central in the study of occu-

pation times of stochastic processes. A Lamperti random variable Lρ of parameter ρ ∈ (0, 1) has density

f(x) =
sin(πρ)

πρ

1

x2 + 2x cos(πρ) + 1
x ≥ 0.

Supported on the positive halfline, its tail decreases as 1/x2. In fact, L1/2
L
= |C|, showing its relationship

to the Cauchy law. Clearly, Lρ
L
= (Cρ)+

L
= (S1,ρ)+. By earlier remarks,

Lρ
L
=

1

Lρ
.
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A random variate can be generated by several methods (James (2010b), Zolotarev (1986, pages 83 and

198-199)), which are all based on the relationship with shifted Cauchy random variables. Consider the

distribution function

F (x) = 1− 1

πρ
arctan

(

sin(πρ)

cos(πρ) + x

)

.

Taking the derivative of F with respect to x gives the Lamperti density. The inversion method thus shows

that, with U uniform [0, 1],

Lρ
L
=

sin(πρ)

tan((1 − U)πρ)
− cos(πρ) =

sin(Uπρ)

sin((1 − U)πρ)
.

Note from this that when ρ → 0, Lρ
L→ U/(1 − U), a random variable with density 1/(x + 1)2, x ≥ 0.

Furthermore, L1 ≡ 1, a degenerate law, and L1/2
L
= tan(πU/2)

L
= |C|.

The Mellin transform.

The Mellin transform of a function f defined over the positive halfline is the complex-variable

function f∗(s) defined by the integral

f∗(s) =

∫ ∞

0
f(x)xs−1 dx.

See, e.g., Titschmarsh (1937) or Flajolet and Sedgewick (2009). When f is the density of a positive random

variable X , then f∗(s) = E{Xs−1}. Following Zolotarev (1957, 1959, 1981, 1986), it is convenient to shift

the complex argument by one and to widen the definition to all random variables. Thus, for those s for

which the integral exists, we define Mellin transform M(s) by

M(s) = E

{

Xs
1[X>0]

}

.

The distribution of a generic X is uniquely determined by the Mellin transforms of −X and X , or by the

Mellin transforms of |X | and X . For example, the Mellin transform of Sα,ρ (Zolotarev, 1981, p. 117) for

all strictly stable random variables is

sin(πρs)

sin(πs)

Γ(1− s/α)
Γ(1 − s) ,

which is valid for −1 < ℜ(s) < α, where ℜ(s) denotes the real part of s.

Mellin transforms are heavily used in analytic combinatorics and in the study of harmonic sums

(Flajolet and Sedgewick, 2009). They are also useful for determining distributional identities. For ex-

ample, within the strictly stable family of distributions, there are quite a few fundamental identities on

the composition and combination of member distributions. We refer to this collection as a “calculus” of

family of distributions. Textbook examples include the gamma and beta distributions.

Chapters 2 and 3 of Zolotarev (1986) provide many distributional identities for the strictly sta-

ble family. Most of the relationships are immediate consequences of computations that involve Mellin

transforms. For example, besides the Mellin transform of Sα,ρ shown above, Zolotarev gives the Mellin

transforms of |Sα,ρ|, i.e.,
sin(πρs) + sin(π(1 − ρ)s)

sin(πs)

Γ(1− s/α)
Γ(1− s) =

cos(πθs/2)

cos(πs/2)

Γ(1− s/α)
Γ(1− s) ,
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and of (Sα,ρ)+, which is simply 1/ρ times that of Sα,ρ:

sin(πρs)

ρ sin(πs)

Γ(1− s/α)
Γ(1− s) .

Verification of product identities for positive random variables is generally done by comparing

Mellin transforms. It is useful because the method of moments is not always applicable.

Let us consider the important case α = 1. The Mellin transform of Lρ = (S1,ρ)+, evaluated at

s = it, t ∈ R, is
sin(πitρ)

ρ sin(πit)
.

The well known identity for gamma functions, valid for all complex z,

Γ(z)Γ(1− z) = π

sin(πz)

implies that for t ∈ R,

Γ(1 + it)Γ(1 − it) = πit

sin(πit)
.

A double application of this shows that

sin(πitρ)

ρ sin(πit)
=

Γ(1 + it)Γ(1− it)
Γ(1 + itρ)Γ(1− itρ) .

Since Γ(1− it/ρ)/Γ(1− it) is the Mellin transform (at s = it) of Sρ,1 = Sρ for ρ ∈ [0, 1], we see with little

work that

(S1,ρ)+
L
= Lρ

L
=

(

Sρ
S′
ρ

)ρ

,

where Sρ and S′
ρ are independent unilateral stable random variables of parameter ρ. This remarkable

distributional identity is well-known (Zolotarev, 1986, p. 205; see also Bertoin et al (2006) and James

(2006a)).

As a second application of the Mellin transform, setting α = 1, we note that |S1,ρ| has Mellin

transform
cos(πθs/2)

cos(πs/2)

and that (S1,ρ)+
L
= (Cρ)+

L
= Lρ has Mellin transform

sin(πρs)

ρ sin(πs)
.

The case ρ = 1/2 is of special interest, since |C| L= (S1,1/2)+
L
= (C1/2)+

L
= L1/2:

2 sin(πs/2)

sin(πs)
=

1

cos(πs/2)
.

In particular, with s = it, the Mellin transform becomes

2

exp(πt/2) + exp(−πt/2) =
1

cosh(πt/2)
.

It is well-known the equality in distribution between X and Y may be established by showing

for example that E{Xr} = E{Y r} for all r ≥ 1, r integer, assuming that the moments uniquely define
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the distribution. A sufficient condition is Carleman’s (see, e.g., Shohat and Tamerkin (1943), Akhiezer

(1965) or Stoyanov (2000)):
∞
∑

r=1

1

(E{Xr})
1
2r

=∞.

This is especially useful when we want to verify distributional identities that are products, e.g., X
L
= Y Z,

with Y , Z independent. This method suffers, however, from various drawbacks: the moments must be

finite for all r, and, more importantly, we can’t conclude much without Carleman’s condition.

A more general tool for checking the distributional identity X
L
= Y is provided by characteristic

functions (see, e.g., Kawata, 1972): is

ϕ(t)
def
= E

{

eitX
}

= ψ(t)
def
= E

{

eitY
}

for all t? Since characteristic functions always exist and uniquely define distributions, there are no

exceptions to the rule. However, for checking whether X
L
= Y Z, this amounts to the verification of

ϕ(t)
def
= E

{

eitX
}

= E

{

eitY Z
}

= E {ψ(tZ)} .

This is rarely a useful route. Characteristic functions are much more adapted to checking distributional

identities for sums, because X + Y has characteristic function ϕ(t)ψ(t) when X and Y are independent.

