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A LOG LOG LAW FOR MAXIMAL UNIFORM SPACINGS 1

BY LUC DEVROYE

McGill University
Let X1 , X2, • . . be a sequence of independent uniformly distributed

random variables on [0, 1] and Kn be the kth largest spacing induced by X 1 ,
X12 . We show that P(Kn < (log n - log3n - log 2)/n i .o .) = 1 where log,

is the j times iterated logarithm. This settles a question left open in Devroye
(1981) . Thus, we have

lim inf(nKn - log n + log3n) _ -log 2 almost surely,
and

lim sup(nK, t - log n)/2 log2n = 1/k almost surely .

1. Introduction . Consider a sequence X1 , X2 , of independent identically distrib-
uted random variables with a uniform distribution on [0, 1], and let Si(n), ..•, Sn+ i(n) be
the spacings induced by Xl , • . ., Xn on [0, 1] . Let Kn be the kth largest spacing among
SL (n), 1 <_ i <_ n + 1. Devroye (1981) has shown that

(1 .1)

	

lim sup(nKn - log n)/(2 log2n) = 1/k a.s .,

and that

(1 .2)

	

lim inf(nKn - log n + log3n) = c a.s .

where -log 2 < c <_ 0. The strong upper bound (1 .1) is now completely known for the case
k = 1 . In fact, we have for p ? 4,

P nKn ?logn+ 2 log2n+log3 n+

	

+log _1n+ (1 +8 )logni .on k

	

p

	

p
Jo

when 8 > 0 (Devroye, 1981)
1 when 8< 0 and k= 1 (Deheuvels, 1982) .

The purpose of this paper is to show that the constant c in (1 .2) is -log 2 .

THEOREM. Let Mn be the maximal spacing among Si (n), 1 <_ i < n + 1 . Then

P(Mn < ( log n - log3 n - log 2)/n i .o .) = 1 .

COROLLARY Since Kn <_ Mn , we may combine this result with Theorem 4.2 ofDevroye
(1981) :

1 when 8 = 0P(Kn < ( log n - log,in - log 2 - 8)/n i.o.) = 0 when 8 > 0.

2. Some Lemmas.

LEMMA 2 .1 . [Tail of the gamma distribution] (Devroye, 1981, Lemma 3 .1) .
If X is gamma (n) distributed, then for all e > 0,

P(X < n(1 - e)) <_ exp(-ne e/2) .
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LEMMA 2.2. [Tail of the binomial distribution] (Dudley, 1978, page 907) .
If X is a binomial (n, p) random variable where n ? 1, p E (0, 1), then

PROOF . See Dudley (1978) . The proof is based upon one of Okamoto's inequalities
(Okamoto, 1958) .

P(X?np+

P(X?k)<_
()kek_nPnp
k

E

	

E 3
= eXp - 2np +

2n
	 2p2) .

2

k ? np, k integer .

LEMMA 2.3. [Tail of the binomial distribution] .
If X is a binomial (n, p) random variable where n ? 1, p E (0, 1), then

2

	

3

P(X ? np + e) <_ exp - E + E2 2) ' e>0, np ? e .
2np 2n p

PROOF . We use Lemma 2 .2 and note that (np/k)kek "a is decreasing in k for k > e.
Thus, by the inequality log(1 + u) > u - u 2 /2, u > 0,

np+t

	

2np

	

er<eXp - (np+E) E

	

E2 2np + ~

	

np 2n p

LEMMA 2.4 . [Inequality for the multinomial distribution] .
If X 1 , • • •, X,~ are i .i.d. random variables uniformly distributed on [0, 1] and N 1 , • . .,

• are the number of X's in the intervals (0, a), (a, 2a), • . ., ((k - 1) a, ka) respectively
where ka <_ 1,k? 1,a? 0, then

(1 - (1 - a)n) k ? P(minlkNl ? 1)

(1 - exp(-an(1 - E))) k - exp(-ne e/2), all e E (0, 1) .

PROOF. The upper bound follows from Mallows' inequality (Mallows, 1968)

P(min 1 kN ~ 1) IEk-1 P(Ni ? 1)

The lower bound can be obtained by considering the i.i.d. sequence X1 , X2 , • • of uniform
[0, 1 ] random variables, and an independent Poisson (n(1 - e)) random variable Z . Clearly,
• • • • , Xz can be considered as the arrival times in a homogeneous Poisson point process
on [0, 1 ] with intensity n(1 - e) . Also, if N i , • . ., Nk are the cardinalities of the intervals
(0, a), (a, 2a), • • • , ((k - 1) a, ka) obtained from X1 , • • • , Xz, then

P(minl< i < kNi ? 1) _ (1 - exp(-an(1 - E))) k <_ P(min l <i< kNl ? 1) + P(Z > n) .

