HOW TO REDUCE THE AVERAGE COMPLEXITY OF CONVEX HULL FINDING ALGORITHMS

Luc Devroye

School of Computer Science, McGill University, 805 Sherbrooke Street West, Montreal, Canada H3A 2K6

(Received November 1980)

Communicated by R. L. Graham

Abstract—Let X_1, \ldots, X_n be a sequence of independent R^d -valued random vectors with a common density f. The following class of convex hull finding algorithms is considered: find the extrema in a finite number of carefully chosen directions; eliminate the X_i 's that belong to the interior of the polyhedron formed by these extrema; apply an $O(\Delta(n))$ worst-case complexity algorithm to find the convex hull of the remaining points.

We give weak sufficient conditions that imply that the overall average complexity is $O(\Delta(n))$. We also show that for the standard normal density, the average complexity is O(n) whenever $\Delta(n) = n \log n$.

1. INTRODUCTION

In this paper we will prove some general theorems about the average complexity of convex hull finding algorithms that use the throw-away principle [1].

Let $\{x_1, \ldots, x_n\}$ be a collection of points from R^d , let S be the unit sphere of $R^d(S = \{x | ||x|| = 1\})$, let $A \subseteq S$, and let $x^t y$ denote the inner product of x and y, two points from R^d .

Definition

The extremal polyhedron P of $\{x_1, \ldots, x_n\}$ with respect to A is the polyhedron whose vertices v are the extremal points of $\{x_1, \ldots, x_n\}$ with respect to A. A point $v \in \{x_1, \ldots, x_n\}$ is an extremal point with respect to A if $v^t y \ge x_i^t y$ for all i and some $y \in A$. The comvex hull of $\{x_1, \ldots, x_n\}$ is the set of extremal points of $\{x_1, \ldots, x_n\}$ with respect to S.

We note here that the convex hull of an extremal polyhedron P is the set of vertices of P. Also, if card (A) = k, then P cannot have more than k vertices. Extremal polyhedra of $\{x_1, \ldots, x_n\}$ can be found in time O(n) whenever A is a finite set. The members of A can be considered as "directions" in which extrema are found. Akl and Toussaint [1] and Toussaint et al. [2] have shown that extremal polyhedra are very useful in the development of fast convex hull finding algorithms. Consider for example the following class of algorithms:

Algorithm CH

- (i) Find the extremal polyhedron P of $\{x_1, \ldots, x_n\}$ with respect to a finite $A \subseteq S$.
- (ii) Eliminate from $\{x_1, \ldots, x_n\}$ all x_i 's that belong to interior (P).
- (iii) Find the convex hull of the remaining points. Use an algorithm of your choice.

Step (ii) will be called the *throw-away* step. If the points $\{x_1, \ldots, x_n\}$ all belong to S, then no points are eliminated in the throw-away step. However, (ii) becomes effective when the x_i 's are sufficiently smoothly distributed. What we mean by "sufficiently smoothly distributed" will be clarified further on. From now on we will only consider random vectors X_1, \ldots, X_n from R^d that are *independent* and have a common *density* f. Let N be the number of elements of the convex hull of $\{X_1, \ldots, X_n\}$. For particular choices of f, the properties of N as $n \to \infty$ are well-known (see Refs. [3-7]). Theorem 1, in contrast, is valid for all densities f. It shows that whenever the X_i 's have a density f, then only an asymptotically negligible fraction of them can belong to the convex hull.

2. THE NUMBER OF POINTS ON THE CONVEX HULL

THEOREM 1

For any density on \mathbb{R}^d , we have

$$E(N) = o(n) \tag{1}$$

and

$$\frac{N}{n} \to 0 \text{ a.s. as } n \to \infty.$$
 (2)

