
conp. (t Maths wilh Applr. Vol. 7. No. 5. pp. 40742. MI 
Ripled in Great Britain. 

ON THE AVERAGE COMPLEXITY OF 
BUCKETING ALGORITHMS t 

SOME 

LIJC DEVROYE 

School of Computer Science, McGill University, 805 Sherbrooke Street West, Montreal, Canada H3A 2K6 

Communicated by E. Y. Rodin 

(Receiued Jqnvory Ml) 

Abstract-Consider n independent uniform (0,l) random variables, and let N,, . . . , N. be the cardinabties 
of the intervals [(i - 1)/n), (i/n)], 1 d i I II. Then B(rqax IV,)- (Iog n/log log q) as n + =. This result (proved 

in the paper) and related results about the asymptotical behavior of E(g(mgx No) for increasing functions g 

allow us to draw some conclusions about the average complexity of some bucketing algorithms in 
computational geometry. We illustrate this point by showing that Shamos’ unpublished bucketing algorithm 
for finding the convex hull of R independent identically distributed random vectors X,, . . , X, in R* has an 
average complexity O(n) whenever the X,‘s have a bounded density with compact support. 

1. INTRODUCTION 

In this paper, we offer a result that may be useful in the average time analysis of certain 
algorithms in computational geometry. The algorithms considered here operate on a sample of 
size n from Rd, say, Xr, . . . , X,: 

(1) Find the smallest closed rectangle R covering all the X’s. (This takes time O(n).) 
(2) Divide each side of R into m equal intervals, where m is an integer such that 

cm r md h n for some constant a > 1. We thus obtain md rectangles Ri by forming the 
products of all intervals. Put all the X’s in the appropriate rectangles. (This takes time O(n).) 

(3) Select not more than a, I md rectangles from RI,. . . , &d according to an arbitrary 
procedure, taking time O(n). 

(4) Let N be the number of Xi’s in the selected rectangles. These points are further 
processed in time bounded by a constant times g(N) where g is some function. 

One algorithm that fits this description is an algorithm for finding the convex hull of X,, . . . , 
X,. It was originally suggested by Shamos [I]. Let d = 2. In step 3, all the rows and columns of 
rectangles Ri are considered, and in each row (column), the extremal nonempty rectangles are 
marked. Thus, per row (column), 0, 1 or 2 rectangles are marked. In addition, the nonempty 
rectangles immediately adjacent to these (in the same row (column)) are also marked. It is clear 
that a, = O(d(n)). In step 4, Graham’s convex hull algorithm is applied to the N points in the 
marked rectangles [2]. The function g(u) is u log (U + 1) + 1. Theorem 1 given below shows that 
this algorithm takes average time O(n) whenever the Xi’s are independent identically distributed 
random variables with density f, where f is bounded and has compact support. One should 
note, however, that we assume that real numbers can be stored and that the standard 
operations, including truncation, take constant time. 

Theorem 
Assume that X,, . . . , X, are independent Rd-valued random vectors with common density f, 

where f is bounded and has compact support. Let a, r 1 for all n. Assume that g:[Op)+ 
[0, 03) satisfies: (i) g is nondecreasing; (ii) g(x) = O(1 + xB) for some /3 > 0; (iii) for all c > 
1 there exists k(c) > 0 such that g(cx) I k(c)g(x), all x > 0. 

Then 

where the constant in “0” does not depend upon the selection procedure in step 3. 
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Remark 1. (The average time E(T) taken by the algorithm) 
The complete algorithm takes time bounded by O(n t E&(N))). In many circumstances, 

E(g(N)) = o(n), so that E(T) = O(n). For example, in Shamos’ convex hull algorithm, we have 

E(gW)) = O( I&) log log n *) = o(n). 

Remark 2. (The optimality of (1)) 
There are selection procedures in step 3 such that E(g(N)) 2 c&a, (log n/log log n)) for all 

n and some c > 0. For example, it sufficies to let (I, = 1 and pick the rectangle Ri with highest 
cardinality. The same is true if u, varies very slowly with n and the a, rectangles with highest 
cardinalities are chosen. Thus, without further restrictions in step 3, inequality (1) cannot be 
improved upon. 

Remark 3. (Functions g) 
The functions g(u) = u”, u > 0, and g(u) = (U t 1) log(u + 1) satisfy conditions (i), (ii) and 

(iii) of the theorem. 

2. PROOF OF THE THEOREM 

Our proof requires a thorough understanding of the Poisson distribution. The properties that 
are needed here are extracted in Lemmas 1 through 4. 