If G is a gamma (n) random variable, then, by Lemma 2.1,

P(Z ? n) <_ P(G < n(1 - e)) <_ exp(-ne e /2) .

LEMMA 2.5. Let u > 0 and let k ? 1 be integer. If Kn is the kth largest spacing S1 (n),
1<i<n+1,then

P(Kn > u) s e- n/2 + P(Z ~ k)

where Z is a binomial (p, n) random variable and p = euneun'v4

PROOF. We use the fact that (Si(n), 1 < i <_ n + 1) is distributed as (E L /T, 1 < i <_ n
•

	

1) where E1, • . ., En+1 are i .i .d . exponentially distributed random variables and T =
iii E1 . If E (k) is the k th largest of the E's, then

+ E I

1



by Lemma 2 .1 .

and
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P(Kn > u) = P(E(k) > u fl ± 1 EL) <_ P(11 E1 < n - n3/ 4 ) + P(E ( k) > u(n - n3/4 ))

exp(-J/2) + P(Z ? k)

LEMMA 2.6. [A strong law for the knth largest spacing] .
Let

un = ( log n - (1 + c)'log3n - log 2) /n,

	

c ? 2,

Pn = exp(- nun +n3/4u),

= 2 p•J2log2n+(2+c+B)log3n, 0>0,

kn = np n + &i

	

( is the ceiling function) .

If Kn is the kn th largest spacing among S L (n), 1 <_ i <_ n + 1, then

P(Kn > un f.o .) = 1 .

NOTE . We will need good asymptotic estimates of pn ,
quick check shows that

2(log 2n) 1+c 1°n1/4

= (J + o(1)) (log2n) l+c/2'

and

kn= 2 (log2 n) 1+c 1 + o(l0))
	 n

	

+ O((log2n)1+c/2 )
n 1/4

= 2 (loge n) 1+c (1 + O((log2n) -c/2) )
2 (log2 n) 1+c .

PROOF . Note that un and kn are monotone for n > N. Thus, for n > N, we have

P(Kn > un) 2knun+l ,

	

kn =P

	

kn+1
(Kn> un, Kn+1 s un+1) S P(Kn > un )

	

kn < kn+1

By Lemma 1 * of Barndorff-Nielsen (1961), it suffices to show that

(2 .1)

	

P(Kn > un ) - 0 as n - oc,
and that

(2 .2)

	

~n=1 P(Kn > un, Kn+1 un+1) < oc .

By Lemma 2.5, P(Kn > un ) < O(exp(-n 1 /3 )) + P(Z ? kn ) where Z is binomial (pn , n) . By
Lemma 2 .3, P(Z ? kn) <_ P(Z ? npn + &) <_ exp (-8 n/ (2npn) + 8n/(2n 2p n)) . Now,

Sn/(2n 2pn)

	

(log2n) (1-c/2)

Thus, if b = e ,

P(Z ? kn) <_ ( b + 0(1))/((log n) 2 (log2n)2+c+ e ),

so that (2 .1) holds. Furthermore,

8n and kn in what follows . A
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P(Kn > un)knun+l

	

(b + O(1))	• ( 2 + 0(1))(10
)1+~, log n

(log n) 2 (log 2n)2+C+8

	

g2n

	

n
2b + o(1)

n log n (log2n)1+e '

which is summable in n. To conclude the proof of (2 .2), we need only show that

~n:k,zk,?+J P(Kn > un) < oc •

Clearly, kn <_ 3(log2n) 1+c for all n large enough. For such n, we have log n
exp((kn/3)"cl+`>) . By our upper bounds for P(Kn > un ) obtained above it suffices to check
that

2+c+e

~n:k,t zk, +j (log n)-2(log2n)-(2+~+8> <

	

1 exp(-2(j/3)11 "+c')(j/3) 1+c

This concludes the proof of Lemma 2 .6.

3. Proof of the theorem . The proof is based upon the following implication :

[Mn < (log n - log3n - log 2)/n i.o.]

(3 .1)

	

D [K,,> (log n; - (1 + c)log3n; - log 2)/n; f.o .]

f1 [Any i .o .] f1 [Ma > (log n + 3 log2n)/n f.o.]
where

(i) n; is a monotone subsequence such that n; 1 - n; > p,, all j large enough, and

pn = en log3n/log n,

	

some c ? 2
(, is the floor function) ;

(ii) Kn , Pn , 8 n are defined as in Lemma 2 .6 ;
(iii) An is defined as follows : let mn = (log n - 4 log2n)/n. Let B 1 , • • •,Bkn disjoint sets

of [0, 1] with the property that each BL is a finite union of intervals whose boundaries
are measurable functions of X l , • • • ,Xn only; each Bi has Lebesgue measure mn ; and
B L either covers the ith largest spacing among SL(n), 1 < i <_ n + 1, or covers the
interval of length mn centered at the middle of this spacing (when the spacing itself
is larger than ma) . We let An be the event [all the B1's, 1 < i <_ kn , are occupied by
at least one Xi from Xn+1, • . . Xn+pn ] .