300 L. Devroys

Proof of Theorem 1. Let $N_{(k,l)}$ be the number of elements of the convex hull of $\{X_{k+1}, \ldots, X_l\}$. Clearly, $0 \le N_{(k,s)} \le N_{(k,l)} + N_{(l,s)}$, all $1 \le k < l < s$. Thus, by the subadditive ergodic theorem ([8, 9]) there exists a constant $c \ge 0$ such that $N/n \to c$ a.s. as $n \to \infty$. Also, $\lim_{n \to \infty} E(N)/n$ exists and equals c. Thus, Theorem 1 follows if we can show that E(N) = o(n). Since $E(N) = np_n$ where $p_n = P(X_1 \text{ belongs to the convex hull})$, it is clear that we need only establish that $p_n \to 0$ as $n \to \infty$. Let p_{nx} be the probability that x belongs to the convex hull of $\{x, X_2, \ldots, X_n\}$. Then

$$p_n = \int p_{nx} f(x) \, \mathrm{d}x.$$

Thus, by the Lebesgue dominated convergence theorem, $p_n \to 0$ if $p_{nx} \to 0$ as $n \to \infty$ for almost all x(f). This can be proven by using a special version of the Lebesgue density theorem. If $x = (x^1, \ldots, x^d) \in \mathbb{R}^d$, then there are 2^d d-fold products of intervals of the form $(-\infty, x^i]$ or (x^i, ∞) . Each of these sets of R^d will be called a quadrant at x, and will be denoted by Q_x . We let $S_{x,r}$ be the closed ball of R^d with center at x and radius r > 0. Then there exists a set B of R^d for which

(i) f(x) > 0, $x \in B$,

(ii)
$$\lim_{r \downarrow 0} \sup_{Q_r} r^{-d} \int_{S_{x,r} \cap Q_x} |f(y) - f(x)| \, \mathrm{d}y = 0, \ x \in B,$$

(iii)
$$\int_{B} f(x) \, \mathrm{d}x = 1.$$

(see for example, Ref. [10]). In particular, if $V = \pi^{d/2}/\Gamma((d/2) + 1)$ is the volume of S, then for $x \in B$ and all quadrants Q_x , we have

$$\int_{S_{x,r}\cap Q_x} f(y) \, \mathrm{d}y \sim f(x) V 2^{-d} \, r^d \text{ as } r \downarrow 0.$$

Now, for all r > 0, and fixed $x \in B$,

$$p_{nx} \le \sum_{\text{all quadrants } Q_x} P(\bigcap_{i=2}^n [X_i \notin S_{x,r} \cap Q_x])$$
 (3)

which for r small enough is not greater than

$$(1 - f(x) V r^d / 2^{d+1})^{n-1} \to 0 \text{ as } n \to \infty.$$

This concludes the proof of Theorem 1.

Remark

We say that x_1 is a maximal vector of $\{x_1, \ldots, x_n\}$ when at least one of the quadrants Q_{x_1} at x_1 does not contain any x_i , $i \neq 1$. Let N^* be the number of maximal vectors of $\{X_1, \ldots, X_n\}$ where the X_i 's are independent R^d -valued random vectors with common density f. Clearly, $N \leq N^* \leq n$ because every convex hull point of $\{X_1, \ldots, X_n\}$ is also a maximal vector of $\{X_1, \ldots, X_n\}$. In Theorem 1, we have in fact shown that $E(N^*)/n \to 0$ and $N^*/n \to 0$ a.s. as $n \to \infty$. Without additional assumptions on f, very little additional information can be obtained about N^* . We just menion here that if X_1 has a density f, and if all the (d) components of X_1 are independent, then

$$E(N^*) \sim 2^d (\log n)^{d-1}/(d-1)!$$
 as $n \to \infty$.

3. RADIAL DENSITIES

Let M be the number of X_i 's among X_1, \ldots, X_n that do not belong to the interior of P, the extremal polyhedron of $\{X_1, \ldots, X_n\}$ with respect to A. When A is finite, E(M)/n is not necessarily small even when E(N)/n is. For example, if f is the uniform density on S, then it is necessarily true that

$$E(M)/n \ge c > 0 \tag{4}$$

for some constant c = c(A), although Renyi and Sulanke[3] for d = 2 and Raynaud[6] for $d \ge 2$ have shown that

$$E(N)/n = 0(n^{-2/(d+1)}).$$

Thus, in view of equation (4), the effectiveness of the throw-away step is limited. Nevertheless, for some classes of densities we will have $E(M)/n \to 0$ as $n \to \infty$. For example, Toussaint et al. [2] have shown that when f is uniformly distributed on a rectangle of R^2 and A consists of 4 points of the form $(\pm 1/\sqrt{2}, \pm 1/\sqrt{2})$, then

$$E(M^2) = O(n).$$

However, unless the support of f has a special shape, there seems to be very little hope for obtaining small values for E(M) when f has a compact support. Of the class of densities with infinite support, the radial densities are undoubtedly the most important ones.