For positive random variables, we can verify X
L
= Y Z by checking that logX

L
= log Y + logZ, a much

easier proposition, provided that we have the characteristic functions of all the log-variables. This is a

well-trodden path, see, e.g., Kotlarski (1965). The characteristic function of logX is

E

{

eit logX
}

= E

{

X it
}

,

which looks like the r-th moment of X , with r replaced by it. One should be careful with this replacement,

but for finite moments, this is often valid. In particular, if M(s) is the Mellin transform of X , then

E

{

eit logX
}

=M(it).

This is a powerful tool for studying distributional identities involving products and quotients of random

variables, see, e.g. Epstein (1948) and Springer (1979). For example, if X1 ands X2 are positive random

variables, and logX1 and logX2 have characteristic functions ϕ1 and ϕ2, then log(X1X2) has charac-

teristic function ϕ1ϕ2. If logX has characteristic function ϕ, then log(aXr) has characteristic function

aitϕ(rt). In particular, log(1/X) has characteristic function ϕ(−t). Finally, X is distributed as 1/X if

and only if the characteristic function of logX is real and symmetric. It is relatively easy to compute the

characteristic functions for most log-variables discussed in this survey.
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The strictly stable law: α < 1.

By the product rule for Mellin transforms, we see that for α ≤ 1 and 0 ≤ ρ ≤ 1,

Sα,ρ
L
= S1,ρ × Sα L

= Cρ × Sα.

This property is called a decoupling of the parameters. Setting ρ = 1/2, we see that

Sα,1/2
L
= CSα.

For simulation, these relationships should be the point of departure for all strictly stable laws with α ≤ 1.

Moreover, the fact that all these distributions are simultaneously scale mixtures of shifted Cauchy random

variables and scale mixtures of unilateral strictly stable distributions is quite useful in the derivation of

further properties.

Note also that

(Sα,ρ)+
L
= (S1,ρ)+ × Sα L

= (Cρ)+ × Sα L
= Lρ × Sα L

=

(

S′
ρ

Sρ

)ρ

× Sα L
=

(

Sαρ
Sρ

)ρ

,

where we used the ratio property of the Lamperti law, and the fact that for α < 1,

Sρ
ρSα

L
= Sρ

αρ

(Zolotarev, 1986, p. 194), which is easily shown using Mellin transforms.

A further corollary of calculations with the Mellin transforms is that, still for α < 1,

(Sα,ρ)+
L
=

(

Sαρ
Sρ

)ρ

.

Because P{Sα,ρ > 0} = ρ, we have

Sα,ρ
L
=











(

Sαρ
Sρ

)ρ
with probability ρ,

−
(

Sα(1−ρ)
S1−ρ

)1−ρ

with probability 1− ρ,

and thus

Sα,1/2
L
= S

√

Sα/2

S1/2
,

where S is a random sign. Since, as we will see later, S1/2
L
= 1/(2N2), we recover the well-known

relationship

Sα,1/2
L
= N

√

2Sα/2.

In other words, the symmetric stable random variables are normal scale mixtures.

Recall that one can write all random variables Sα,ρ for α < 1 as pSα− qS′
α for appropriate p and

q. Using a formula shown earlier, we have, for example,

Sα,1/2
L
=

Sα − S′
α

(2 cos(πα/2))
1
α

.

As α ↑ 1, the right hand side behaves as 0/0. One can show that the limit law is indeed S1,1/2
L
= C.
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In all of the representations above, the unilateral strictly stable law looms large, and this is why

we need to have good random variate generators for it.

The unilateral strictly stable law.

We recall that Sα ≥ 0:

(Sα,1)+
L
= Sα,1

L
= Sα, α ∈ (0, 1).

A simple random variate generator for Sα has been suggested by Kanter (1975), who used an integral

representation of Ibragimov and Chernin (1959) and Zolotarev (1966) (see Zolotarev (1986, p. 74)), which

states that the distribution function of S
α/(1−α)
α is given by

1

π

∫ π

0
e−

A(u)
x du,

where A is Zolotarev’s function:

A(u)
def
=

{

(sin(αu))α(sin((1− α)u)1−α

sinu

}

1
1−α

.

By taking limits, we note that S1 = 1, so that the family is properly defined for all α ∈ (0, 1]. We say

that Kα
def
= (A(πU))1−α is a Kanter random variable of parameter α ∈ (0, 1), where U is uniform on

[0, 1]. Zolotarev’s integral representation implies that

Sα
α

L
=

(

A(πU)

E

)1−α
L
=

Ka

E1−α
(2)

where E is exponential. This is Kanter’s method.

Combined with the remark of the previous section, this yields a simple method requiring three

independent uniform random variables for the generation of Sα,β when α ≤ 1: one uniform is needed to

obtain E, one for computing A(πU), and a third one for generating the shifted Cauchy random variate.

For later reference, it is important to note that the Sα has a simple Laplace transform:

E

{

e−λSα
}

= e−λα , λ ≥ 0.

Also, from the ratio property for Lamperti random variables,

Lρ
L
=
KρE

1−ρ

K ′
ρE

′1−ρ
L
=

(

1− U
U

)1−ρ Kρ

K ′
ρ
,

where Kρ,K
′
ρ are Kanter (ρ), U is uniform [0, 1], and E,E′ are exponential, and all five random variables

are independent.

It is convenient to rewrite Kα is

Kα =

(

sin(απU)

sin(πU)

)α

×
(

sin((1 − α)πU)

sin(πU)

)1−α

.

In particular, for α = 1/2, this yields

K1/2 =
sin(πU/2)

sin(πU)
=

1

2 cos(πU/2)
.

—  —



By the well-known Box-Müller formula (1958), reproved below by elementary means, using cos2(πU/2)
L
=

cos2(πU),

N
L
=
√
2E cos(πU)

L
= S
√
2E cos(πU/2),

where N denotes a normal random variable and S denotes a random independent sign. Therefore,

S1/2
L
=

1

4E cos2(πU/2)

L
=

1

2N2
,

The strictly stable law: α > 1.

Within this range, we have αρ ≤ 1 and α(1−ρ) ≤ 1. Zolotarev (1981, 1986) realized that (Sα,ρ)+

plays a key role. The Mellin transform of Sα,ρ is ρ times the Mellin transform of (Sα,ρ)+, and from that,

one can deduce, see Zolotarev (1981), pages 188–191, the following, in (α, ρ) notation:

Sα,1/2
L
= S|Sα,1/2|,

(Sα,ρ1)+

(Sα,ρ2)+

L
=

(Sα,ρ2)+

(Sα,ρ1)+
,

(Sα,ρ)+
L
=

1

(S1/α,αρ)
1
α
+

.

