A LOG LOG LAW FOR MAXIMAL UNIFORM SPACINGS ${ }^{\mathbf{1}}$

By Luc Devroye
McGill University

Let X_{1}, X_{2}, \ldots be a sequence of independent uniformly distributed random variables on [0,1] and K_{n} be the k th largest spacing induced by X_{1}, \cdots, X_{n}. We show that $P\left(K_{n} \leq\left(\log n-\log _{3} n-\log 2\right) / n\right.$ i.o. $)=1$ where \log, is the j times iterated logarithm. This settles a question left open in Devroye (1981). Thus, we have

$$
\lim \inf \left(n K_{n}-\log n+\log _{3} n\right)=-\log 2 \quad \text { almost surely }
$$

and

$$
\lim \sup \left(n K_{n}-\log n\right) / 2 \log _{2} n=1 / k \quad \text { almost surely. }
$$

1. Introduction. Consider a sequence X_{1}, X_{2}, \cdots of independent identically distributed random variables with a uniform distribution on [0, 1], and let $S_{1}(n), \cdots, S_{n+1}(n)$ be the spacings induced by X_{1}, \cdots, X_{n} on [0, 1]. Let K_{n} be the k th largest spacing among $S_{\imath}(n), 1 \leq i \leq n+1$. Devroye (1981) has shown that

$$
\begin{equation*}
\lim \sup \left(n K_{n}-\log n\right) /\left(2 \log _{2} n\right)=1 / k \quad \text { a.s. } \tag{1.1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\lim \inf \left(n K_{n}-\log n+\log _{3} n\right)=c \quad \text { a.s. } \tag{1.2}
\end{equation*}
$$

where $-\log 2 \leq c \leq 0$. The strong upper bound (1.1) is now completely known for the case $k=1$. In fact, we have for $p \geq 4$,

$$
\begin{aligned}
P\left(n K_{n} \geq \log n+\frac{2}{k} \log _{2} n+\log _{3} n\right. & \left.+\cdots+\log _{p-1} n+(1+\delta) \log _{p} n \text { i.o. }\right) \\
& = \begin{cases}0 & \text { when } \delta>0 \text { (Devroye, 1981) } \\
1 & \text { when } \delta<0 \text { and } k=1 \text { (Deheuvels, 1982). }\end{cases}
\end{aligned}
$$

The purpose of this paper is to show that the constant c in (1.2) is $-\log 2$.
Theorem. Let M_{n} be the maximal spacing among $S_{i}(n), 1 \leq i \leq n+1$. Then

$$
P\left(M_{n} \leq\left(\log n-\log _{3} n-\log 2\right) / n \text { i.o. }\right)=1
$$

Corollary \quad Since $K_{n} \leq M_{n}$, we may combine this result with Theorem 4.2 of Devroye (1981):

$$
P\left(K_{n} \leq\left(\log n-\log _{3} n-\log 2-\delta\right) / n \text { i.o. }\right)= \begin{cases}1 & \text { when } \delta=0 \\ 0 & \text { when } \delta>0\end{cases}
$$

2. Some Lemmas.

Lemma 2.1. [Tail of the gamma distribution] (Devroye, 1981, Lemma 3.1). If X is gamma (n) distributed, then for all $\varepsilon>0$,

$$
P(X<n(1-\varepsilon)) \leq \exp \left(-n \varepsilon^{2} / 2\right)
$$

[^0]Lemma 2.2. [Tail of the binomial distribution] (Dudley, 1978, page 907).
If X is a binomial (n, p) random variable where $n \geq 1, p \in(0,1)$, then

$$
P(X \geq k) \leq\left(\frac{n p}{k}\right)^{k} e^{k-n p}, \quad k \geq n p, \quad k \text { integer. }
$$

Proof. See Dudley (1978). The proof is based upon one of Okamoto's inequalities (Okamoto, 1958).