Definition

A density f on R^d is called radial when it is of the form

$$f(x) = f_0(r) \tag{5}$$

where r = ||x|| is the usual Euclidean norm of x.

The properties of radial densities are well explained in Kelker [22]. For example, when equation (5) holds, then the random variable R = ||X|| has density

$$g(r) = Vd r^{d-1} f_0(r), \quad r > 0, \tag{6}$$

whenever X has density f. We recall here that V is the volume of S. We will also use

$$G(r) = P(R \ge r) = \int_{r}^{\infty} g(u) \, \mathrm{d}u. \tag{7}$$

Definition

A function L on $[0, \infty)$ is slowly varying when L(t) > 0 for all t > 0 small enough, and

$$\lim_{t \to 0} \frac{L(tu)}{L(t)} = 1, \quad \text{all} \quad u > 0.$$

Definition

A density f on \mathbb{R}^d is called slowly varying radial (s.v.r.) when it is radial, and when the function G^{-1} determined by

$$G^{-1}(u) = \inf\{t | G(t) = u\}$$

from G (see equation (7)) is slowly varying and $G^{-1}(u) \rightarrow \infty$ as $u \downarrow 0$.

302 L. Devroye

LEMMA 1

For all a > 0,

$$\int_{r}^{\infty} u^{a-1} e^{-u} du \sim r^{a-1} e^{-r} \text{ as } r \to \infty, \tag{8}$$

and

$$\int_{-\infty}^{\infty} u^{a-1} e^{-u^{2}/2} du \sim r^{a-2} e^{-r^{2}/2} \text{ as } r \to \infty.$$
 (9)

Proof. For (8), see Tricomi [14]. Property (9) follows from (8) by using the transformation $u = t^2/2$.

Examples of s.v.r. densities

When f is standard normal, then

$$g(r) = Vd(2\pi)^{-d/2}r^{d-1}e^{-r^2/2}$$

and, by (9),

$$G(r) \sim Vd(2\pi)^{-d/2}r^{d-2}e^{-r^{2}/2}$$
 as $r \to \infty$.

It is not hard to establish that f is s.v.r. from the last expression. Similarly, if $f_0(r) = e^{-r}/(Vd!)$, then $g(r) = r^{d-1} e^{-r}/(d-1)!$ is the gamma density and $G(r) \sim r^{d-1} e^{-r}/(d-1)!$ as $r \to \infty$. Once again, f is s.v.r.

Definition

A cone $C = C(x, y, \theta)$ or R^d is determined by its top $x \in R^d$, its central direction y (where $y \in S$) and its angle $\theta > 0$. It is the open set of all points z of R^d that satisfy

angle
$$(y, (z-x)) < \theta$$
.

Definition

A collection $\mathscr C$ of cones $C(0, y, (\pi/2)), y \in A \subseteq S$, with the property that

$$\bigcup_{y \in A} C\left(0, y, \frac{\pi}{2}\right)$$

covers R^d (except possibly the origin), is called a *simple cone cover* of R^d . In that case, we say that A generates a simple cone cover of R^d .

Any d+1 points of S that form a regular simplex define a set A that generates a simple cone cover of R^d . On the other hand, the minimal number of elements in A in order that $\mathscr C$ be a simple cone cover of R^d is d+1. Besides the notion of a simple cone cover, we will also require an interesting property of all s.v.r. densities in R^d :

LEMMA 2

Let \mathcal{B}_0 be a partition of S into a finite number of measureable sets B_0 . For each B_0 , let $B = \{x | x = cy \text{ for some } c > 0, y \in B_0\}$ be the star set generated by B_0 , and let each set B have infinite Lebesgue measure. Let $\mathcal{B} = \{B | B_0 \in \mathcal{B}_0\}$.