Especially the last identity is of interest because it relates (Sα,ρ)+ for α > 1 to strictly stable random

variables whose first parameter is less than one. This matters because we clearly have

Sα,ρ
L
= −Sα,1−ρ,

and P{Sα,ρ > 0} = ρ, so that

Sα,ρ
L
=

{

(Sα,ρ)+ with probability ρ,

−(Sα,1−ρ)+ with probability 1− ρ.
Therefore, when α > 1, we have, using shifted Cauchy random variables, using accents to denote inde-

pendent random variables,

Sα,ρ
L
= −Sα,1−ρ

L
=















1

(S1/α,αρ)
1
α
+

with probability ρ,

− 1

(S1/α,α(1−ρ))
1
α
+

with probability 1− ρ.

L
=

Bρ

(S1/α,αρ)
1
α
+

− 1−Bρ

(S1/α,α(1−ρ))
1
α
+

L
=

1

S
1/α
1/α

×
(

BρL
− 1

α
αρ − (1−Bρ)L

− 1
α

α(1−ρ)

)

L
=

1

S
1/α
1/α

×
(

BρL
1
α
αρ − (1−Bρ)L

1
α
α(1−ρ)

)
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L
=

1

S
1/α
1/α

×



Bρ
S
ρ
αρ

S′ρ
αρ
− (1−Bρ)

S
1−ρ
α(1−ρ)

S′1−ρ
α(1−ρ)





L
=



















S
ρ
αρ

S
1/α
1/α

S′ρ
αρ

with probability ρ,

−
S
1−ρ
α(1−ρ)

S
1/α
1/α

S′1−ρ
α(1−ρ)

with probability 1− ρ

L
=



















(

Lαρ
S1/α

)1/α

with probability ρ,

−
(

Lα(1−ρ)
S1/α

)1/α

with probability 1− ρ.

These expressions provide a multitude of ways of generating strictly stable random variates with α > 1.

Essentially, we either need one shifted Cauchy and one unilateral stable random variate, or three unilateral

stable random variates. However, unlike the case α < 1, the parameters of the shifted Cauchy and unliteral

stable are no longer decoupled. In any case, we highly recommend this shifted Cauchy and unilateral

stable product in practice since it is less error-prone than other methods published in the literature,

and one can concentrate on optimizing random variate generation for both component random variates

separately.

It helps to check some special cases. Taking ρ = 1/2, the symmetric case, and using S to denote

a random sign, we see that

Sα,1/2
L
= S

(

Lα/2

S1/α

)1/α

.

In particular, setting α = 2, we have

S2,1/2
L
=

S
√

S1/2

.

This is just another way of stating that the Lévy law (i.e., that of S1/2) satisfies

S1/2
L
=

1

2N2
.

The extreme values for ρ are 1/α and 1 − 1/α. For this case, one side of the strictly stable law

simplifies dramatically. We have, making things above more specific:

Sα,1/α
L
= −Sα,1−1/α

L
=















1

S
1
α
1/α

with probability 1/α,

− 1

(S1/α,α−1)
1
α
+

with probability 1− 1/α.

L
=
B1/α

S
1
α
1/α

−
1−B1/α

(S1/α,α−1))
1
α
+

L
=

1

S
1/α
1/α

×
(

B1/α − (1−B1/α)L
− 1

α
α−1

)
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L
=

1

S
1/α
1/α

×
(

B1/α − (1−B1/α)L
1
α
α−1

)

L
=

1

S
1/α
1/α

×



B1/α − (1−B1/α)
S
1−1/α
α−1

S′1−1/α
α−1





L
=



















1

S
1/α
1/α

with probability 1/α,

− S
1−1/α
α−1

S
1/α
1/α

S′
1−1/α
α−1

with probability 1− 1/α

L
=



















(

1
S1/α

)1/α

with probability 1/α,

−
(

Lα−1
S1/α

)1/α

with probability 1− 1/α.

The difference method alluded to above permits one to write all Sα,ρ for α > 1 as pSα,1/α − qS′
α,1/α for

appropriate p and q. Using a formula shown earlier, we have, for example,

Sα,1/2
L
=
Sα,1/α − S′

α,1/α

(2 cos(πα/2))
1
α

.

Chambers, Mallows and Stuck (1976) (see also Weron, 1996) proposed a general method for

strictly stable random variables. However, using the relationships above, their formula is not compu-

tationally much more advantageous than the ones suggested above. Using an integral representation of

Zolotarev (1966), they showed that

Sα,θ
L
= E1−1/α × sin((π/2)α(U − 1/2 + θ))

sin1/α((π/2)(U − 1/2)) cos1−1/α((π/2)(U − 1/2− α(U − 1/2 + θ)))
.

However, their formula provides little insight into its genesis and into the structural properties of stable

laws.

Other random variate generators

For symmetric strictly stable random variables, having characteristic function e−|t|α, 0 < α < 1,

a specially simple method exists that is based on the fact that the characteristic function is of the Polya

type, i.e., it is convex on the positive halfline and symmetric. Devroye (1984) showed that

Sα,1/2
L
=

V
(

E + E′1[U<α]

)
1
α

,

where E and E′ are independent exponential random variables, and V has the so-called de la Vallée-

Poussin density

1

π

(

sinx

x

)2

.

A particularly efficient method for V consists in generating independent uniform [−1, 1] random pairs

(U,X), and setting X ← 1/X if U < 0, until |U |min(1, X2) ≤ sin2(X). Upon exit, return 2X .
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It would be nice if simple extensions of this property can be found for the entire strictly stable

family, and especially the unilateral strictly stable laws.

There is a convergent series expansion for the density of all stable laws due to Bergstrom (1952)

and Feller (1971). Based on that series and estimates related to it due to Bartels (1981), Devroye (1986)

developed a general rejection method for the strictly stable family.

The weakly stable distribution

In this section, we look at the random variable Wβ , β ∈ [−1, 1], which is the case α = 1 for

Zolotarev’s form (B). The characteristic function ϕ is defined by

logϕ(t) = −|t|π
2
− iβt log |t|.

For β ∈ (0, 1], Zolotarev (1986, p. 74ff) showed that the distribution function of Wβ is given by

1

2

∫ 1

−1
exp

(

−e−x/βf(z, β)
)

dz,

where

f(z, β) =
π

2

1 + βz

cos(πz/2)
exp

(

π

2

(

z +
1

β

)

tan(πz/2)

)

.

If V denotes a uniform [−1, 1] random variable, then that distribution function can also be written as

E

{

exp
(

−e−x/βf(V, β)
)}

.

If E is an exponential random variable, and δ > 0 is a constant, then

−β(logE + log δ)

has distribution function

exp

(

− exp

(

−x
β
+ log δ

))

= exp

(

−δ exp
(

−x
β

))

.

This is the Gumbel distribution with translation and scale parameter. As a corollary, for β > 0,

Wβ
L
= −β logE − β log f(V, β).

