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Abstract — Fuossmmenfassung

Avernge Time Behavior of Distributive Sorting Algorithms, In this paper we investigate the espected
complesity E0C) of distributive (“buckel”™) sorting algorithms: onoa sample X, ., &, draws from
g density fon R Assuming constant bime hucker membership determination and assuming the
use of mi average lime o (9 algorithm for subsequent sortmg within each buckel (where g s
convexr, @ (nlnlx, ginlin® is noninereasing and ¢ i independent of [ the followmng s shown;

Iy AN hiss compact support, then [l Mixd)dx =< oo o and only if E{CH=01m,

20 I0F doesnm have compact:support. then £ (C1mM o

Mo pdditional restrictions are pol on [

Fooyt wiordy el plirayes: Dhstnbutive sorting, huckel sorting, dverage co mplexity, expected runming 1rme,

CR Curegorivs: 531,

Mittleres  Zeitverhalten von Fachsortier-Algorithmen, Wir untersechen die mitlere Komplexiti
Ei) von Fachsortier-Algorihmen, die auf cine Stuchprobe X, X mit der Vertedungsdichie
| ool KY angewendet werden, Wir nehmen an, dali die Zeir pur Bestimmung des Sortierfscls
konstant i51, upd dald e die Sortierung innerhalb jedes Fachs em Algorithmus mit dem mintleren
Feithedarl g i) 2ur Verflipong steht. Dabel ist g kemvex, ginpn] = g ok’ mchisteigend und o
inithhdngie von f Wir zegen

Il Wenn f kompakeen Tedger hat, dann wilt j_ql|.f [x))d¥=w genau dann, wenn E(Cj=00)
2} Wenn { keinen kompakien Triiger bat, dunn gt E (€m0

Cber 7 bendtigen wir keinerlel weiters Yoraussetzungen,

1. Distributive Sorting

Consider a sample X', X5, .. X of independent identically distribuicd random
variables with density £ This sample is sorted by the method of distributive sorting
i*bucket sorting”):

. Find Y=nmun{X,, . X,)and Z=max(X . X,)

2. Divide (¥, Z) into »n equal parts (“buckets™) of length (£ — ¥i/n.

3, Assign each of the Xis to one of the buckets using o linked list structure 1o
keep track of the memberships,
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4, Sont the sample by scanning from bucket to bucket and using a sorting
algorithm SORT for subsequent sorting in each bucket.

Sorting algorithms with this structure are well-known (see [1—2], [4]). In the
expected time behavior analysis that follows we make the following assump-
100s:

i1} There is a constant & such that steps 1—3 can be executed in time less than
kn: the constant k does not depend upon X, .., X, We are thus tacitly
assuming that the determination of membership in one of n buckets is 4
constant time operation.

(i} The lower level algorithm SORT sorts r poinis X . ... x, in time hir,, .1,
where (r,, ...,r,) are the ranks of x,,...x, and h is a given function. Its
expected running time,

|
glm)=— Yo ey
hi (1 ST . |

satisfies: g is convex: g (n)'n T2 and g(nyn® | for all ne (0, =) For example,
bubble sort (g (1)=cn?) and most binary sorting algorithms (g (r)=c(n+1})
log {1+ 1)) satisfy this condition.

With this setup, the overall complexity C of the algorithm satisfies
E{E.']=Uln}+£(z H{N,.}) (1)
i=1

where E() denotes “expected value” (C itsell is o random variable). and
Ni....N, are the number of points m the buckets numbered |, ... n Since
the minimum and the maximum are already 1solated, we have Ny + .+ N =n—1,
In this note we study the guestion: when 1s E (C)={Hn)"7

The catalyst for our work was Dobosiewicz’s result on linear expected com-
plexity sorting methods [2].

2. Main Results
We suv a density [ has compact suppert when there exists a finite K such that
P{| X |=Kj=0 where X has density f.
Theorem 1: When | has compact suppore, then E{(Cy=0(n) if and only if
Talfix)dx=a. (2)
Prowf:

We reeall that the support 5 of a random variable X, is the smallest closed
set such that P(X,e8)=1 Then ess miX,=mf{x|xe S} esssup X,=
=supi x| xe 8}

We can assume without loss of generality thatess inf X =0.ess sup X', = L. Wealso
introduce the [ollowing notation: R=2—Y; (x,, %1} ... (¥, X, ) 15 the par-
tition of LY, Z] into nintervals of equal length R/n, Furthermore. for x 2 (x.x_ )
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Fiw g

=1 fixdxfixg., —x)
o= 1 fxpdxix—x),
X
Sy =min (f," (xh 4, (x)).
For x&(¥.Z), let £, (X)=/, (x)=f;* (x)=0. Finally. let p, be the probability

My

contents of (x.x ) ;=] fixidx.