Assume that X_1, \ldots, X_n are independent random vectors from \mathbb{R}^d with common s.v.r. density f, and define

$$X(B) = \begin{cases} X_i & \text{if } X_i \in B \text{ and } ||X_i|| = \max_{j \in X_j \in A} ||X_j||, \\ 0 & \text{if no } X_i \text{ belongs to } B. \end{cases}$$

Then

(i)

$$\max_{B \in \mathfrak{B}} ||X(B)|| / \min_{B \in \mathfrak{B}} ||X(B)|| \to 1 \text{ in probability as } n \to \infty,$$

and

(ii)

$$\max_{B\in\mathfrak{B}} ||X(B)|| = \max_{1\leq i\leq n} ||X_i|| \to \infty \text{ a.s. as } n\to\infty.$$

Proof of Lemma 2. Let $p = \inf_{B \in \mathcal{B}} P(X_1 \in B) > 0$, and let N(B) the number of X_i 's in B. By the strong law of large numbers, $N(B)/n \to P(X_1 \in B)$ a.s. as $n \to \infty$. If we let m be the largest integer in np/2, then (i) follows if we can show that

$$\max_{i \le m} ||X_i||/G^{-1}\left(\frac{1}{n}\right) \to 1 \text{ probability as } n \to \infty,$$
 (10)

and

$$\max_{i \le n} ||X_i||/G^{-1}\left(\frac{1}{n}\right) \to 1 \text{ in probability as } n \to \infty.$$
 (11)

It is known that $\max_{i \le n} ||X_i||/a(n) \to 1$ in probability as $n \to \infty$ for some sequence of numbers a(n) if and only if

$$\lim_{r \to \infty} \frac{G(ru)}{G(r)} = 0, \quad \text{all } u > 1$$
 (12)

see Refs. [26, 15, 16], and that in such a case we may take $a(n) = G^{-1}(1/n)[17]$. If (12) is valid, then also

$$\max_{i \le m} ||X_i|| \sim G^{-1}\left(\frac{1}{n}\right) \text{ in probability as } n \to \infty.$$

Here we used the fact that G^{-1} is slowly varying. We merely have to check equation (12). But equation (12) is implied by the fact that G^{-1} is slowly varying and that G is continuous. Finally, (ii) is a straightforward consequence of $G^{-1}(u) \rightarrow \infty$ as $u \downarrow 0$. This concludes the proof of Lemma 2.

4. THE AVERAGE COMPLEXITY OF ALGORITHM CH

Consider algorithm CH with a given finite set A. For a given set $\{x_1, \ldots, x_n\}$, we will let C_i be the complexity of the *i*th step in the algorithm. By our assumptions, it is clear that

$$C_1 + C_2 = O(n)$$
, uniformly over all $\{x_1, \dots, x_n\}$. (13)

The convex hull finding algorithm in step 3 operates on $M \le n$ points. We are not specifying which algorithm will be used here, but we do assume the following: if the convex hull finding algorithm of step 3 is fed a sequence $\{x_1, \ldots, x_n\}$, then its complexity is uniformly bounded (over all such sequences) by

$$\Delta(n). \tag{14}$$

In R^2 , we can consider that $\Delta(n) = 0(n \log n)$ for the algorithms of Graham [18], Preparata and Hong [19], Shamos [20], Toussaint et al. [2] and Bentley and Shamos [21], and that $\Delta(n) = 0(n^2)$

304 L. Devroye

for the algorithms of Eddy [28] and Jarvis [13]. In R^3 , Preparata and Hong [19] have proposed an algorithm with $\Delta(n) = 0(n \log n)$. We mention here that Avis [23] and Yao [24] have essentially established that $\Delta(n) \ge cn \log n$ for some c > 0 when d = 2.

Assume now that we present algorithm CH with a sequence X_1, \ldots, X_n , and that $C = C(X_1, \ldots, X_n)$ is its complexity. With assumptions (13) and (14) it is clear that

$$E(C) = 0(n) + 0(E(\Delta(M)))$$
(15)

where M is the number of the X_i 's not eliminated in the throw-away step. Thus, the average complexity of algorithm CH is small when M is small. We can now present our main theorems.

