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Abstract-Let X,. . ,X. be a sequence of independent Rd-valued random vectors with a common density f 
The following class of convex hull finding algorithms is considered: find the extrema in a finite number of 
carefully chosen directions; eliminate the Xi’s that belong to the interior of the polyhedron formed by these 
extrema; apply an O(A(n)) worst-case complexity algorithm to find the convex hull of the remaining points. 

We give weak sufficient conditions that imply that the overall average complexity is O(A(n)). We also 
show that for the standard normal density, the average complexity is O(n) whenever A(n) = n log n. 

I. INTRODUCTION 

In this paper we will prove some general theorems about the average complexity of convex hull 
finding algorithms that use the throw-away principle [ 11. 

Let {xi, . . . , x,} be a collection of points from R d, let S be the unit sphere of Rd(S= 
{x~~~x~l= l}), let A C S, and let x’y denote the inner product of x and y, two points from Rd. 

Definition 
The extremal polyhedron P of {xi, . . . ,x,,} with respect to A is the polyhedron whose 

vertices v are the extremal points of {x ,, . . . ,x,} with respect to A. A point u E {x1,. . . ,x.} is an 
extremal point with respect to A if v’y 2 x:y for all i and some y EA. The comvex huN of 

{XI,. * . ,x,} is the set of extremal points of {xl,. . . ,x,} with respect to S. 
We note here that the convex hull of an extremal polyhedron P is the set of vertices of P. 

Also, if card (A) = k, then P cannot have more than k vertices. Extremal polyhedra of 

{Xl, . . . ,xn} can be found in time O(n) whenever A is a finite set. The members of A can be 
considered as “directions” in which extrema are found. Akl and Toussaint[l] and Toussaint et 

al. [2] have shown that extremal polyhedra are very useful in the development of fast convex hull 
finding algorithms. Consider for example the following class of algorithms: 
ALGORITHM CH 

(i) Find the extremal polyhedron P of {x,, . . . ,x,} with respect to a finite A C S. 
(ii) Eliminate from {x,, . . . ,x,} all xi’s that belong to interior (P). 
(iii) Find the convex hull of the remaining points. Use an algorithm of your choice. 
Step (ii) will be called the throw-away step. If the points {x,, . . . ,x,,} all belong to S, then no 

points are eliminated in the throw-away step. However, (ii) becomes effective when the xi’s are 
sufficiently smoothly distributed. What we mean by “sufficiently smoothly distributed” will be 
clarified further on. From now on we will only consider random vectors X,, . . . ,X, from Rd 
that are independent and have a common density f. Let N be the number of elements of the 
convex hull of {X,, . . . ,X,}. For particular choices of f, the properties of N as n +co are 
well-known (see Refs. [3-71). Theorem 1, in contrast, is valid for all densities f. It shows that 
whenever the Xi’s have a density f, then only an asymptotically negligible fraction of them can 
belong to the convex hull. 

2. THE NUMBER OF POINTS ON THE CONVEX HULL 

THEOREM 1 

For any density on Rd, we have 

E(N) = o(n) 

and 
N 
;+Oa.s. as n +co. 
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(1) 

(2) 
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Proof of Theorem 1. Let Null be the number of elements of the convex hull of {Xk+,, . . . ,X1}. 

Clearly, 0 5 &tsl s &.ll + h,s19 all 1 I k < I < s. Thus, by the subadditive ergodic theorem 

([S, 91) there exists a constant c L 0 such that N/n + c a.s. as n 3~. Also, lim E(N)/n exists and 
*- 

equals c. Thus, Theorem 1 follows if we can show that E(N) = o(n). Since E(N) = np, where 
pn = P(X, belongs to the convex hull), it is clear that we need only establish that pn -+O as 
n +m. Let pnx be the probability that x belongs to the convex hull of {x, X,, . . . ,X,}. Then 

P. = ~nftx) dx. ‘I 
Thus, by the Lebesgue dominated convergence theorem, p,, + 0 if pnr +O as n + CQ for almost all 
xcf). This can be proven by using a special version of the Lebesgue density theorem. If 
x=(x’ , . . . ,xd) E Rd, then there are 2d d-fold products of intervals of the form ( - CQ, xi] or 
(xi, m). Each of these sets of Rd will be called a quadrant at x, and will be denoted by Q,. We 
let SI,, be the closed ball of Rd with center at x and radius r > 0. Then there exists a set B of 
Rd for which 

(9 ftx)>O, x EB, 

(ii) lim sup red 
r1° 0, I s “o If(y) - f(x)1 dy = 0, x E B, 

x.r I 

(iii) jB f(x) dx = 1. 