Let us deline p by "
P='_Zl P
pa

Clearly, p itself is a random variable, and by the probability integral trans-
form, it is distributed as the range of n independent identically distributed
uniform (0. 1) random variables. Tt has density
I:[x}==n{n—1}.*k"‘ﬂl—ﬁ:]_. b=y,

and it is easily seen that E(p~ Dand E(p~ %) 1end to | as n—s =,
By lemmi | (see Appendix), Jensen’s inequality and the fact that ¢ (0 x) < ag(x),
all @, x=0, ¢=< 1, we have '

e KZ’}={J'{nJ+E( Y aN)| Y, /)

=
<0(+3 Y ginpp)

=]

n Eowi \ %
*_:ﬂ[n}-t—?{'): z : [ g(n{_tl:_l—x]] f?)dx

=1 Xja 7% g

In 4 (R _
_{l[nH-?i g(-ﬁ—ﬂx}) dx

i
0@m+3n fa(f(x)ds maxip ', Rp 3.
"3

Since E(p ') and E(Rp %) remain bounded we have E(C 1=0n) as claimed
whenever g(fie L',

Suppose next that F(C)=0(n), We have

I ]
EiC| KEFETE ginp)
1=1
L gy
U gl —x) 2 (xhdx
X

i

= =T

ni ¢
=2— [g(f¥(x)dx
¥

where we used the inequality g(ax)= a*gix) all g, x=0, a<l.

b3 |

J-I
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Let E< [0, 1] be the Lebesgue set of f, namely, the set of x's on which

THd

1 ;
5 1 Jwdy=fix) as 60

and

| i o

= [ dy—fix) as d—0.

a—d
Let A be the set of mefd ((£,.7, #) is our probubility space for ks PR
for which ¥, Z—1 as p—x. Clearly P{4)=1, and [ dx=1 (Lebesgue
E

density theorem; see for instance, Stein [T]) On A4 x E we have

R Jr|l‘ P Uu‘ [t}]_',q {f{“}
s n—ro. Also, | [ dx#dw)=1 Thus, by Fatouws Lemma and our hypothesis,
aE

I L o) & ik iazy
o =lim inf Ziminf R yeqep g (6T () dx 2 (d )

k] n 4 B n—~a

:,;I 5 g (f ) dx 2 (dw)

= fa (fx)dx
This concludes the proof of Thearem |,

Remark 1: Theorem | does not impose any continuity conditions on f In fact,
all bounded densities satisfy (2). Only very peaked densities violate (2). For
example, if —1<a<0 and

fix)= et lex=]
f= 0, elsewhere,

then (2) holds for g(m)=r" i and only il a>— 12 With gni=nlogim, (2)
holds for all o in (—1,0) Notice however that some unbounded densitics
have such a weak peak that | f*(x)dx <« for all k>0. Take for instance

Fix)= —logi{x), Dox<l,
Jihm)= (il elsewhere.

The next result resolves the problem for all densities not having compact
SUppert

Theorem 2; If | does nor have compuact support, then E(C)/in

Pronf: By Lemma 1,

!
E[[‘lzTE( g{nm)
o) L

W=
where we inherit the nolation of the proof of Theorem [ Let o and b be
1/3 and 2/3 quantiles of J, that is, points with the property that P(X <a)=173
and PN <h=2/3 MNote that these points may nol be unique but that in
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any case a<h If g is the number of intervals (“buckets™) that have a nenempty
interseciion with (o, b}, then
b — ) ih—a
l;t-}:”—ﬂ'zqr_?%_ ;J whenever ¥=a and Z=5.