THEOREM 2

If A generates a simple cone cover of R^d , and if f is s.v.r., then

$$E(M) = o(n) \text{ as } n \to \infty. \tag{16}$$

THEOREM 3

If A is finite and generates a simple cone cover of R^d , if f is s.v.r. and if $\Delta(n)/n \uparrow \infty$, then the complexity C of algorithm CH satisfies

$$E(C) = o(\Delta(n)). \tag{17}$$

Proof of Theorems 2 and 3. Theorem 3 follows easily from Theorem 2: by equations (13)–(15) we have

$$E(C) = 0(n) + 0(E(\Delta(M)))$$

$$= 0(n) + 0\left(E\left(\frac{\Delta(M)}{M}\frac{M}{n}n\right)\right)$$

$$= 0(n) + 0(\Delta(n)E(M)/n)$$

$$= 0(n) + o(\Delta(n))$$

$$= o(\Delta(n)). \tag{18}$$

Next, note that if $P(\{x_1, \ldots, x_n\})$ denotes the extremal polyhedron of $\{x_1, \ldots, x_n\}$ with respect to A, then

$$E(M) = nP(X_1 \notin \text{ int } (P(\lbrace X_1, \dots, X_n \rbrace)))$$

$$\leq nP(X_1 \notin \text{ int } (P(\lbrace X_2, \dots, X_n \rbrace)))$$

$$= np_{n-1}.$$

It suffices to show that $p_n \to 0$ as $n \to \infty$. We may always assume that A is a finite set, because if it is not, we can find a finite subset of A such that this finite subset generates a simple cone cover of R^d (by the Heine-Borel theorem), and because $M = M(A, X_1, \ldots, X_n) \le M(A', X_1, \ldots, X_n)$ whenever $A' \subseteq A$.

Consider thus a finite set A with cardinality K, and let B_n be the radius of the largest sphere with center at the origin that is entirely contained in $P(\{X_1, \ldots, X_n\})$. It is clear that $B_n \to \infty$ in probability as $n \to \infty$ implies $p_n \to 0$ as $n \to \infty$.

Let $\rho = \rho(A)$ be the radius of the largest sphere that is entirely contained in the polyhedron formed by the elements y_1, \ldots, y_K of A, and let A' be another set of K points of S, y_1', \ldots, y_K' . The distance between A and A' is

$$d(A, A') = \max_{i} ||y_i - y'_i||.$$

For every $\epsilon > 0$, there exists $\xi = \xi(\epsilon) > 0$ such that $d(A, A') < \xi$ implies that $|\rho(A) - \rho(A')| < \epsilon$ because ρ is a continuous function of y_1, \ldots, y_K . From here on, we let

$$\xi = \xi \left(\frac{\rho}{2}\right),\,$$

and define

$$\theta = \frac{1}{2} \left(\frac{\cos(\xi/2)}{\cos(\xi)} - 1 \right).$$

Consider all cones $C_i = C(0, y_i, (\xi/2))$ and $C_i' = C(0, y_i, \xi)$, and form the differences $C_i'' = C_i' - C_i$. Let $C_0 = R^d - UC_i'$, and let $X(C_i)$ and $X(C_i)$ and $X(C_i'')$ be defined from X_1, \ldots, X_n as in the proof of Lemma 2. Define further

$$W = \max_{0 \le i \le K} ||X(C_i)|| \vee \max_{1 \le i \le K} ||X(C_i'')||$$

and

$$W' = \min_{0 \le i \le K} ||X(C_i)|| \wedge \min_{1 \le i \le K} ||X(C_i'')||.$$

By Lemma 2, when $\xi > 0$ is small enough, $W/W' \to 1$ and $W' \to \infty$ in probability as $n \to \infty$. Notice further that

$$(1+\theta)\cos\xi = \frac{1}{2}\left(\cos\frac{\xi}{2} + \cos\xi\right) < \cos\frac{\xi}{2}.$$

Therefore, by a purely geometrical argument, $(W/W') \le 1 + \theta$ implies $B_n \ge (\rho/2)W'$. Thus, for all constants c, however large,

$$P(B_n < c) \le P\left(B_n < \frac{\rho}{2}W'\right) + P\left(\frac{\rho}{2}W' < c\right)$$

$$\le P\left(\frac{W}{W'} > 1 + \theta\right) + P\left(W' < \frac{2c}{\rho}\right)$$

$$\to 0 \text{ as } n \to \infty.$$

This concludes the proof of Theorem 2.