(see for example, Ref. [lo]). In particular, if V = 7r”‘2/I’((d/2)+ 1) is the volume of S, then for 
x E B and all quadrants Q,, we have 

f(y) dy -f(x) V2-d rd as r J 0. 

Now, for all r > 0, and fixed x E B, 

(3) 

which for r small enough is not greater than 

(1 -f(x)Vrd/2d+‘)n-‘+0 as n +a. 

This concludes the proof of Theorem 1. 

Remark 1 
We say that xl is a maximal oector of {xi,. . . ,x,} when at least one of the quadrants QI, at 

x1 does not contain any Xi, if 1. Let N* be the number of maximal vectors of {X1,. . , ,X,} 
where the Xi’s are independent Rd-valued random vectors with common density j. Clearly, 
N I N* 5 n because every convex hull point of {Xi,. . . ,X,} is also a maximal vector of 

IX,,... ,X,}. In Theorem 1, we have in fact shown that E(N*)/n +O and N*/n -0 a.s. as 
n +m. Without additional assumptions on f, very little additional information can be obtained 
about N*. We just menion here that if XI has a density f, and if all the (d) components of XI 
are independent, then 

E(N*) - 2’(log n)d-‘/(d - I)! as n --f =. 

(see Refs.[ll, 121 
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3. RADIAL DENSITIES 
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Let M be the number of Xi’s among X,, . . . , X,, that do not belong to the interior of P, the 
extremal polyhedron of {X,, , . . ,X,} with respect to A. When A is finite, E(M)/n is not 
necessarily small even when E(N)/n is. For example, if f is the uniform density on S, then it is 
necessarily true that 

E(M)/n 2 c > 0 (4) 

for some constant c = c(A), although Renyi and Sulanke [3] for d = 2 and Raynaud [6] for d 2 2 
have shown that 

E(N)/n = O(n -*‘cd+‘)). 

Thus, in view of equation (4), the effectiveness of the throw-away step is limited. Nevertheless, 
for some classes of densities we will have E(M)/n +O as n --)m. For example, Toussaint et 
al. [2] have shown that when f is uniformly distributed on a rectangle of R* and A consists of 4 
points of the form (2 l/d2, ? l/q/2), then 

E(M*) = O(n). 

However, unless the support of f has a special shape, there seems to be very little hope for 
obtaining small values for E(M) when f has a compact support. Of the class of densities with 
infinite support, the radial densities are undoubtedly the most important ones. 

Definition 
A density f on Rd is called radial when it is of the form 

f(x) = foW (5) 

where r = ]]x]] is the usual Euclidean norm of x. 
The properties of radial densities are well explained in Kelker[22]. For example, when 

equation (5) holds, then the random variable R = /IX/l has density 

g(r) = Vd rd-‘f&h r > 0, (6) 

whenever X has density f. We recall here that V is the volume of S. We will also use 

G(r)=P(Rzr)= (7) 

Definition 
A function L on [0, m) is slowly varying when L(t) > 0 for all t > 0 small enough, and 

limL(tu)= * 
t&0 L(t) ’ a11 ld’O. 

Definition 
A density f on Rd is called slowly varying radial (s.u.r.) when it is radial, and when the 

function G-’ determined by 

G-‘(u) = inf {tJG(t) = u} 

from G (see equation (7)) is slowly varying and G-‘(u)+m as u J 0. 
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LEMMA 1 
For all (I > 0, 

L. DEVROYE 

and 

Proof. For (8), see Tricomi [14]. Property (9) follows from (8) by using the transformation 
IA = P/2. 

Examples of s.v.r. densities 
When f is standard normal, then 

g(r) = Vd(2n)-“‘rd-’ e-r2’2 

and, by (9), 

G(r) - Vd(2n)-‘%d-2 e-r2’2 as r-)03. 