Similarly, as W−β
L
= −Wβ , we conclude that for all β ∈ (0, 1],

Wβ
L
= −β logE − β log f(V, |β|)
L
= −β logE − β log

(

π

2

1 + |β|V
cos(πV/2)

)

− π

2

(

βV +
β

|β|

)

tan(πV/2)

L
= −β logE − β log

(

π

2

1 + βV

cos(πV/2)

)

− π

2
(βV + 1) tan(πV/2) (replace V by V signβ).

The last representation shows that we can extend the range for β to the closed interval [0, 1]. In particular,

we rediscover that

W0
L
= −π

2
tan(πV/2)

L
=
π

2
C,

something that follows immediately from the definition of W0 as well.
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A special role is played by W1:

W1
L
= − logE − log

(

π(1 + V )

2 cos(πV/2)

)

− π(1 + V ) tan(πV/2)

2
.

Replacing (V +1)/2 by U , a uniform [0, 1] random variable, and using standard trigonometric operations,

we see that

W1
L
= − logE − log

(

πU

sin(πU)

)

+
πU

tanπU
.

The importance of W1 follows from the following observation: If λ, µ ∈ R, and W ′
1,W1 are i.i.d., then

λW1 + µW ′
1

has characteristic function ϕ defined by

logϕ(t) = −π
2
|t|(|λ| + |µ|)− (λ+ µ)it log |t| − it(λ log |λ|+ µ log |µ|).

So, if we set λ = (1 + β)/2, µ = (β − 1)/2, β ∈ [−1, 1], then

logϕ(t) = −π
2
|t| − iβt log |t| − itγ,

where

γ
def
=

1 + β

2
log

(

1 + β

2

)

− 1− β
2

log

(

1− β
2

)

.

Therefore,

Wβ − γ
L
=

1 + β

2
W1 −

1− β
2

W ′
1.

Put differently,

Wβ
L
=

1 + β

2

(

W1 + log

(

1 + β

2

))

− 1− β
2

(

W ′
1 + log

(

1− β
2

))

.

In particular, W0
L
= (W1 −W ′

1)/2.

The stable distribution

The general stable law, or simply the stable law, is described by its characteristic function in one

of several forms. The choice of one over another often turns to the issue of continuity with respect to the

parameters. In this section, we mention a few of these forms. When the main parameter α is not one,

these correspond to affine transformations of strictly stable laws. Only the threshold case α = 1 adds a

new element. The present section is not essential to the remainder of the survey, and may be skipped

without harm.

Assume first α 6= 1, and let us use the parameters of the strictly stable law. The polar form, or

Zolotarev’s form (B) (Zolotarev, 1986, p. 12), with a scale parameter λ > 0 and translation parameter

γ ∈ R added, is:

logϕ(t) = λ
(

itγ − |t|αe−i(π/2)θα sign(t)
)

.

Recall that θ = β when α < 1 and θ = β(α− 2)/α otherwise. By comparison with the strictly stable law,

it is immediate that this is the characteristic function of

λγ + λ1/αSα,β.
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Zolotarev’s form (A) (Zolotarev, p. 9; see also Weron (2004) or Samorodnitsky and Taqqu (1994)) is

logϕ(t) = λ (itγ − |t|α + i|t|αβ tan(πα/2) sign(t)) ,

where α ∈ (0, 2) and β ∈ [−1, 1] play the same role as before. This is the distribution of

λγ +

(

λ

cos(θαπ/2)

)
1
α

Sα,β′

where

β′ =

{

2
απ arctan(β tan(απ/2)) if α < 1,

2
(α−2)π

arctan(β tan(απ/2)) if α > 1.

There are other popular forms as well, such as Zolotarev’s (M), which was already used by Chambers,

Mallows and Stuck (1976), and has been further discussed by Cheng and Liu (1997) and Nolan (1997).

These are of course further linear transformations, often motivated by continuity with respect to the

parameters, especially when α→ 1, and the limit corresponds to the stable law with α = 1 and the same

value of β. For random variate generation, this is inconsequential, however.

The bfry law

Named after Bertoin, Fujita, Roynette and Yor (2006), we define the bfry random variable with

parameter α ∈ (0, 1) by its density

fα(x) =
α

Γ(1− α)
1− e−x

x1+α
, x > 0.

This random variable occurs in the study of the excursion duration of Bessel processes. It is infinitely

divisible and poses no challenge for random variate generation, as pointed out by Bertoin et al: if Xα

denotes a bfry (α) random variable, U is uniform [0, 1] and Ga denotes a gamma (a) random variable

with shape parameter a and scale parameter one, then

Xα
L
=
G1−α

U1/α
.

Its Laplace transform is

E

{

e−λXα
}

= (1 + λ)α − λα, λ ≥ 0.

It is self-decomposable and generates a perpetuity by this result of Jurek (1999) and Bertoin et al (2006):

Xα
L
= U

1
1−α (Xα +Kα)

where U,Xα and Kα on the right-hand side are independent, and Kα
L
= E/Gα, and Gα has density

f(x) =
α sin(πα)

(1− α)π
xα−1(1− x)α−1

(1 − x)2α − 2(1− x)αxα cos(πα) + x2α
, 0 ≤ x ≤ 1.

With Kα(i), i ≥ 0, denoting i.i.d. copies of Kα, and U(i), i ≥ 0 denoting i.i.d. copies of U , we thus have

the perpetuity (Jurek, 1999)

Xα
L
=

∞
∑

j=0

j
∏

i=0

Kα(i)U(i)
1

1−α .
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The second bfry law.

Gα will be called the second law of Bertoin, Fujita, Roynette and Yor (2006), who showed the

following properties:

(i) EGα has Laplace transform

E

{

e−λEGα
}

=
α

1− α
1− (1 + λ)α−1

(1 + λ)α − 1
, λ ≥ 0.

(ii) G1/2 is beta (1/2, 1/2), the arc sine law, having density

f(x) =
1

π
√

x(1 − x)
, 0 < x < 1.

(iii) Gα L
= 1− Gα.

(iv) Ga L→ U , the uniform [0, 1] random variable, as α ↑ 1. We can thus define, by continuity, G1 = U .

(v) As α ↓ 0, Gα L→ G0 def
= 1/(1 + exp(πC)), with C Cauchy. Its density is

f(x) =
1

x(1− x) ×
1

π2 + (log(1− x) − log(x))2
, 0 < x < 1.

Random variate generation for the law Gα, is facilitated by two relationships that were pointed out by

Bertoin et al (2006). It is a simple exercise to show that

Gα L
=

1

1 + L
1/α
1−α

L
=

L
1/α
1−α

1 + L
1/α
1−α

L
=

S
1−α
α

1−α

S
1−α
α

1−α + S′
1−α
α

1−α

.

Mittag-Leffler distribution

Further laws related to Gα include the Mittag-Leffler law. A Mittag-Leffler random variable of

parameter α ∈ (0, 1), written Mα, is defined by

Mα
def
=

1

Sα
α

(Chaumont and Yor, 2003, p. 114). Mα, unlike Sα, has short tails, and all its positive moments exist.