Remark 2

Theorem 3 can be considered as a validation of algorithm CH in view of its generality. In essence, for all s.v.r. densities, we can construct an $E(C) = o(n \log n)$ convex hull finding algorithm in R^2 merely by the use of a throw-away step. It suffices to take for example a set A with the directions (1,0), (-1,0), (0,1) and (0,-1); but the set $\{(1,0), (-1/\sqrt{2}), (1/\sqrt{2})\}$, $(-(1/\sqrt{2}), -(1/\sqrt{2}))$ will also do. In R^d , the d unit vectors and their opposites always generate a simple cone cover of R^d .

Remark 3

Let X have an s.v.r. density f, and let A be a given nonsingular dxd matrix, then AX has an elliptically symmetric slowly varying density. Theorems 2 and 3 remain valid for such densities.

5. THE NORMAL DENSITY

We wish to conclude with a more specific result announced in Toussaint *et al.* [2] for normal densities. Since the normal density is s.v.r., we have $E(C) = o(\Delta(n))$. Thus, since $\Delta(n) \ge cn \log n$ for some c > 0 by the Avis-Yao result [23, 24], at best Theorem 3 will allow us to

306 L. Devroye

conclude that $E(C) = o(n \log n)$. For many densities, such as the normal density, this can be considerably improved (see Theorems 4 and 5 below). The following Lemma will be useful.

Lemma 3

Let c > 0, and let $n' \sim cn$ be a sequence of integers. Let $X_1, \ldots, X_{n'}$ be a sequence of independent random variables with common density

$$c'x^{d-1}e^{-x^{2}/2}, x>0,$$

where $c' = Vd/(2\pi)^{d/2}$ is a normalization constant. (Note that if Y is standard normal in \mathbb{R}^d , then $\|Y\|$ is distributed as X_1 .) For all $\epsilon > 0$,

$$P(\max_{i \neq r} X_i > \sqrt{(2(1+\epsilon)\log n))} = O((\log n)^{(d/2)-1} n^{-\epsilon})$$
 (19)

and

$$P(\max_{i \in n'} X_i < \sqrt{(2(1-\epsilon)\log n)}) = O(e^{-n\epsilon})$$
(20)

as $n \to \infty$.

Proof of Lemma 3. Let F = 1 - G be the distribution function of X_1 , and recall from Lemma 1 that for any sequence $a_n \to \infty$, $G(a_n) \sim c' a_n^{d-2} \exp(-a_n^2/2)$. Thus,

$$P(\max_{i \le n'} X_i < a_n) = F^{n'}(a_n) = (1 - G(a_n))^{n'}$$

$$\le \exp(-n'G(a_n))$$

$$= \exp(-cc'(1 + o(1))na_n^{d-2}e^{-a_n^{2/2}}).$$

With $a_n = (2(1 - \epsilon) \log n)^{1/2}$, the exponent becomes

$$-(c''-o(1)) (\log n)^{(d/2)-1} n^{\epsilon}$$

for some constant c'' > 0. Formula (20) follows trivially. Also,

$$P(\max_{i \le n'} X_i > a_n) \le n' G(a_n)$$

$$= cc'(1 + o(1))n^{-\epsilon} (2(1 + \epsilon) \log n)^{(d/2)-1}$$

when $a_n = (2(1 + \epsilon) \log n)^{1/2}$. This concludes the proof of Lemma 3.