It is not hard to establish that f is s.v.r. from the last expression. Similarly, if fo(r) = e-7( Vd !), 
then g(r) = rd-’ e-‘/(d - l)! is the gamma density and G(r) - r”-’ e-‘/(d - l)! as r+w. Once 
again, f is s.v.r. 

Definition 
A cone C = C(x, y, f3) or Rd is determined by its top xeRd, its central direction y (where y E S) 

and its angle 13 > 0. It is the open set of all points z of Rd that satisfy 

angle (y, (2 - x)) < 0. 

Definition 
A collection %Y of cones C(0, y, (n/2)), y E A c S, with the property that 

covers Rd (except possibly the origin), is called a simple cone cover of Rd. In that case, we say 
that A generates a simple cone cover of Rd. 

Any d + 1 points of S that form a regular simplex define a set A that generates a simple cone 
cover of Rd. On the other hand, the minimal number of elements in A in order that %’ be a 
simple cone cover of Rd is d + 1. Besides the notion of a simple cone cover, we will also 
require an interesting property of all s.v.r. densities in Rd: 

h.lMA 2 
Let Se, be a partition of S into a finite number of measureable sets B,-,. For each B,,, let 

B = {xix = cy for some c > 0, y E BO} be the star set generated by BO, and let each set B have 
infinite Lebesgue measure. Let 48 = {BIBoE 3?,,}. 

Assume that X1,. . . , X, are independent random vectors from Rd with common s.v.r. 
density f, and define 

Xi 
X(B) = 

if X E B and llxil] = imazA IlXll, 

’ 0 if no Xi belongs to B. 
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Then 

(i) 

max I(X(B)l(/min(lX(B)I[~ 1 in probability as n + CQ, 
BE% BE58 

and 

(ii) 

Proof of Lemma 2. Let p = jr$ P(XI E B) > 0, and let N(E) the number of Xi’s in B. By 

the strong law of large numbers, N(B)/n --) P(X, E B) as. as n --f ~0. If we let m be the largest 
integer in np/2, then (i) follows if we can show that 

yjWill~G-l($) + 1 probability as n +m, 

and 

maxl/X#G-I($) + 1 in probability as n +m. (11) 
isn 

It is known that max/jXilI/a(n)+ 1 in probability as n 3~ for some sequence of numbers a(n) if 
isn 

and only if 

lirn G(ru) - = 0, 
T-UT G(r) 

all u > 1 (12) 

see Refs. [26,15,16], and that in such a case we may take a(n) = G-‘(lfn)fl7]. If (12) is valid, 
then also 

rnaxll&ll - G -I ($) in probability as n 400. 
ism 

Here we used the fact that G-’ is slowly varying. We merely have to check equation (12). But 
equation (12) is implied by the fact that G-’ is slowly varying and that G is continuous. Finally, 
(ii) is a straightforward consequence of G-‘(u) --fm as u J 0. This concludes the proof of 
Lemma 2. * 

4. THE AVERAGE COMPLEXITY OF ALGORITHM CH 
Consider algorithm CH with a given finite set A. For a given set {xl,. . . ,xn}, we will let C’i be 

the complexity of the ith step in the algorithm. By our assumptions, it is clear that 

C1 + C, = O(n), uniformly over all {x,, . . . ,xn}. (13) 

The convex hull finding algorithm in step 3 operates on MI n points. We are not specifying 
which algorithm will be used here, but we do assume the following: if the convex hull finding 
algorithm of step 3 is fed a sequence {x,, . . . J,}. then its complexity is uniformly bounded 
(over all such sequences) by 

A(n). (14) 

In R2, we can consider that A(n) = O(n log n) for the algorithms of Graham[lg], Preparata and 
Hong[l91, Shamost201, Toussaint et al. [21 and Bentley and Shamos[21]. and that A(n) = O(n2) 
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for the algorithms of Eddy[28] and Jarvis [13]. In R3, Preparata and Hong[l9] have proposed an 
algorithm with A(n) = O(n log n). We mention here that Avis [23] and Yao [24] have essentially 
established that A(n) 5 cn log n for some c > 0 when d = 2. 

Assume now that we present algorithm CH with a sequence X,, . . . ,X,, and that C = 
C(X,,... ,X,) is its complexity. With assumptions (13) and (14) it is clear that 

R(O = O(n) + O(E(A(M))) (15) 

where M is the number of the Xi’s not eliminated in the throw-away step. Thus, the average 
complexity of algorithm CH is small when M is small. We can now present our main theorems. 