Lemma 1.131 
If X is a Poisson random variable with parameter A, then for integer k, 

P(Xrk)r 1-a($$) 

where @ is the normal distribution function. In particular, P(X 2 A) 2 l/2. 

Lemma 2. 
If X is a Poisson random variable with parameter 1, then for integer k z 1, 

Proof. 

P(X 2 k) = e-* 
& 
m j!-’ I (ek!)-’ g (k + l)-’ 

I- 

=(ek!)-1(ltt):4d!)-1n2(f)-k(2~k)-1”. 

Here we used Stirling’s inequality (see, for example, Knopp ([4], pp. 549)). 

Lemma 3451 
If X is a Poisson random variable with parameter A, then for integer k I A, 

where n is an integer and p E (0, 1) is a real number such that np = A. In particular, 
P(X 2 A) 5 (5/2e) C 1 when A is integer, A > 0. 

Proof. Take n = A t 1, p = A&A t 1). k = np = A. Then, for A 2 2, the Anderson-Samuels 
inequality implies that P(X~k)~(k+l)pk(l~p)+pk+‘=pk”((2ktl)/k)~(5/2)pk+‘~ 
(5/2) exp( - 1). Also, P(X 2 1) = 1 - P(X = 0) = 1 - e-l. This concludes the proof of Lemma 3. 
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Lemma 4. 

On the average complexity of some bucketing algorithms 

Consider the solution of the equations 

r(x + 1) = y (2) 

or 

0 ; =d(27rx) = y. 

In both cases, as y + m, x - (log y/log log y). 

Proof. The left-hand sides of (2) and (3) can be written as exp (h(x)) where h is a strictly 
increasing function of x when x L 1. It suffices to show that 

(i) for all e > 0, lim inf 
D 

h 
I- 

(1 + e)&) -logy ] 2 0; 

and that 

(ii)lunrp[h(&)-logy]=O. 

Consider (2) (the equation (3) can be treated similarly). As x + a, we have by Stirling’s formula 
([41, p. 549), log IYx + 1) = x(1og x - 1) + (l/2) log (2nr) + 0(1/x). Replace x by (I+ E) 
(log y/log log Y). Then 

The right-hand side of (4) is greater than (1 + e/2) log y for all y large enough when E > 0. It is 
smaller than log y for all y large enough when e = 0. This concludes the proof of Lemma 4. 

We say that a random vector N,, . . . , IV, is multinomially distributed with parameter k and 
equal probabilities when N,, . . . , N,, are distributed as the number of Xi’s in n intervals (0, 
l/n), . . . , ((n - 1)/n, 1) when the Xi’s, 1 zz i s k, are independent random variables with the uniform 
distribution on (0,l). 

Lemma 5. 
Let N ,, . . . , N,, be multinomially distributed with parameter n and equal probabilities. 

Then, for integer k 2 1, 

Also, 

Furthermore, for integer k, 

E(mfx Ni) - -!%!- as n + 03. 
log log n 

(5) 

0% 

(7) 
2e 

P(m~xNi<k)S~exp 
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Proof. Let us first prove (5) and (7). Let Y,, . . . , Y. be independent Poisson (1) random 
variables with sum S. By Lemmas 1 and 2, 

P(max Ni 2 k) = P(max yi L klS = h) 

sP(max Yrk]Sln)== P(max Yirk, Srn) 
i P(Srn) 

S P(max Yi 2 k)/P(S 2 It) 
i 

s 2 P(mfx Yi 2 k) (since S is Poisson (n) distributed) 

4n k -’ <2,t~(y,rk)s~ ; 
0 

(2?Wu2. 

Similarly, by Lemma 3, 

P(m:x Ni < k) 5 P(mqx Yi < klS 5 II) s P(max yi < k)/P(S 5 n) 

Finally, (6) follows from (5) and (7) in the following manner. Let r be the largest integer such 
that (242~ -5))exp (-n/er!)~(l/n), and let x be the solution of I’(x + 1) = 
We) log-’ (24(2e - 5)) = y. Clearly, as n + 00, r - x - (log y/log log y) - (log n/log log n) because 
rsx<r+l. Thus, 

E(m:x NJ = i P(m;x NI 2 k) L $, P(m:xNiSk)=(l-i)r-$f-&. (9) * 

Let s be the smallest integer such that (s/e)’ 1/(29rs) L 4n/e, and let x be the solution of (x/e) 
~/(2?rx) = 4de. Obviously, x I s C x + 1, and s - x as n +a. Thus, by (5), 