THEOREM 4

If A generates a simple cone cover of R^d , and if f is the standard normal density, then there exists an $\epsilon = \epsilon(A, d) > 0$ such that

$$E(M) = 0(n^{1-\epsilon}). \tag{21}$$

THEOREM 5

If A is finite and generates a simple cone cover of R^d , if f is the standard normal density, and if $\Delta(n) = O(n \log n)$, then algorithm CH satisfies:

$$E(C) = O(n). (22)$$

Proof of Theorems 4 and 5. Theorem 5 follows from Theorem 4 in view of

$$E(C) \le 0(n) + 0(E(M \log M))$$

$$\le 0(n) + 0(E(M) \log n)$$

$$\le 0(n) + o(n^{1-\epsilon} \log n)$$

$$= 0(n).$$

We inherit the notation of the proof of Theorem 2, and note that it suffices to show that $p_n = o(n^{-\epsilon})$ for some $\epsilon = \epsilon(A, d) > 0$. If (.)^c denotes the complement of a set, then for some sequence $a_n \to \infty$,

$$p_n \le E\left(\int_{S_{\delta,B_n}} f(x) \, \mathrm{d}x\right)$$

$$\le P(B_n < a_n) + P(\|X_i\| > a_n). \tag{22}$$

By Lemmas 1 and 3, $P(||X_1|| > a_n) \sim c' a_n^{d-2} \exp(-a_n^2/2)$ where c' is defined in Lemma 3. Choose ρ , ξ and θ as in the proof of Theorem 2, and note that they only depend upon A and d. Let us take $a_n = (\rho/2)\sqrt{(\log n)} = (\rho/2)\sqrt{(2(1-[1/2])\log n)}$. Clearly,

$$P(||X_1|| > a_n) = O((\log n)^{(d/2)-1} n^{-\rho^2/8}).$$
 (23)

Since we can always assume that $\theta < 1$, we have in particular $(1 + \theta/2)/(1 - \theta/2) < (1 + \theta)^2$. Hence,

$$P(B_n < a_n) \le P(B_n < (\rho/2)W') + P(W' < (2/\rho)a_n)$$

$$\le P\left(\frac{W}{W'} > 1 + \theta\right) + P(W' < \sqrt{(\log n)})$$

$$\le P\left(W > \sqrt{\left(2\left(1 + \frac{\theta}{2}\right)\log n\right) + 2P\left(W' < \sqrt{\left(2\left(1 - \frac{\theta}{2}\right)\log n\right)}\right)}.$$
(24)

Since $W \le \max_{i \le n} ||X_i||$, Lemma 3 shows that the former term of equation (24) is

$$0((\log n)^{(d/2)-1}n^{-\theta/2}). (25)$$

Let $\mathscr C$ be the collection of sets $\{C_0, C_1, \ldots, C_K, C_1'', \ldots, C_K''\}$ defined in the proof of Theorem 2. For any $C \in \mathscr C$, let $p(C) = P(X_1 \in C)$ and let $N(C) = \sum_{i=1}^n I_{[X_i \in C]}$ where I is the indicator function. Note that $\inf p(C) = p > 0$. Let m be the largest integer in pn/2. Then we have

$$P\left(W' < \sqrt{\left(2\left(1 - \frac{\theta}{2}\right)\log n\right)}\right)$$

$$\leq (2K + 1)P\left(\max_{i \leq m} ||X_i|| < \sqrt{\left(2\left(1 - \frac{\theta}{2}\right)\log n\right)}\right)$$

$$+ \sum_{i \leq m} P(N(C) \leq np(C)/2). \tag{26}$$

The former term on the right-hand-side of (26) $o(\exp(-n^{\theta/2}))$ Lemma 3. By Chebyshev's inequality [25], the latter term of (26) is $o(n^{-1})$ (in fact, one can show that it is $o(\exp(-np^2/2))$ by employing Hoeffding's exponential inequality). Combining (22), (23), (24),