Lemma 2.3. [Tail of the binomial distribution].
If X is a binomial (n, p) random variable where $n \geq 1, p \in(0,1)$, then

$$
P(X \geq n p+\varepsilon) \leq \exp \left(-\frac{\varepsilon^{2}}{2 n p}+\frac{\varepsilon^{3}}{2 n^{2} p^{2}}\right), \quad \varepsilon>0, \quad n p \geq e .
$$

Proof. We use Lemma 2.2 and note that $(n p / k)^{k} e^{k-n p}$ is decreasing in k for $k>e$. Thus, by the inequality $\log (1+u)>u-u^{2} / 2, u>0$,

$$
\begin{aligned}
P(X \geq n p+\varepsilon) & \leq\left(\frac{n p}{n p+\varepsilon}\right)^{n p+\varepsilon} e^{\varepsilon} \leq \exp \left(-(n p+\varepsilon)\left(\frac{\varepsilon}{n p}-\frac{\varepsilon^{2}}{2 n^{2} p^{2}}\right)+\varepsilon\right) \\
& =\exp \left(-\frac{\varepsilon^{2}}{2 n p}+\frac{\varepsilon^{3}}{2 n^{2} p^{2}}\right) .
\end{aligned}
$$

Lemma 2.4. [Inequality for the multinomial distribution].
If X_{1}, \cdots, X_{n} are i.i.d. random variables uniformly distributed on $[0,1]$ and N_{1}, \cdots, N_{k} are the number of X_{i} 's in the intervals $(0, a),(a, 2 a), \cdots,((k-1) a, k a)$ respectively where $k a \leq 1, k \geq 1, a \geq 0$, then

$$
\begin{aligned}
\left(1-(1-a)^{n}\right)^{k} & \geq P\left(\min _{1 \leq i \leq k} N_{i} \geq 1\right) \\
& \geq(1-\exp (-a n(1-\varepsilon)))^{k}-\exp \left(-n \varepsilon^{2} / 2\right), \quad \text { all } \quad \varepsilon \in(0,1) .
\end{aligned}
$$

Proof. The upper bound follows from Mallows' inequality (Mallows, 1968)

$$
P\left(\min _{1 \leq i \leq k} N_{i} \geq 1\right) \leq \prod_{i=1}^{k} P\left(N_{i} \geq 1\right) .
$$

The lower bound can be obtained by considering the i.i.d. sequence X_{1}, X_{2}, \cdots of uniform [0,1] random variables, and an independent Poisson $(n(1-\varepsilon)$) random variable Z. Clearly, X_{1}, \cdots, X_{Z} can be considered as the arrival times in a homogeneous Poisson point process on $[0,1]$ with intensity $n(1-\varepsilon)$. Also, if $N_{1}^{\prime}, \cdots, N_{k}^{\prime}$ are the cardinalities of the intervals $(0, a),(a, 2 a), \cdots,((k-1) a, k a)$ obtained from X_{1}, \cdots, X_{z}, then

$$
P\left(\min _{1 \leq i \leq k} N_{i}^{\prime} \geq 1\right)=(1-\exp (-a n(1-\varepsilon)))^{k} \leq P\left(\min _{1 \leq i \leq k} N_{i} \geq 1\right)+P(Z>n) .
$$

If G is a gamma (n) random variable, then, by Lemma 2.1,

$$
P(Z \geq n) \leq P(G<n(1-\varepsilon)) \leq \exp \left(-n \varepsilon^{2} / 2\right) .
$$

Lemma 2.5. Let $u>0$ and let $k \geq 1$ be integer. If K_{n} is the k th largest spacing $S_{i}(n)$, $1 \leq i \leq n+1$, then

$$
P\left(K_{n}>u\right) \leq e^{-\sqrt{n / 2}}+P(Z \geq k)
$$

where Z is a binomial (p, n) random variable and $p=e^{-u n} e^{u n^{3 / 4}}$.
Proof. We use the fact that $\left\{S_{i}(n), 1 \leq i \leq n+1\right\}$ is distributed as $\left\{E_{i} / T, 1 \leq i \leq n\right.$ $+1\}$ where E_{1}, \cdots, E_{n+1} are i.i.d. exponentially distributed random variables and $T=$ $\sum_{i=1}^{n+1} E_{i}$. If $E_{(k)}$ is the k th largest of the E_{i} 's, then

$$
\begin{aligned}
P\left(K_{n}>u\right)=P\left(E_{(k)}>u \sum_{i=1}^{n+1} E_{\imath}\right) & \leq P\left(\sum_{i=1}^{n+1} E_{\imath}<n-n^{3 / 4}\right)+P\left(E_{(k)}>u\left(n-n^{3 / 4}\right)\right) \\
& \leq \exp (-\sqrt{n} / 2)+P(Z \geq k)
\end{aligned}
$$

by Lemma 2.1.
Lemma 2.6. [A strong law for the k_{n} th largest spacing].
Let

$$
\begin{aligned}
u_{n} & =\left(\log n-(1+c) \log _{3} n-\log 2\right) / n, \quad c \geq 2, \\
p_{n} & =\exp \left(-n u_{n}+n^{3 / 4} u_{n}\right), \\
\delta_{n} & =\sqrt{2 n p_{n}} \cdot \sqrt{2 \log _{2} n+(2+c+\theta) \log _{3} n}, \quad \theta>0, \\
\text { and } \quad k_{n} & =\overparen{n p_{n}+\delta_{n}} \quad(\square \text { is the ceiling function }) .
\end{aligned}
$$