Let @ be the collection of these intervals and let p) be the probability contents
of the i-th interval afier intersection with (g, b). By Jensen's inequality, when |
15 the indicator function of the event [V <a, Z=h],

R : p . _
1:‘( Y gin ,u,JJ:_*J':'( Y gin p,]JE-E( Y F;(nm)
=} e K = J

SE (_.*i g (% .‘?‘u F’}) -f (_q f ( 31{!))

b =) ( l K
E(( Z-Y )ﬁ Gin+3ith—ap 2 }r'b) I_J

}F('ulh—sfl‘) _ ( ( 4 C gy )
=E S |min|g| =|:q]- —}J )
( 2 ) __f.uJ (_mb—u]_, ;
From this we see that we may assume that (Z — ¥)<n(b—a)/2 beciuse ather
wise the random varable in Ei(-) is greater than ur equal to 2 g(n/12)1.
It suffices then to show that

I L=V
& (-._7-— e (W—tﬂ)}_ﬂ“x'

Clearly, Tor all K =),

L2V, ;s
Elg—gtlaa— —Yablb-a K Y<a Z:
(ﬁ—yg(ﬁlh—ah)}ﬂih—ub!{ Mz =6~ K, F=ua Z=H

= IEItK.l..
Gibh—a) K

Thearem 2 ollows by the arbitrariness of &,

(1'4a(L)).

Remark 2: Theorem 2 applies 1o all densities with an infinite tail, such as the
fumily of exponential densities, which includes the normul gamma and chi-
sgquare densities.

Remark 3: Consider the problem of finding the convex hull of . IR |
sample of independent identically distributed random vectors from RZ, From
Theorem | we deduce that Graham's algorithm [3] when modified slightly
o incorparate distributive sorting of the angles of the various points, has
linear expected complexity whenever the density of X, has COMPACL suppart
and s bounded. Of course, this statement should be accompanied by the remarks
i) und (1) given i the miraduction,
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3, Order Preserving Transformations

I it is strictly monotonieally ncreasing mapping [rom R 10 a finite interval
(@, b). then ordering X, X, .., X, is essentially equivalent to ordering
B(X,), ... (X, Linear expected complexity can be obtained whenever the
density of i (X,) satisfies (2). Ideally, i should be such that the density of (X )
is uniform on {a, b, If [ is known beforehand, then the obvious choice for i
is F (the distribution function corresponding to {) because F(X,) is uniformly
distributed on (0, 1). In most situations, either F is unknown or the computation
of the F(X,)s is too expensive. Fortunately, there are simple transformations
h that yield densities for f(X,) that sausfy (2) for large classes of densities [
with infinite tails. We will illustrate this for the important class of densities
with exponentiully dominated tail.

We say that i density (has an exponentially dominared rail if there exist constants
a, b =0 such that forall x € R,

fix)ysae™ =,

Most well-known densities belong to this class: the normal, exponential gamma,
beta, chi-sgquare and rectangular densities, and all bounded densities with
compact support.

We show that the distributive sorting algorithms discussed in this paper when
used on B X)L o B (Y ) satisly E(C)=0(n) whenever f has an exponentially
dominated tail,

(X/14x), x20

hiki= Ll —x) %<0,

13

and 1o conditions (1), (i) we add

(ili] The computation of hix) takes time {x) where f 1 uniformly bounded
on R,

Theorem 3: If f s a density with exponentially domimated tail, If (i (i) (i)
hold, and i distributive sorting I3 used on BN b o UK where hois given by
(3), then E(C)=0{n).

Proof: We establish that the density of h (X ) is bounded and apply Theorem 1,
The density of h(X,) is given by

u
el =M
fih (x)) T o)

which for x=0 gives

I 1 1 5
.I"(m) “_ﬂziall—:ﬂ c:tp(-.h

S

). (4)

Using the inequality ¢ "<(s/eu)’, all & uz=(, we see that (4) is not greater
than 4 a on (0, 1,2) and not greater than o x 2(2/beer on (1/2. 1) The case
x<{ s treated similarly.

by

=
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Remark 4: We do not claim that (3) is the best possible transformation; we
picked it because it was one of the simplest order preserving transformations
for which Thearem 3 holds. It should be pointed out that for densities |
with heavy tails {e. g. tails that ure decreasing at a polynomial rate), Theorem 3
may no longer be true when (3) is used,

4. Appendix

Lemma 1: If N is a binomial random variable with paramiters noand poogiR)n
15 nondecreasing amd g (myn® is nenincreasing. then

|
S GIP=EG(N)<3ginp)+2g(1).

Proaf: By a well-known binomial inequality (see [6])
Elg{iN)zgtnpl PINZnphzg (np)y2,
Furthermaore,
GINI=g (N s N0 N Fp g (N0 (0) g, (V)

_"Fg np+ e (kg (O
and

1 )
E (g (N)=g (Ul+g (n p) (E+ H)Esnﬂhiy-m 1

when npz 1. Fornp< 1, we have
EfgIND<E(N g (1)<2a(l).
Note: The lower bound s vulid for all nondecreasing y.
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