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Ahstraet-We consider the problem of the computer generation of a random variable X with a given 
characteristic function when the corresponding density and distribution function are not explicitly known or 
have complicated explicit formulas. Under mild conditions on the characteristic function, we propose and 
analyze a rejection/squeeze algorithm which requires the evaluation of one integral at a crucial stage. 

1. INTRODUCTION 

Consider the problem of the computer generation of a random variable X with a given 
continuous distribution function F. It is well-known that when U is a uniform (0, 1) random 
variable, then F-‘(U) has distribution function F (principle of inoersion). Often F is hard to 
invert but the density f of X is given in analytical form. One may then combine one or more of 
the following techniques to generate X on a computer: the rejection method, the composition 
method, the Forsythe-eon Neumann method [l, 21, the squeeze method [3], the ratio-of-~‘- 
forms method [4] or the partial integration method [5,6]. 

In some applications, statisticians are given the characteristic function #J of X and the 
computation of either F or f from 4 is hard. Often one is not willing to construct a gigantic 
table of values for F and/or f, and then use an interpolation type algorithm for the generation of 
random numbers (e.g. Ref. [7]). In this note, we will give a couple of direct methods for the 
computer generation of X when 4 is given, and we will put mild conditions on the class of 
characteristic functions considered here. 

2. MAIN RESULTS 

Let the random variable X have density f and characteristic function 

4(t) = E(etix) = 
I 

e”f(x) dx. 

To generate X on the computer, we will derive an integrable function g that dominates f: g 2 f, 
and use the rejection principle. For this derivation, we will need some conditions on 4 because 
the tail behavior of f is related to the smoothness of 4(t) near t = 0. We have: 

Inequality 1. If the characteristic function 4 of a random variable X is twice differentiable, 
and 4, 4’ and 4” are absolutely integrable and absolutely continuous, then X has a density f 
satisfying: 

f(x) 5 min (1) 

where 

k =&j-r It#Y(t)J dt. (3) 
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Proof. By the relation 
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f(x) = &I_‘= e-‘“4(t) dt 
Js 

which is valid whenever 4 is absolutely integrable[8], and by partial integration (which is 
allowed since C$ and its first two derivatives are absolutely continuous and absolutely in- 
tegrable), we have 

f(X) = -!- 
I 
+O” e-‘“4’(t) dt = -& 11 e-‘“4”(t) dt, 

27rxi _m 

from which (3) follows trivially. Also, (2) is an immediate consequence of (4). 
Thus, for a large class of characteristic functions, f is bounded from above by 

g(x) = min c,$ . 
( ) 

(5) 

(6) 

The area under g is easily seen to be A = 4d(kc). The smaller A is, the sharper the inequality 
f(x) I g(x) is. 

hiMA 1. 

Let k, c > 0 be arbitrary positive numbers. When VI and V, are i.i.d. uniform ( - 1,l) random 
variables, then 

has density A-‘g(x) where g is defined in (6), and A = 4d(kc) = _f?Z g(x) dx. 
Proof. When x < 1, we have P(] VI/ V,j < x) = x/2, and when x > 1, we have P(IVJ V,l< x) = 

I- 1/2x. Thus, the density of IV,/ V,( evaluated at x is min (l/2, 1/2x*). The generalization 
towards the density of I. V,/ V, is trivial. 

In principle, we are now able to generate X by the rejection method provided that we are able to 
compute the integral (4) with any desired accuracy. The basic algorithm is outlined below. 

Algorithm 
(1) Generate VI and V, i.i.d. uniform (-1, +l), and U uniform (0, 1) independent of VI and 

V,. Set X + d(k/c) V,/ V,. If 1 V,( < I V,l, go to 3. 
(2) If kU < f(X)X’, exit with X Otherwise, go to 1. Here f is evaluated with the aid of 

formula (4). 
(3) If cCJ <f(X), exit with X. Otherwise, go to 1. Here again, f is evaluated with the aid of 

formula (4). 
Remark 1. The average number of times step 1 is executed is 

This is also the average number of evaluations of the integral (4). One should keep in mind 
however that no inversion is necessary as, say, in the solution of 

I Xf(x)dx= U 
-m 

when U is given and f is given. 
Remark 2, When an explicit solution of (4) is possible, we are back in the case “f is 

known”, and the algorithm given above reduces to the ratio-of-uniforms method. 
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Remark 3. When X is a symmetric random variable, it is known that 4 is even and that its 
imaginary part vanishes. Thus, (4) can be simplified to 

f(x) = & J-1 cos (fx)4( t) dt. (7) 

Remark 4. For optimal efficiency, J]~]_&$“] should be small. When X has characteristic 
function 4, then X + m has characteristic function e”“+(t), and we may ask ourselves the 
question what the optimal value is for m. Clearly, 1141 is not affected by m. But 4”(t) = 
- J e’“x’f(x) dx ([8], p. 199) at least whenever E(X’)<m, so that d”(O) = E(X2) and 14”(t)J~ 
E(X’), all t. When X is replaced by X + m, then J&‘(t)j 5 E((X + m)‘), and this is minimal when 
m = - E(X). Therefore, generally speaking, the efficiency of the algorithm will be enhanced by 
centering at the mean. 