If K_{n} is the k_{n} th largest spacing among $S_{l}(n), 1 \leq i \leq n+1$, then

$$
P\left(K_{n}>u_{n} \quad \text { f.o. }\right)=1
$$

Note. We will need good asymptotic estimates of p_{n}, δ_{n} and k_{n} in what follows. A quick check shows that

$$
\begin{aligned}
& p_{n}=\frac{2\left(\log _{2} n\right)^{1+c}}{n}\left(1+O\left(\frac{\log n}{n^{1 / 4}}\right)\right), \\
& \delta_{n}=(\sqrt{8}+o(1))\left(\log _{2} n\right)^{1+c / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
k_{n} & =2\left(\log _{2} n\right)^{1+c}\left(1+O\left(\frac{\log n}{n^{1 / 4}}\right)\right)+O\left(\left(\log _{2} n\right)^{1+c / 2}\right) \\
& =2\left(\log _{2} n\right)^{1+c}\left(1+O\left(\left(\log _{2} n\right)^{-c / 2}\right)\right) \\
& \sim 2\left(\log _{2} n\right)^{1+c}
\end{aligned}
$$

Proof. Note that u_{n} and k_{n} are monotone for $n>N$. Thus, for $n>N$, we have

$$
P\left(K_{n}>u_{n}, K_{n+1} \leq u_{n+1}\right) \leq \begin{cases}P\left(K_{n}>u_{n}\right) 2 k_{n} u_{n+1}, & k_{n}=k_{n+1} \\ P\left(K_{n}>u_{n}\right) & k_{n}<k_{n+1}\end{cases}
$$

By Lemma 1* of Barndorff-Nielsen (1961), it suffices to show that

$$
\begin{equation*}
P\left(K_{n}>u_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

and that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(K_{n}>u_{n}, K_{n+1} \leq u_{n+1}\right)<\infty \tag{2.2}
\end{equation*}
$$

By Lemma 2.5, $P\left(K_{n}>u_{n}\right) \leq O\left(\exp \left(-n^{1 / 3}\right)\right)+P\left(Z \geq k_{n}\right)$ where Z is binomial $\left(p_{n}, n\right)$. By Lemma 2.3, $P\left(Z \geq k_{n}\right) \leq P\left(Z \geq n p_{n}+\delta_{n}\right) \leq \exp \left(-\delta_{n}^{2} /\left(2 n p_{n}\right)+\delta_{n}^{3} /\left(2 n^{2} p_{n}^{2}\right)\right)$. Now,

$$
\delta_{n}^{3} /\left(2 n^{2} p_{n}^{2}\right) \sim \sqrt{8}\left(\log _{2} n\right)^{(1-c / 2)}
$$

Thus, if $b=e^{\sqrt{8}}$,

$$
P\left(Z \geq k_{n}\right) \leq(b+o(1)) /\left((\log n)^{2}\left(\log _{2} n\right)^{2+c+\theta}\right)
$$

so that (2.1) holds. Furthermore,

$$
\begin{aligned}
P\left(K_{n}>u_{n}\right) k_{n} u_{n+1} & \leq \frac{(b+o(1))}{(\log n)^{2}\left(\log _{2} n\right)^{2+c+\theta}} \cdot(2+o(1))\left(\log _{2} n\right)^{1+c} \cdot \frac{\log n}{n} \\
& =\frac{2 b+o(1)}{n \log n\left(\log _{2} n\right)^{1+\theta}},
\end{aligned}
$$

which is summable in n. To conclude the proof of (2.2), we need only show that

$$
\sum_{n: k_{n}<k_{n+1}} P\left(K_{n}>u_{n}\right)<\infty .
$$

Clearly, $k_{n} \leq 3\left(\log _{2} n\right)^{1+c}$ for all n large enough. For such n, we have $\log n \geq$ $\exp \left(\left(k_{n} / 3\right)^{1 /(1+c)}\right)$. By our upper bounds for $P\left(K_{n}>u_{n}\right)$ obtained above it suffices to check that

$$
\sum_{n: k_{n}<k_{n+1}}(\log n)^{-2}\left(\log _{2} n\right)^{-(2+c+\theta)} \leq \sum_{j=1}^{\infty} \exp \left(-2(j / 3)^{1 /(1+c)}\right)(j / 3)^{-\frac{2+c+\theta}{1+c}}<\infty
$$