L. DEVROYE

(25) and (26) shows that Theorem 4 is valid with

$$0 < \epsilon < \min\left(\frac{\rho^2}{8}, \frac{\theta}{2}\right).$$

REFERENCES

- 1. S. G. Akl and G. T. Toussaint, A fast convex hull algorithm. Information Processing Letters, 7, 219-222 (1978).
- 2. G. T. Toussaint, S. G. Akl and L. Devroye: Efficient convex hull algorithms for points in two and more dimensions, Tech. Rep. SOCS 78.5. School of Computer Science, McGill University, Montreal (1978).
- 3. A. Renyi and R. Sulanke, Uber die konvexe Hülle von n zufällig gewählten Punkten I, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 2, 75-84 (1963).
- 4. A. Renyi and R. Sulanke, Uber die konvexe Hülle von n zufällig gewählten Punkten II. Zeitschrift für Wahrscheinlichkeitsthearie und verwandte Gebiete 3, 138-147 (1964).
- 5. B. Efron, The convex hull of a random set of points. Biometrika 52, 331-343 (1965).
- 6. H. Raynaud, Sur le comportement asymptotique de l'enveloppe convex d'un nuage de points tirés au hasard dans R*. Compt. Rend. Acad. Sci. Paris 261, 627-629 (1965).
- 7. H. Carnal, Die knovexe Hülle von n rotationssymmetrische verteilten Punkten. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 15, 168-176 (1970).
- 8. J. F. C. Kingman, The ergodic theory of subadditive stochastic processes. J. Roy. Stat. Soc. Ser. B. 30, 499-510 (1968). 9. J. F. C. Kingman, Subadditive ergodic theory. Ann. Prob. 1, 883-909 (1973).
- 10. R. L. Wheeden and A. Zygmund, Measure and Integral, pp. 108-109. Marcel Dekker, New York (1977).
- 11. O. Barndorff-Nielsen: On the limit behaviour of extreme order statistics. Ann. Math. Stat. 34, 992-1002 (1963). Theory of Probability and its Applications, 11, 249-269 (1966).
- 12. L. Devroye, A note on finding convex hulls via maximal vectors. Information Processing Letters 11, 53-56 (1980).
- 13. R. A. Jarvis, On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters 2, 18-21 (1973).
- 14. F. G. Tricomi, Funzione ipergeometriche confluenti p. 174. Edizione Cremonese, Rome (1954).
- 15. B. V. Gnedenko, Sur la distribution limite du terme maximum d'un série aléatoire. Ann. Math. 44, 423-453 (1943).
- 16. J. Geffroy, Contributions à la théorie des valeurs extrêmes. Publications de l'institut de Statistique de l'Université de Paris, 7, 37-121 (1958).
- 17. W. Vervaat, Limit theorems for partial maxima and records. Mathematisch Centrum, Amsterdam (1978).
- 18. R. L. Graham, An efficient algorithm for determining the convex hull of a planar set. Information Processing Letters 1, 132-133 (1972).
- 19. F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions. Commun. ACM 20, 87-93 (1977).
- 20. M. I. Shamos, Geometric complexity. Proc. 7th Annual ACM Symp. on Automata and Computability Theory pp. 224-233 (1977).
- 21. J. L. Bentley, H. T. Kung, M. Schkolnick and C. D. Thompson, On the average number of maxima in a set of vectors and applications. J. ACM, 25, 536-543 (1978).
- 22. D. Kelker, Distribution theory of spherical distributions and a location-scale parameter generalization. Sankhya Series A 32, 419-430 (1970).
- 23. D. Avis, On the complexity of finding the convex hull of a set of points. Tech. Rep. SOCS 79.2. School of Computer Science, McGill University, Montreal (1979).
- 24. A. C. Yao, A lower bound to finding convex hulls. Tech. Rep. STAN-CS-79-733. Stanford University (1979).
- 25. W. Feller, An Introduction to Probability Theory and its Applications. 2nd Edn, Vol. 2. Wiley, New York (1971).
- 26. O. Barndorff-Nielsen and M. Sobel, On the distribution of the number of admissible points in a vector random sample. Theory of Probability and its Applications, 11, 249-269 (1966).
- 27. J. L. Bentley and M. I. Shamos, Divide and conquer for linear expected time. Information Processing Letters 7, 87-91
- 28. W. F. Eddy, A new convex hull algorithm for planar sets. ACM Trans. Math. Software 3, 398-403, 411-412 (1977).