For example,

E {M r
α} =

Γ(r + 1)

Γ(αr + 1)
, r > −1,

and

E

{

eλMα
}

=

∞
∑

n=0

λn

Γ(αn+ 1)
, λ ∈ R.

The Mittag-Leffler law is related to Lamperti’s via the Laplace transform:

E

{

e−λL
1/α
α

}

= E

{

e−λSα/S
′
α
}

= E

{

e−λα/S′α
α
}

= E

{

e−λαMα
}

.
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It is worth noting that Mα is related to the almost sure limit of the number of partition blocks induced

by a Pitman-Yor process (see, e.g., Theorem 3.8 of Pitman, 2006), which in turn is relevant for the study

of clustering in Bayesian statistics and machine learning.

The third bfry law

The third law of Bertoin et al (2006), which generalizes the second, has two parameters, a, b such

that a, b ∈ (0, 1). It too is supported on R+, and is best described by its Stieltjes transform. The Stieltjes

transform of a random variable X in general is given by

1

λ
E

{

e−EX/λ
}

= E

{

1

λ+X

}

, λ > 0.

Note that the Laplace transorm E{e−λEX} of EX thus is (1/λ)S1/λ,1/2, where Sλ,1/2 is the Stieltjes

transform of X . The Stieltjes transform of a Ga,b random variable, which follows the third law of Bertoin

et al, is

a

1− b

(

λb−1 − (1 + λ)b−1
)

λa−b

(1 + λ)a − λa , λ ≥ 0.

Its density for x ∈ (0, 1) is given by

a

π(1 − b)
(1 − x)axa−1 sin(πa) + x2a−b(1− x)b−1 sin(πb) + (1 − x)a+b−1xa−b sin(π(a− b))

(1− x)2a − 2(1− x)axa cos(πa) + x2a
.

We note that Ga,a L
= Ga, and that Ga,1−a

L
= Ba,1−a, where B denotes a beta random variable. Also, EG1,b

has Laplace transform
1− (1 + λ)b−1

(1− b)λ .

The fourth bfry law

Bertoin et al (2006) also showed the existence of a random variable Xa,b ≥ 0 with Laplace

transform
b

a

(1 + λ)a − 1

(1 + λ)b − 1
, λ ≥ 0.

Here the parameters are restricted as follows: 0 < a ≤ b ≤ 1. This family of distributions is infinitely

divisible and has the remarkable property that for 0 < a < b < c < 1,

Xa,c
L
= Xa,b +Xb,c,

where the two random variables on the right hand side are independent. Quite interestingly, E{Xa,b} =
(b− a)/2. By taking limits, we can define Xa,1 as the law with Laplace transform

(1 + λ)a − 1

aλ
, λ > 0.
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Similarly, we define X0,b as the law with Laplace transform

b log(1 + λ)

(1 + λ)b − 1
, λ > 0.

Using the fact that Ga has Laplace transform 1/(1 + λ)a, it is a trivial exercise to show that

Xa,1
L
= UG1−a,

where U is uniform [0, 1]. In particular, X0,1 has the law with Laplace transform

log(1 + λ)

λ
,

which is easily seen to be the Laplace transform of EU , with E exponential and U uniform on [0, 1].

The random variables Xa,b and Ga are intimately related in a calculus, developed by Bertoin et

al (2006). Most properties follow from the Laplace transforms. For example, for 1− a ≤ a,

G1−a +X1−a,a
L
= EGa,

where E is exponential and G1−a is gamma. This follows after multiplying the Laplace transforms.

Lamperti’s second law

Barlow, Pitman and Yor (1989) (see also Watanabe, 1995) found the law of the occupation time

of one side of a skew Bessel process of dimension in (0, 2) with skewness parameter p ∈ (0, 1). It too was

originally studied by Lamperti (1958) and is characterized by p and a shape parameter ρ ∈ (0, 1). We

write a random variable as Lρ,p. The Stieltjes transform is

E

{

1

λ+ Lρ,p

}

=
p(1 + λ)ρ−1 + (1− p)λρ−1

p(1 + λ)ρ + (1− p)λρ , λ > 0.

and the density is

f(x) =
sin(ρπ)

π

p(1 − p)xρ−1(1− x)ρ−1

p2(1− x)2ρ + (1− p)2x2ρ + 2p(1− p)xρ(1− x)ρ cos(ρπ) , 0 < x < 1.

For p = 1/2, ρ = 1/2, we obtain Lévy’s arc sine law. Random variate generation for Lρ,p can be done

by inversion of the distribution function, something first remarked by James (2010b). The distribution

function is

F (x) = 1− 1

πρ
arctan





sin(πρ)

cos(πρ) +
(1−p)xρ

p(1−x)ρ



 .

Inversion shows that, with U uniform [0, 1], Lρ Lamperti of parameter ρ, and q = p/(1− p),

Lρ,p
L
=

(qLρ)
1
ρ

1 + (qLρ)
1
ρ

.

We recall that

Lρ
L
=

sin(Uπρ)

sin((1 − U)πρ)
.
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By the property of Lamperti random variables, we also see that

Lρ,p
L
=

p1/ρSρ

p1/ρSρ + (1− p)1/ρS′
ρ

where Sρ, S
′
ρ are independent unilateral stable random variables.

Occupation times of Bessel bridges and some other processes lead to Poisson-Dirichlet means (see

Barlow, Pitman and Yor, 1989). Exact random variate generation for these distributions was dealt with

at length in Devroye and James (2011) using an extension of the coupling-from-the-past method coined

Double CFTP. Poisson-Dirichlet means are important in Bayesian and nonparametric statistics. Further

references to linear functionals of the Poisson-Dirichlet process—popularized today as the Pitman-Yor

process— include Yano and Yano (2008) and James, Lijoi and Prünster (2008). For Drichlet means, see,

e.g., Cifarelli and Regazzini (1990).

Linnik and generalized Linnik distributions

The generalized Linnik distribution (Devroye, 1990, 1996) has Laplace transform

1

(1 + λα)β
,

where α ∈ (0, 1) and β > 0. The standard Linnik has β = 1. A Linnik random variate, denoted by ∆α,β ,

can be generated, as indicated by Devroye (1990, 1996), as

G
1/α
β Sα.

See Huillet (2000) and Lin (2001) for additional properties. However, there are many other relationships

worth noting. For example,

∆α,1
L
= EL

1
α
α

L
= E

1
αSα,

and for β ∈ (0, 1),

∆α,β
L
= B

1
α
β,1−βEL

1
α
α .

For proofs of this, see below.
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Mellin transforms

Let us introduce a few classical distributions. The Pearson VI distribution with parameters

a, b > 0, denoted Pa,b, is the distribution of Ga/Gb. Clearly, 1/Pa,b
L
= Pb,a. The characteristic function

of log(Pa,b) is the product of those for log(Ga) and log(G−1
b ). The special case P1,b = log(E/Gb) is

important because P1,b has density 1/(1 + x)1+b, x > 0, and thus,

P1,b
L
=

1

U
1
b

− 1.