Remark 5. Inequality (1) is not applicable for the important class of characteristic functions 
that are real (hence, even) and whose gradient and second derivative exist except possibly at 
t = 0. For example, the Cauchy characteristic function exp (-It]) falls in this category. It is not 
hard to establish however that when 4 is real, 4, 4’ and 4” are absolutely continuous and 
absolutely integrable on (0, m), inequality (1) remains valid with the same c but a different k: 

k=$[l@(0)j+j-j”f(~)df]. (8) 

Indeed, by partial integration on (0, m), we have 

(9) 

The derivative d’(O) is the derivative from the right at 0. If in addition 4 is convex on (0, m), and 
if 6” decreases monotonically on (0, cQ), then 

(10) 

We finally notice that if 4 vanishes off (-a, +(Y) for some finite (Y, and if 4 is real, and &9’ and 
4” exist and are absolutely continuous and absolutely integrable on (0, a) (right derivatives are 
considered at t = 0 and left derivatives at t = a), then inequality (1) is valid with 

k=l 7T Id”(o)l+ I4’(a)l+ [~b$“(t)l dt 1. (11) 

An example of a characteristic function in this class is 1 - It], Jt( < 1. 
Remark 6. For the evaluation of (4) in practice, we refer to the literature on the evaluation 

of Fourier integrals and numerical integration in general (see for instance Ref. [9]). 

3. IMPROVEMENTS AND EXAMPLES 

We need a fast and good numerical integration algorithm for the evaluation of the integral 
(4). Fortunately, in many cases, a quick analysis of 4 will allow us to avoid evaluating (4) with 
large probability. For example, when 4 can be written as 

where a,, . . . , a, is a probability vector and d,, . . . ,c$, are characteristic functions, then 
composition can be used to generate X on a computer. First generate a (1,. . . , n}-valued 
random variable I with probability vector (a,, . . . , a,), and then generate X with characteristic 



550 L. DEVROYE 

&. Savings will result when di is easy from a simulation viewpoint (e.g., bi has a 
known density) whenever ai is large. 

We recall further that when X,, . . . ,X, are independent random variables with charac- 

teristic functions I#J,, . . . , &,, then i Xi has characteristic function 
i=l 

and that aXi + b has characteristic function eirb&(at). 
The problem with the composition method here is the establishment that each +i is a valid 

characteristic function (e.g. suppose $J is given, and that 4, is an “easy” characteristic function, 
what is the largest value for al such that (4 - u,4,)/(1- a,) is a valid characteristic function?). 
Bochner’s theore_m ([8], p. 207) which states that 4 is a characteristic function iff d(O) = 1, 4 is 
continuous and $J is nonnegative definite is of little use to us. 

In such situations, the squeeze principle may be applied. As an example, consider a real, 
nonnegative characteristic function 4 that is unimodal at t = 0 and has two strictly monotone 
tails (e.g. 4(t) = (1 + t2)-‘). By the inequalities 

cos tx 5 l- 
t2x2 t4x4 
2+ 

24 5 1 - bt*x*, (tx I< ; 

and 

t2x2 
cos tx 2 1 - -, all x, 

2 

where 

we have 

1 
f(x) 5 h*(X) = - 

2 I = Irxl<(n/Z) 
(1 - bt*x*)lc$(t)l dt 

and 

(12) 

(13) 

We have squeezed f between two functions, hi and h2. In many examples, h, and h2 are 
explicitly known because 4 and t24 have often known indefinite integrals whereas cos (tx)4 
has not. Notice also that hz 4 c where c is defined in (2). The basic algorithm with squeezing is: 

(1) Generate X with density A-‘g, and generate U uniform (0,l) independent of X. Set 
Tt Ug(X). 

(2) If T I h,(X), exit with X. 
(3) If T > h,(X), go to 1. 
(4) If T <f(X) (where f is computed using (4)), exit with X Otherwise, go to 1. 
Since h, and hz are explicitly known, we will avoid computing the integral in (4) some of the 

time. 

Example 1 
Some limit distributions. The weighted Cramer-von Mises statistic (see Ref. [lo], for a 

survey on this topic) has a limit distribution that depends upon the weight function that is used 
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in the definition of the statistic. Some of the limit distribution functions are known in an infinite 
series format (see Refs. [ll] or [12]). At least in two instances, the limit characteristic functions 
are very simple while the corresponding distribution functions are not: 

and 

,-2ait 
cos ; d( 1 + 8it) 

1”:. 