This concludes the proof of Lemma 2.6.
3. Proof of the theorem. The proof is based upon the following implication:

$$
\begin{align*}
& {\left[M_{n}<\left(\log n-\log _{3} n-\log 2\right) / n \text { i.o. }\right]} \\
& \quad \supset\left[K_{n,}>\left(\log n_{j}-(1+c) \log _{3} n_{j}-\log 2\right) / n_{j} \text { f.o. }\right] \tag{3.1}\\
& \quad \cap\left[A_{n_{j}} \text { i.o. }\right] \cap\left[M_{n}>\left(\log n+3 \log _{2} n\right) / n \text { f.o. }\right]
\end{align*}
$$

where
(i) n_{j} is a monotone subsequence such that $n_{j+1}-n_{j}>\rho_{n}$, all j large enough, and

$$
\rho_{n}=c n \log _{3} n / \log n, \quad \text { some } \quad c \geq 2
$$

(ω is the floor function);
(ii) K_{n}, p_{n}, δ_{n} are defined as in Lemma 2.6;
(iii) A_{n} is defined as follows: let $m_{n}=\left(\log n-4 \log _{2} n\right) / n$. Let $B_{1}, \cdots, B_{k_{n}}$ disjoint sets of $[0,1]$ with the property that each B_{\imath} is a finite union of intervals whose boundaries are measurable functions of X_{1}, \cdots, X_{n} only; each B_{i} has Lebesgue measure m_{n}; and B_{\imath} either covers the i th largest spacing among $S_{\imath}(n), 1 \leq i \leq n+1$, or covers the interval of length m_{n} centered at the middle of this spacing (when the spacing itself is larger than m_{n}). We let A_{n} be the event [all the B_{i} 's, $1 \leq i \leq k_{n}$, are occupied by at least one X_{i} from $X_{n+1}, \cdots X_{n+\rho_{n}}$].

In (3.1) we are using the fact that if $A_{n_{j}}$ occurs, $M_{n_{j}} \leq\left(\log n_{j}+3 \log _{2} n_{j}\right) / n_{j}$, and $K_{n_{j}} \leq$ $\left(\log n_{j}-(1+c) \log _{3} n_{j}-\log 2\right) / n_{j}$, then

$$
\begin{align*}
M_{n_{j}+\rho_{n_{j}}} & \leq K_{n_{J}} \leq\left(\log n_{j}-(1+c) \log _{3} n_{\jmath}-\log 2\right) / n_{J} \tag{3.2}\\
& \leq\left(\log \left(n_{J}+\rho_{n_{J}}\right)-\log _{3}\left(n_{J}+\rho_{n_{J}}\right)-\log 2\right) /\left(n_{j}+\rho_{n_{j}}\right)
\end{align*}
$$

The last inequality in (3.2) follows from our choice of ρ_{n} because

$$
\begin{aligned}
& \frac{n+\rho_{n}}{n}\left(\log n-(1+c) \log _{3} n-\log 2\right)-\left(\log \left(n+\rho_{n}\right)-\log _{3}\left(n+\rho_{n}\right)-\log 2\right) \\
& \quad \leq \frac{\rho_{n}}{n} \log n-c \frac{n+\rho_{n}}{n} \log _{3} n \leq c \log _{3} n(1-1)-c \frac{\rho_{n} \log _{3} n}{n} \leq 0
\end{aligned}
$$

The first inequality in (3.2) is valid because each of the k_{n} largest intervals among $S_{l}\left(n_{j}\right)$, $1 \leq i \leq n_{j}+1$, is either smaller than $m_{n_{j}}$ or is split into two intervals of length at most $(1 / 2)\left(m_{n_{j}}+\left(\log n_{j}+3 \log _{2} n_{j}\right) / n_{j}\right)=\left(\log n_{j}-(1 / 2) \log _{2} n_{j}\right) / n_{j}$. In either case, for n_{j} large enough, all the new intervals at time $n_{\jmath}+\rho_{n_{j}}$ are smaller than $\left(\log n_{j}-(1 / 2) \log _{2} n_{j}\right) / n_{j} \leq$ K_{n}.