THEOREM 2 
If A generates a simple cone cover of Rd, and if f is s.v.r., then 

E(M) = o(n) as n +a. 

THEOREM 3 

(16) 

If A is finite and generates a simple cone cover of Rd, if f is s.v.r. and if A(n)/n t CQ, then the 
complexity C of algorithm CH satisfies 

E(C) = o(A(n)). (17) 

Proof of Theorems 2 and 3. Theorem 3 follows easily 
(13)-(U) we have 

from Theorem 2: by equations 

E(C) = O(n) + O(E(A(M))) 

=O(n)+O(E(y:n))) 

= O(n)+O(A(n)E(M)/n) 

= O(n) + o(A(n)) 

= o(A(n)). (18) 

Next, note that if P({x,, . . . J,}) denotes the extremal polyhedron of {x,, . . . ,x,} with respect to 
A, then 

E(M) = nP(X, 65 int (P({X,, . . . ,X,}))) 

d nP(X, (Z int (P({X,, . . . ,X,}>)> 

It suffices to show that pn +O as n +m. We may always assume that A is a finite set, because 
if it is not, we can find a finite subset of A such that this finite subset generates a simple cone 
cover of Rd (by the Heine-Bore1 theorem), and because M = M(A, X,, . . . ,X,)5 
M(A’,X,, . . . ,X,) whenever A’ C A. 

Consider thus a finite set A with cardinality K, and let B, be the radius of the largest sphere 
with center at the origin that is entirely contained in P({X,, . . . ,X,}). It is clear that B,, +m in 
probability as n + m implies pn + 0 as n + m. 

Let p = p(A) be the radius of the largest sphere that is entirely contained in the polyhedron 
formed by the elements yI, . . . , y, of A, and let A’ be another set of K points of S, y;, . . . , y;(. 
The distance between A and A’ is 

d (A, A’) = max(]yi - y#. 
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For every E > 0, there exists 6 = t(e) > 0 such that d (A, A’) < 5 implies that ]p(A) - p(A’)I < E 
because p is a continuous function of yi, . . . ,yk. From here on, we let 

and define 

Consider all cones Cc = C(0, yi, (t/2)) and C\ = C(0, yit [), and form the differences c = C: - Ci. 
Let CO=Rd- UC:, and let X( Ci) and X( Ci) and X( C;) be defined from X,, . . . , X,, as in the proof 
of Lemma 2. Define further 

and 

By Lemma 2, when 5 > 0 is small enough, W/W’+ 1 and W’+a in probability as n +=J. Notice 
further that 

Therefore, by a purely geometrical argument, ( Wl W’) I 1 + 6 implies B, 5: (p/2) w’. Thus, for all 
constants c, however large, 

P(B, <r)-cP(B, +V’)+P($V<c) 

This concludes the proof of Theorem 2. 

Remark 2 
Theorem 3 can be considered as a validation of algorithm CH in view of its generality. In 

essence, for all s.v.r. densities, we can construct an E(C) = o(n log n) convex hull finding 
algorithm in R2 merely by the use of a throw-away step. It suffices to take for example a set A 
with the directions (1, O), (- 1, 0), (0,l) and (O,- 1); but the set {(l,O), (- l/V/2), (l/V/2)), 
(-(l/d2), -(11d2))} will also do. In Rd, the d unit vectors and their opposites always 
generate a simple cone cover of Rd. 

Remark 3 
Let X have an s.v.r, density f, and let A be a given nonsingular dxd matrix, then AX has an 

elliptically symmetric slowly varying density. Theorems 2 and 3 remain valid for such 
densities. 

5. THE NORMAL DENSITY 

We wish to conclude with a more specific result announced in Toussaint et al. [2] for normal 
densities. Since the normal density is s.v.r., we have E(C) = o(A(n)). Thus, since A(n)2 
cn log n for some c > 0 by the Avis-Yao result[23,24], at best Theorem 3 will allow us to 
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conclude that E(C) = o(n log n). For many densities, such as the normal density, this can be 
considerably improved (see Theorems 4 and 5 below). The following Lemma will be useful. 