For historic reasons, statisticians are more accustomed to the F-distribution (also called the Fisher-

Snedecor or Snedecor’s F-) distribution:

Fa,b
def
=

b

a

Ga/2

Gb/2
=
b

a
Pa/2,b/2.

However, we should all switch to a common metric system and just use Pa,b. The Student t distribution

of parameter a is the distribution of

Ta
def
=

N
√

Ga/2

a/2

.

The best known special case is the Cauchy law (written C), which is just T1. The final random variable,

Ta,b is a tilted stable that will be defined below. The table below gives the Mellin transform M(it) for

most of the distributions discussed in this survey.

Random variable Characteristic function Range for the parameter(s)

log(Ga)
Γ(a+it)
Γ(a)

(a > 0)

log((Sa,ρ)+)
sin(πρit)
ρ sin(πit)

Γ(1−it/a)
Γ(1−it)

(0 < a ≤ 2,max(0, 1− 1/α) ≤ ρ ≤ min(1, 1/α))

log(Sa)
Γ(1−it/a)
Γ(1−it)

(0 < a ≤ 1)

log(Ma)
Γ(1+it)
Γ(1+ita)

(0 < a ≤ 1)

log (Ea) Γ(1 + ita) (a ≥ 0)

log
(

Ba,b

) Γ(a+it)Γ(a+b)
Γ(a)Γ(a+b+it)

(a, b > 0)

log (Ua) 1
1+ita (a ∈ R)

log
(

Pa,b
) Γ(a+it)Γ(b−it)

Γ(a)Γ(b)
(a, b > 0)

log
(

T 2
a /a

) Γ(1/2+it)Γ(a/2−it)
Γ(1/2)Γ(a/2)

(a > 0)

log
(

C2a
) Γ(1/2+ita)Γ(1/2−ita)

π (a ≥ 0)

log (Ka)
Γ(1−it)

Γ(1−ita)Γ(1−it(1−a))
(0 ≤ a ≤ 1)

log (La)
Γ(1−it)Γ(1+it)

Γ(1−ita)Γ(1+ita)
(0 ≤ a ≤ 1)

log
(

∆a,b

) Γ(b+it/a)Γ(1−ita)
Γ(b)Γ(1−it)

(0 < a ≤ 1, b > 0)

log (Xa)
Γ(1−a+it)

Γ(1−a)(1−it/a)
(0 < a < 1)

log
(

Ta,b
) Γ(1+b/a−it/a)Γ(1+b)

Γ(1+b/a)Γ(1+b−it)
(0 < a < 1, b ≥ 0)
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Polynomial tilting

For a random variable X ≥ 0, we can define its polynomially tilted (or: b-tilted) version Xb with

parameter b ∈ R as the random variable in which the probability mass of X is multiplicatively altered as

x−b. Observe that if logX has characteristic function ϕ, then logXb has characteristic function

ϕ(t+ ib)

ϕ(ib)
.

For example, the b-tilted version of Sa, denoted by Ta,b (see Perman, Pitman and Yor (1992) or James

(2006b, 2010a)) is such that log Ta,b has characteristic function

Γ(1 + (b − it)/a)Γ(1 + b)

Γ(1 + b/a)Γ(1 + b− it) .

In another example, the b-tilted Ga, with 0 ≤ b < a, has a logarithm with characteristic function

Γ(a− b+ it)

Γ(a− b) ,

which is Ga−b. In a third example, it is easy to see from the table of the previous section that the b-tilted

version of L
1/a
a is distributed as Sa/Ta,b (James, 2010a, 2010b).

In the reaminder of this section, we deal exclusively with Ta,b, a family of distributions that was

studied in depth by Perman, Pitman and Yor (1992), James and Yor (2007) and James (2006a, 2006b,

2010a, 2010b). The following identity of Perman, Pitman and Yor (1992) follows from the table given

above:

Ta,b
L
=

Ta,a+b

Ba+b,1−a
.

This remains valid even for b < 0 as long as a+ b > 0. As a special case, we have

Ta,1−a
L
=

Ta,1
B1,1−a

L
=

Ta,1

1− U1/(1−a)
.

James (2006a, 2006b, 2010a, 2010b) showed much more than this. In fact, as can be verified by the table

of Mellin transforms,

T a
a,b

L
=

T a
a,δ

Ba+b
a ,

δ−(a+b)
a

Ba
δ,1+b−δ

with a+ b ≤ δ ≤ 1+ b. Therefore, all Ta,b random variates can be obtained from beta variates and a Ta,1
variate, thus shining a focused light on Ta,1. Furthermore, James (2010a) shows the following:

G
1/a
1+b/a

L
=

Ga+b

Ta,a+b

L
=
Gb+1

Ta,b
.

The special case b = 1− a yields

G
1/a
1/a

L
=

E

Ta,1

L
=

G2−a

Ta,1−a
.

This matters a lot, because it implies that a gamma random variate G1/a can be generated from an

exponential random variate and Ta,1. Other corollaries are that E1/a L
= Ga/Ta,a and that G

1/a
2

L
=

Ga+1/Ta,a.

It is worth noting here that Ta,b can be generated in expected time uniformly bounded over all

a ∈ (0, 1], b ≥ 0 (Devroye, 2009), using the rejection method. Unlike for the unilateral stable distribution,
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no simple one-line method in the spirit of Kanter’s exists for Ta,b or even just Ta,1. Devroye’s method is

based upon the following identity (Devroye, 2009; James, 2010a):

Ta,b
L
=

Ka,b

G
1−a
a

1+b1−a
a

,

where Ka,b is a random variate that generalizes Ka. Instead of dealing with Ta,b directly, the paper,

instead, provides a simple random variate generator for Ka,b. From the table of Mellin transforms, one

can verify that, with a new parametrization that uses θ ≥ 0 and a ∈ (0, 1], logKa
a,aθ has characteristic

function
Γ(1 + θ − it)
Γ(1 + θ)

Γ(1 + aθ)

Γ(1 + aθ − ita)
Γ(1 + (1 − a)θ)

Γ(1 + (1− a)θ − it(1− a))

which remains the same upon replacement of a by 1− a. Also, observe that Ka,0
L
= Ka. Numerous other

identities flow from this representation, such as:

G1+θ
L
=
Ga
1+aθG

1−a
1+(1−a)θ

Ka
a,aθ

,

and, with θ = 0,

E
L
=
EaE′1−a

Ka
a

.

Several classical families of distributions

We briefly survey a host of distributional identities that follow immediately from the Mellin

transforms. Let us agree that all random variables mentioned below in expressions are independent, and

accented random variables are distributed as, but independent of, unaccented ones.