In (3 .1) we are using the fact that if Any occurs, Mn~ <_ (log n; + 3 log 2n,)/n;, and K,5 <_

(log n, - (1 + c)log3n; - log 2)/n;, then

(3 2)

	

Mn~+p,: < K, <_ (log n; - (1 + c) log3n, - log 2) /n,
.

<_ (log(n, + pn~) - log3 (n, + pn) - log 2)/(n; + pn, ) •

The last inequality in (3 .2) follows from our choice of pn because
n + pn (log n - (1 + c)log3n - log 2) - (log(n + pn) - log3(n + pn) -

log 2)
n

pn

	

n + pn

	

pnlog3n_<
n

log n - c nlog 3n <_ c log 3 n (1 - 1) - c n <_ 0 .

The first inequality in (3 .2) is valid because each of the k, largest intervals among SL(n;),
1 < i <_ n; + 1, is either smaller than m,, or is split into two intervals of length at most
(1/2)(m,, + (log n; + 3 log2n;)/n;) _ (log n; - (1/2)log 2n;)/n; . In either case, for n, large
enough, all the new intervals at time n, + p, , are smaller than (log n; - (1/2)log2n,)/n,
K,
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We have to show that the three events on the right-hand side of (3.1) have probability
one. By Lemma 2 .6,

P(K, > (log n, - (1 + c)log3n; - log 2)/n; f.o .) = 1 .

By (1 .1),

P(Mn > (log n + 3 log2n)/n f.o .) = 1 .

The Theorem follows if P(An~ i.o.) = 1. Let

	

be the a-algebra generated by Ani , • • •, A ny
(i.e ., it is the a-algebra generated by X 1 , X2 , • • •,

	

Since n; +1 - n; > p, for j large
enough, we have

P(An, I -1) = P(A) a.s.

for all large j. Thus, P(AfJ i .o .) = 1 when

(3 .3)

	

7= i P(A, )

(see for example Serfling (1975), Theorem 2 or Iosifescu and Theodorescu (1969), page 2,
for a more general statement of this type) . We are still free to choose n; within condition
(i) . Let us define

n, = exp(,/2c'j logej ), some c'> c .

Let us first check that n;+ 1 - iii > p,~ for all j large enough . A trivial analysis shows that

pn~ ^cn;log3n;/log n; ^n1 J(log 2j/2j) c/ c'

Also,

n; +1 - n; ? n;[exp(,12c'(j + 1)log 2(j + 1) - J2c'j logej) - 1] - 1
^n;[~2c'(j + 1)log 2(j + 1) - i2c'j log2j] - 1
n;log n;[1 + o(1)][v/1 + 1/j - 1] - 1
n;log n;/2j
n;J(log2j/2j) J .

Thus, (i) holds in view of J > c/ J .
We conclude the proof by showing that for this choice of n, , (3 .3) holds . A helpful lower

bound for P(An ) is provided in Lemma 2 .4 if we set a := n 114, a : _ (log n - 4 loge n) /n,
n := pn and k := kn in the formal inequality obtained there . This gives

- 4

	

k n
P(An ) ? 1 - exp - to	 g	n

n
10	 g2n pn (1 - n -114 )

	

- eXp(-p/2).

We note that

log n- 4 logen

	

5c log2n log3n c
n

	

pn (1 -
n114
- )

~ c
log3 n -

	

to n

	

2 log3 n,g

all n large enough.

Also, exp (-p n/2 V'i ) <_ exp (-cV log3n/2 log n) < exp (-n 113 ) for n large enough . By
combining these estimates, and using the inequality log(1 - u) ? -u/(1 - u), u E (0, 1), we
have

P(An) ? exp(-k n exp(-[c log;in - 5c log2n log ;in/log n])/(1 - exp(-(c/2) log3n)))

- eXp(-n "3 )
exp(-2 log2 n(1 + O((log2n)-`~2))) - exp(-n 113 ) .

=00
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We used the asymptotic estimate for kn given in the Note following Lemma 2 .6. Replacing
n by n; gives

P(A,~~) ? exp(-2 logv'2c'j log 2j(1 + O((log j)- ~~2))) - exp(-n)'3 )

1

	

1+o((logjY /2
)
- O(e' .

2c'j loge)

The last expression is not summable in j when c' > 0, c ? 2. This concludes the proof of
(3 .3) and the Theorem.
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