LEMMA 3 
Let c > 0, and let n’- cn be a sequence of integers. Let X,, . . . ,X,, be a sequence of 

independent random variables with common density 

c’xdel e-““*, x > 0, 

where c’ = V&27r)‘* is a normalization constant. (Note that if Y is standard normal in Rd, then 
llYl[ is distributed as X,.) For all e > 0, 

P(max Xi > d/(2(1 + E) log tl)) = O((lOg n)(d’2)-‘n-c) 
irn’ (19) 

P(max Xi < g/(2(1 - P) log n)) = O(e+) 
isn’ 

cm 

as n+m. 

Proof of Lemma 3. Let F = 1 - G be the distribution function of X,, and recall from 
Lemma 1 that for any sequence (I, -*a, G(a,) - ~‘a:-* exp (- a:/2). Thus, 

P(max X < a,) = F”‘(a,) = (1 - G(u,))“’ 
i5n’ 

5 exp (- n’G(u,)) 

= exp ( - cc'( 1 t o( 1))nu d-2 # e+‘* ). 

With a, = (2(1- e) log n) ‘I*, the exponent becomes 

_(p- o(1)) (log n)(d’2)-1nc 

for some constant c” > 0. Formula (20) follows trivially. Also, 

P(maxXi > u,) 5 ~'G(u,) 
isn’ 

= cc’( 1 t o( l))n-‘(2( 1 t E) log n)(d12)-1 

when a, = (2(1 t E) log n) ‘I* This concludes the proof of Lemma 3. . 

THEOREM 4 
If A generates a simple cone cover of Rd, and if f is the standard normal density, then there 

exists an E = E(A, d) > 0 such that 

E(M) = O(n’-‘). (21) 

THEOREM 5 
If A is finite and generates a simple cone cover of Rd, if f is the standard normal density, 

and if A(n) = O(n log n), then algorithm CH satisfies: 

E(O = O(n). (22) 
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Proof of Theorems 4 and 5. Theorem 5 follows from Theorem 4 in view of 
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E(C) 5 O(n) + O(E(M log Ml) 

5 O(n) + O(E(M) log n) 

5 O(n) + o(n’-’ log n) 

= O(n). 

We inherit the notation of the proof of Theorem 2, and note that it suffices to show that 

Pn = o(n-‘) for some E = E(A, d) > 0. If (.)’ denotes the complement of a set, then for some 
sequence a, + 03, 

pn -( I,,, f(Wx) . II 
5 P(B, < a,) + fYllX,lI ’ a,). (22) 

By Lemmas 1 and 3, P<jjX,jj > a,) - c’a f-‘exp (- an2/2) where c’ is defined in Lemma 3. 
Choose p, ,$ and B as in the proof of Theorem 2, and note that they only depend upon A and d. 
Let us take II,, = (p/2)d(log n) = (p/2)d(2(1- [l/2]) log n. Clearly, 

P(llX,ll> a,) = O((log n)(“2)-‘n-P2’8). (23) 

Since we can always assume that 8 < 1, we have in particular (1 + d/2)/(1 - e/2) < (1 + e)2. Hence, 

P(B, C a,)5 P(B, < (p/2)W’)+P(w’< (2//%) 

aP(W> J(2(1+$logtl)+2P(W’< J(2(1-$lowl). (24) 

Since W 5 rnax~~.%J, L emma 3 shows that the former term of equation (24) is 
isn 

O((log n)(@)-‘n -e’2 ). (25) 

Let V be the collection of sets {C,-,, Cl, . . . ,CK,C;, . . . ,C@ defined in the proof of Theorem 2. 

For any CE %, let p(C) = P(X, EC) and let N(C) = izI ZIxiEcI where I is the indicator 

function. Note that inf p(C) = p > 0. Let m be the largest integer in pn/2. Then we have 

P(W’< \1(2(1-;)log~)) 

+ c P(N(C) 5 np(C)/2). 
CEO 

(26) 

The former term on the right-hand-side of (26) o(exp (- r~“~)) Lemma 3. By Chebyshev’s 
inequality [25], the latter term of (26) is O(n-‘) (in fact, one can show that it is 
O(exp (- np’l2)) by employing Hoeffding’s exponential inequality). Combining (22), (23), (24), 
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(25) and (26) shows that Theorem 4 is valid with 

2 e 
O<c<min $, 7j . ( > 
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