Beta-gamma calculus. The well-known beta-gamma calculus (see, e.g., Dufresne, 1990) is based on

Ga
L
= Ga+bBa,b,

which follows without work from above. It falls short, though, of the more useful property that

(Ga, Gb)
L
= Ga+b(Ba,b, 1−Ba,b).

That
Ga

Ga +Gb

L
= Ba,b

also falls outside the scope of this methodology. One particularly useful observation is that

Ga
L
= Ga+1Ba,1

L
= Ga+1U

1
a .

This implies that for gamma random variate generation, the case a < 1 can always be reduced to a > 1.
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Beta calculus. For random variate generation, it is a good start to note that Ba,b
L
= 1 − Bb,a and

that

B1/2,a
L
= (2Ba,a − 1)2.

Furthermore, the easiest case is the following, an immediate consequence of the table above:

Ba,1
L
= U

1
a

L
= 1−B1,a.

We know that B1/2,1/2 is an arc sine random variable, thusly named because it is distributed as sin2(πU)

or as cos2(πU). Its density is 1/(π
√

x(1 − x)) on (0, 1). Since log(B1/2,1/2) has characteristic function

Γ(1/2 + it)

Γ(1/2)Γ(1 + it)
,

we have B1/2,1/2E
L
= G1/2. Multiplying by two and taking a square root yields the polar method for a

normal random variable (Box and Müller, 1958):

|N | =
√

2G1/2
L
=
√

2EB1/2,1/2
L
=
√
2E sin(πU).

Taking care of the random sign, we obtain the more classical Box-Müller formula, N
L
=
√
2E sin(2πU).

Finally, we can easily deduce the chain rule for betas from our characteristic function: for any parameters

ai > 0,

Ba1,a2Ba1+a2,a3 · · ·Ba1+···+an−1,an
L
= Ba1,a2+···+an .

For small integer values of the parameters this leads to identities that can be used for random variate

generation. Take for example B2,5. By repeated use of the chain rule, we have

B2,5
L
= B2,2B4,3

L
= B2,2

(

1−B3,4
) L
= B2,2

(

1−B3,3B6,1
) L
= B2,2

(

1−B3,3U
1
6

)

.

This is a function of five independent uniform random variates. The beta distribution also plays a key

role with Pearson VI variates, as

Pa,b
L
= Ba,cPa+c,b

for all a, b, c > 0.

Gamma-stable calculus. Our calculus shows straightforwardly that

EaMa
L
=

(

E

Sa

)a
L
= E

L
=

(

Ga

Ta,a

)a

,

a distributional identity that can be found in Chaumont and Yor (2003).
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Stable calculus. We rediscover the remarkable identity that was at the basis of Kanter’s method for

generating unilateral stable random variates, namely

Sa
a

L
= KaE

−(1−a), 0 < a < 1.

Just as the beta distribution, the stable law has a chain rule that is obvious from the table above: for

ai ∈ (0, 1):

S
a1···an
a1···an

L
= S

a1
a1 · S

a1a2
a2 · Sa1a2a3

a3 · · ·Sa1···an
an .

Take all ai’s equal to a. Then S
an

an can be written as a product of n powers of independent Sa-distributed

random variables. this is a remarkable multiplicative property that can be added to the well-known

additive properties of the stable law, like, e.g.,

Sa
L
= n−a

n
∑

j=1

Sa(j)

where the Sa(j)’s are i.i.d. copies of Sa (see, e.g., Zolotarev, 1985). Since S1/2 is inverse gaussian and

easy to generate, the chain formula gives quick-and-dirty ways of generating unilateral stable variates

when the parameter is an integer power of 1/2.

Properties of the first bfry law. The first bfry law plays a special role because of its many

connections with other distributions. Using the well-known identity

Γ(z)Γ(1− z) = π

sin(πz)

for z complex, we see that logXa has characteristic function

aΓ(1− a+ it)

Γ(1− a)(a− it) =
sin(πa)

sin(π(a − it))
Γ(1 + a)

Γ(1 + a− it) .

Thus, log(XaG1+a) has characteristic function

sin(πa)

sin(π(a− it)) .

We conclude the following;

XaG1+a
L
=
G1−aG1+a

U1/a

L
=
G1−a

Ga

L
= P1−a,a

L
=

1

Pa,1−a
.

The logistic and Cauchy distributions. The logistic distribution on R is the distribution of

logP1,1. We have the well-known distributional identities:

logP1,1
L
= log

(

E

E′

)

L
= log

(

1− U
U

)

.

Its characteristic function is

Γ(1 − it)Γ(1 + it) =
πit

sinπit
=

2πt

eπt − e−πt =
πt

sinh(πt)
.
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Its distribution function is 1/(1+e−x). A Cauchy random variable C, in contrast, has density 1/(π(1+x2))

on the real line. Using either the definition of the Student t distribution or the probability integral

transform, we have the identities, using N to denote a generic normal random variable,

C
L
= T1

L
=

N

N ′
L
= tan(πU).

Thus,

C2 L
= T 2

1
L
= P1/2,1/2

L
= tan2(πU)

L
= P1/2,1/2

L
= sin(πU ′)

1− U2

U2
.

From this, log(C2) is easily seen to have characteristic function

Γ(1/2 + it)Γ(1/2− it)
Γ2(1/2)

=
1

sin(π(1/2 + it))
=

2

eπt + e−πt =
1

cosh(πt)
,

which is related to that of the logistic.

Lamperti calculus. By definition, but also from the table above, we have La
L
= (Sa/S

′
a)

a. It is easy

to verify an identity that can be found, e.g., in James (2010b), Devroye (1996), Jayakumar and Pillai

(1996) and Lin (2001):

∆a,a
L
= EL

1
a
a

L
= E

1
aSa.

By the nature of the Lamperti law, the chain rule for the stable distribution remains valid, mutatis

mutandis, for the Lamperti law: for any ai ∈ (0, 1), we have

La1···an
L
= La1 · L

a1
a2 · L

a1a2
a3 · · ·La1···an−1

an .

For example,

La2
L
= LaL

′a
a.

The Student t-Pearson VI calculus. Since we work with positive random variables, it is conve-

nient to consider the square of the Student t distribution of parameter a. We note, from the definition,

T 2
a

a
=

(1/2)N2

Ga/2

L
=
G1/2

Ga/2

L
= P1/2,a/2

L
= B1/2,1/2P1,a/2

L
= sin2(πU ′)

(

1

U
2
a

− 1

)

,

which gives a one-liner for the Student t distribution due to Bailey (1994):

Ta
L
=
√
a sin(2πU)

√

1

U
2
a

− 1.

Since T 2
a is Pearson VI after rescaling, we recall from the definition of the Pearson VI and the gamma-beta

calculus that

Pa,b
L
=
Ga

Gb

L
=

Ga+bBa,b

Ga+b(1−Ba,b)
=

Ba,b

1−Ba,b
.