The characteristic function 4, varies near t = 0 as 1 - (jt(/6), and therefore, inequality 1 is not 
straightforwardly applicable. However, remark 5 applies here, and (1) remains valid with c as in 
(2) and k as in (8). 

Example 2 
Convex characteristic functions. Polya has shown that every even real function 4, convex 

on (0, x) with 4(O) = 1 is a characteristic function (see Ref. [8], p. 217, Ex. 13). The proof is 
based on the approximation from below of 4 by sums of triangular characteristic functions. 
The standard triangular characteristic function is 

4(t) = 1 - ItI, It/< 1. 

It is known to induce the density 

f(x) = 
1 - cos (x) 

72x2 . 

The random variate generation problem is trivial here. Nevertheless, we will use the triangular 
density as an example to test the tightness of some of the inequalities given above. It is clear 
that remark 5 applies here so that inequality (1) is valid with c as in (2), and k as in (11). Simple 
integration then yields 

The average work needed per variate is proportional to A = 4v(kc) = 4/7r. Thus, the bound 
f I g is very tight here. As a matter of fact, since A is so small, we may as well use the basic 
algorithm outlined in this note with of course the integral in (4) replaced by the explicit 
expression for f. This gives: 

(1) Generate V,, Vz i.i.d. uniform ( - 1,:) random variates, and set X-2 VI/V,. Generate II 
uniform (0,l) independent of V,, Vz. If /Xl< 2, go to 3. 

(2) If 2U < 1 - cos X, exit with X Otherwise, go to 1. 
(3) If UX’< 2 (1 - cos X), exit with X Otherwise, go to 1. 
Since we have 1 - cos (x) L (x2/2)-(x4/24), it is clear that we may quickly accept in 

step 2 when 2U < X2/2-(X4/24), and that we may quickly accept in step 3 when 
U < 1 -(p/12). Thus we can effectively avoid the cosine evaluation most of the time. 
Since all real convex characteristic functions are compositions (not necessarily finite!) of 
triangular characteristic functions, one might be able to use the given algorithm for b(t) = 1 - ItI 
as a building block in a more sophisticated composition-type algorithm for convex charac- 
teristic functions in general. 

Example 3 
Famous densities. The bounds derived here are surprisingly tight for many common 

unimodal densities. For example, the standard normal density has characteristic function 
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exp ( - P/2). One can easily check that c = (1/~‘(27r)), and that k = (l/d(27r))E(IX* - 11) where 
X is standard normally distributed. So that A = 4d(kc) is once again close to 1. 

When X is gamma distributed with parameters n and 1, then X - n has a density with the 
mode at 0. Its characteristic function is 

- itn 

40)-(l:it)“. -- 

It is a straightforward exercise to show that the values for c and k vary with n in such a way 
that A = 4V(kc) tends to the “normal” A as n + m. 

The Cuuchy density f(x) = IT-‘(~ + x2>-’ has characteristic function e-“l. By inequality 1 and 
remark 5 on convex characteristic functions (see (lo)), we see that (1) is valid with c = l/a and 
k = lllr. The important constant A equals 4/n, as in the case of the triangular characteristic 
function. 

REFEREJ;CES 

1. G. E. Forsythe, Von Neumann’s comparison method for random sampling from the normal and other distributions. 
Math. Comput. 26.817-826 (1972). 

2. J. von Neumann, Various techniques used in connection with random digits. Monte Carlo Method, National Bureau of 
Standards Series 12.36-38, (1951). 

3. G. Marsaglia. The squeeze method for generating gamma variates. Comput. Math. Applic. 3, 321-325 (1977). 
4. A. J. Kinderman and J. F. Monahan, Computer generation of random variables using the ratio of uniform deviates. 

ACM Trans. Math. Software, 3,257-2&I, 1977. 
5. G. A. Mikhailov, On modelling random variables for one class of distribution laws. Theory Prob. Applic. IO, 681-682 

(l%S). 
6. I. Lux. A special method to sample some probability density functions. Computing 20, 183-188 (1978). 
7. E. L. Butler, Algorithm 370. General random number generator. Comm. ACM 13,49-52 (1970). 
8. M. Loeve, Probability Theory. Van Nostrand, Princeton, New Jersey (1963). 
9. P. J. Davis and P. Rabinowitz, Numerical Integration. Blaisdell, London (1967). 

IO. D. A. Darling, The Kolmogorov-Smirnov, Cramer-von Mises tests. Ann. Moth. Std. 26, l-20 (1955). 
11. N. V. Smirnov, On the Cramer-von Mises criterion. Uspehi Matem. Nauk 4, 196-197 (lY4Y). 
12. T. W. Anderson and D. A. Darling, Asymptotic theory of certain “goodness of fit” criteria based on stochastic 

processes, Ann. Math. Stat. 23, 193-212 (1952). 