F 0 
s-k 

E(maxN,)ss-I+ 
i 

1, $! $ -kt2qrk)-1’2 < s + $ (;) 
-3 

* 

ss+ 
ei 

N 

=S+ -_s_logn 5 

w 3 s-e log log n ’ (10) 

Remark 4. 
Viktorova and Sevastyanov[6] (see also Kolchin et al. [7], pp. W)) have shown that when pn 

is a sequence of integers such that (dep. !) tends to a constant a as n +a, then P(max N, = 

pn - 1)-e-” and P(max Ni = p.)+ 1 -ema as n +QD, where N,, . . . , Pi, are as in Lemma 5. 

Thus, the limit distribition of max Ni is biatomic. Unfortunately, Lemma 5 does not follow 

from this result without further iork. 

Remark 5. 
By arguments similar to (8) and (10) one can show that if N,, . . . , N,, are multinomially 

distributed with parameter k = cn (c 2 1 is an integer) and with equal probabilities, then 

E(max Ni) =(I +o(I))c&. (11) 



On the average complexity of some bucketing algorithms 411 

For 15 i I c, let N,(i), . . . , N,(i) be multinomial with parameter n and equal probabilities, 
and let all c multinomial random vectors be independent. Then N,, . . . , N,, is distributed as 

T N(i), . . , T N,(i). Therefore, 

E(max Nj) I z E(max Nj(i)) = cE(max N,(l)) 5 (1 + o(l))c& (by (10)). 
j 1 i i 

Also, 

P(max Nj 2 k) I cP(max N,(l) 2 WC), integer k. 
i i 

(12) 

Lemma 6. 
Let a, and g be as in the Theorem. Let N,, . . . , N,, be a multinomial random vector with 

parameter cn (c 11 is an integer) and equal probabilities. Then 

EMan my NilI = O(g (0, &)) + 41). 

Proof. 

E(~(u, m,?x Ni)) 5 g(na,)P(max Ni > (28 + 1) C 
log n (2/9tl)ca,---- 

log log n ’ (13) 

By condition (iii), the last term of (13) is O(g(a, log n/n log log n)). By combining (5) and (12), it 
can be checked that the other term on the right-hand-side of (13) is 
0(g(na,)n-2B(log log n/log n)‘“) = o(1). This proves Lemma 6. 

Proof of the Theorem. 
Let C be the smallest closed rectangle containing the support off, and let m be even. Divide 

each side of C into (m/2) equal intervals and consider the m’= (m/2)d rectangles Ti thus 
obtained. (The openness or closedness of the intervals will be irrelevant in the proof that 
follows.) For (j,, . . . , jd) E (0, l}d, consider the rectangles q(jl, . . . , jd) obtained by translating 
T in the following manner: when jk = 0, do not translate T in the kth coordinate direction; 
when jk = 1, translate z in the kth coordinate direction over the distance (l/m) length kth side 
of C. Clearly, K = T,(O, 0, . . . , 0). Also, every Ri is contained in some q(j,, . . . , jd). 

For any set B c Rd, let N(B) be the number of Xi’s that fall in B. Then 

E(g(N)) 5 E(g(a, m;x N(Ri)) s E(g(a, max N(TiO’l, . . . , id)))) 
i,j,....,j,, 

Without loss of generality, assume that (jI, . . . , jd) = (0, . . . , 0). Let f0 be the uniform density on 
C. There is a positive integer K such that f0 can be written as a mixture fa = (l/K)Ft 
(I- l/K)f’. Here f’ is some residual density function. Let Y,, . . . , YK. be independent 
identically distributed random vectors with density fO, and let the number of Yi’s that 
correspond to the f-part of the mixture be Z. Clearly, Z is binomial (Kn, l/K) and P(Z 1 n) 2 
l/2 (e.g., see Slud[8], Theorem 2.1)). For any set B C Rd, let N’(B) be the number of K’s that 
belong to B. It is clear that for integer k, 

P(max N’(q) 2 k) L P(Z 5 n)P(max N(S) z k). (15) 
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Now, NV,), . .., N'( T,J are multinomially distributed with parameter Kn I K2*m' and equal 
probabilities. Thus, by (15) and Lemma 6, 

E(g(a, m?x N(T))) 5 2E(g(o, max ZW?)) = O(g( 0, $/f&)) + O(l). WI 
I 

The Theorem follows from (16) and (14). 
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