This, in turn, implies that

Ba,b
L
=

Pa,b
1 + Pa,b

.
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Returning to the Student distribution, we have

T 2
a

a

L
= P1/2,a/2

L
=

B1/2,a/2

1−B1/2,a/2
,

and

B1/2,a/2
L
=

(T 2
a /a)

1 + (T 2
a /a)

.

Furthermore,

Ba,a
L
=

1+ S

√

(T2
a/a)

1+(T2
a /a)

2
.

The interest of the last two identities is that the beta random variables on the left can be written, via

Bailey’s formula for the Student t variate, as functions of two independent uniform random variates, and

this formula, unlike the one derived earlier which could only be used for a > 1/2, is valid for all values

a > 0. For other one-liners for the symmetric beta distribution that use two independent uniform random

variates: see Ulrich (1994) and Devroye (1984, 1996, 2006). The asymmetric beta with both parameters

different from 1 and 1/2 is still difficult to write as a simple function of a few independent uniform random

variates. Finally, just as for the gamma, we have a reduction identity:

Pa,b
L
= Pa+1,bU

1
a .

Logistic distribution. The generalized extreme value distribution with parameter a > 0 is that of

logGa: it has density

e−(a−1)x−e−x

Γ(a)
, x ∈ R.

The standard extreme value distribution, or Gumbel distribution, has parameter a = 1. The character-

istic function of logGa is Γ(a + it)/Γ(a). Using the table above, an entire calculus for extreme value

distributions can be obtained, parallelling that for the gamma distribution.

The Riesz-Bessel distribution.

Exponentially tilted, or Esscher transformed (Sato, 1999), random variables have many applica-

tions. If X ≥ 0 is a given random variable with Laplace transform L(λ), then we say that X∗
µ is the

exponentially tilted version of X with parameter µ ≥ 0 (µ < 0 can be considered as well for small-tailed

X) if the ratio of probability measures of dx under X∗
µ and X is equal to e−µx. Equivalently, Xµ has

Laplace transform
L(λ + µ)

L(µ) .

Random variate generation is classically done by rejection: keep generating pairs (X,U) with U uniform

[0, 1], until for the first time U < exp(−µX), and return X . However, the expected number of iterations

before halting is
1

P{U < exp(−µX)} =
1

E{exp(−µX)} =
1

L(µ) .
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This can be quite inefficient. One can do much better by using special designs. For example, (Sa)
∗
µ, the

exponentially tilted unilateral stable, has Laplace transform

exp (µa − (λ+ µ)a) , λ ≥ 0.

Using the so-called double rejection method, Devroye (2009) describes a random variate generator that

is uniformly fast over all values of µ ≥ 0 and α ∈ (0, 1].

When describing the Riesz-Bessel-Lévy subordinator, Anh and McVinish (2004) introduce the

Riesz-Bessel distribution through its Laplace transform. We say that Rα,γ,t ≥ 0 is a Riesz-Bessel random

variable if its Laplace transform is

E

{

e−λRα,γ,t
}

= e−tλα(1+λ)γ , λ ≥ 0.

Here the parameters are t ≥ 0, α ∈ (0, 1] and γ such that α + γ ∈ [0, 1]. By checking an identity via

Laplace transforms, we see that for β ∈ (0, 1],

R
α,γ,t1/βSβ

L
= Rαβ,γβ,t.

Or, reparametrized such 0 < α ≤ β ≤ 1, 0 ≤ α+ γ ≤ β ≤ 1,

R
α/β,γ/β,t1/βSβ

L
= Rα,γ,t.

Anh, McVinish and Pesee (2005) propose various random variate generators for Rα,γ,t. The last

identity shows that only the cases α = 1 or α+ γ = 1 matter:

(i) When γ ≤ 0, take β = α, and note that

Rα,γ,t
L
= R

1,γ/α,t1/αSα
.

Then sample from the latter law. See below for a uniformly fast generator for R(1, γ, t), γ ∈
(−1, 0].

(ii) When γ > 0, take β = α+ γ, and note that

Rα,γ,t
L
= R

α/(α+γ),γ/(α+γ),t1/(α+γ)Sα+γ
.

Anh, McVinish and Pesee (2005) give an exact generator for Ra,1−a,t, a ∈ (0, 1), which permits

one, by the identity given above, to cover Rα,γ,t for all γ > 0. However, their algorithm is

cumbersome and not uniformly efficient with respect to the parameter range. The development

of a uniformly fast generator for Ra,1−a,t remains open.

With infinitely divisible distributions, compound Poisson distributions play an important role.

Assume that we have a family of distributions (of Xθ) with characteristic function (ϕ(t))θ , where θ > 0

is a parameter that makes the infinite divisibility obvious and explicit, and ϕ is a basic charcateristic

function of a random variable X = X1, then the compound Poisson trick consists of replacing θ by a

Poisson (b) random variable Pb times a scale factor a. The characteristic function of XaPb
is

E

{

e
itXaPb

}

=

∞
∑

j=0

bje−b

j!
E

{

eitXaj
}

=

∞
∑

j=0

(b(ϕ(t))a)je−b

j!
= eb((ϕ(t))

a−1).
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Similarly, if Xθ ≥ 0 has Laplace transform L(λ), then the Laplace transform of XaPb
is

E

{

e
−λXaPb

}

=

∞
∑

j=0

bje−b

j!
E

{

e−λXaj
}

=

∞
∑

j=0

(b(L(λ))a)je−b

j!
= et((L(λ))

a−1).

For example, GaPb
has Laplace transform

exp
(

b
(

(1 + λ)−a − 1
))

.

This happens to be Laplace transform of R(1,−1, b) when a = 1:

R1,−1,t
L
= GPt , t ≥ 0.

The ideas of compound Poisson and exponential tilting can be combined to yield a generator for

R1,γ,t, γ ∈ (−1, 0], as noted by Anh, McVinish and Pesee (2005):

R1,γ,t
L
= G−γPt + t

1
1+γ

(

S1+γ
)∗

t
1

1+γ
.

Indeed, the Laplace transform of the right-hand-side is

et((1+λ)γ−1) × et
(

1−(λ+1)1+γ
)

= e
t
(

(1+λ)γ−(λ+1)1+γ
)

= e−tλ(1+λ)γ .

The more general random variable

GbPt + t
1
a (Sa)

∗

t
1
a

has Laplace transform

exp

(

−t
(

1

(1 + λ)b
− (1 + λ)a

))

.

Open problems

Surely, more properties of the stable laws that are beneficial for its understanding and for simu-

lation lurk just around the corner. Multivariate stable laws need to be looked at in depth as well. Part

of the motivation of the paper stems from our quest to find a one-liner for the general gamma and beta

distributions. Thus far, we have been unable to find one.
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