We have to show that the three events on the right-hand side of (3.1) have probability one. By Lemma 2.6,

$$
P\left(K_{n_{J}}>\left(\log n_{J}-(1+c) \log _{3} n_{j}-\log 2\right) / n_{j} \quad \text { f.o. }\right)=1
$$

By (1.1),

$$
P\left(M_{n}>\left(\log n+3 \log _{2} n\right) / n \quad \text { f.o. }\right)=1
$$

The Theorem follows if $P\left(A_{n_{1}}\right.$ i.o. $)=1$. Let \mathscr{F}_{j} be the σ-algebra generated by $A_{n_{1}}, \cdots, A_{n_{1}}$ (i.e., it is the σ-algebra generated by $X_{1}, X_{2}, \cdots, X_{n_{j}+\rho_{n j}}$). Since $n_{j+1}-n_{j}>\rho_{n_{j}}$ for j large enough, we have

$$
P\left(A_{n_{j}} \mid \mathscr{F}_{j-1}\right)=P\left(A_{n_{j}}\right) \quad \text { a.s. }
$$

for all large j. Thus, $P\left(A_{n}\right.$ i.o. $)=1$ when

$$
\begin{equation*}
\sum_{j=1}^{\infty} P\left(A_{n_{j}}\right)=\infty \tag{3.3}
\end{equation*}
$$

(see for example Serfling (1975), Theorem 2 or Iosifescu and Theodorescu (1969), page 2, for a more general statement of this type). We are still free to choose n_{j} within condition (i). Let us define

$$
n_{J}=\underline{\exp \left(\sqrt{2 c^{\prime} j \log _{2} j}\right)}, \quad \text { some } c^{\prime}>c
$$

Let us first check that $n_{j+1}-n_{j}>\rho_{n}$ for all j large enough. A trivial analysis shows that

$$
\rho_{n_{j}} \sim c n_{j} \log _{3} n_{j} / \log n_{j} \sim n_{j} \sqrt{\left(\log _{2} j / 2 j\right)} c / \sqrt{c^{\prime}}
$$

Also,

$$
\begin{aligned}
n_{j+1}-n_{j} & \geq n_{j}\left[\exp \left(\sqrt{2 c^{\prime}(j+1) \log _{2}(j+1)}-\sqrt{2 c^{\prime} j \log _{2} j}\right)-1\right]-1 \\
& \sim n_{j}\left[\sqrt{2 c^{\prime}(j+1) \log _{2}(j+1)}-\sqrt{2 c^{\prime} j \log _{2} j}\right]-1 \\
& \geq n_{j} \log n_{j}[1+o(1)][\sqrt{1+1 / j}-1]-1 \\
& \sim n_{j} \log n_{j} / 2 j \\
& \sim n_{j} \sqrt{\left(\log _{2} j / 2 j\right)} \sqrt{c^{\prime}} .
\end{aligned}
$$

Thus, (i) holds in view of $\sqrt{c^{\prime}}>c / \sqrt{c^{\prime}}$.
We conclude the proof by showing that for this choice of n_{J}, (3.3) holds. A helpful lower bound for $P\left(A_{n}\right)$ is provided in Lemma 2.4 if we set $\varepsilon:=n^{-1 / 4}, a:=\left(\log n-4 \log _{2} n\right) / n$, $n:=\rho_{n}$ and $k:=k_{n}$ in the formal inequality obtained there. This gives

$$
P\left(A_{n}\right) \geq\left(1-\exp \left(-\left(\frac{\log n-4 \log _{2} n}{n}\right) \rho_{n}\left(1-n^{-1 / 4}\right)\right)\right)^{k_{n}}-\exp \left(-\rho_{n} / 2 \sqrt{n}\right)
$$

We note that

$$
\left(\frac{\log n-4 \log _{2} n}{n}\right) \rho_{n}\left(1-n^{-1 / 4}\right) \geq c \log _{3} n-\frac{5 c \log _{2} n \log _{3} n}{\log n} \geq \frac{c}{2} \log _{3} n
$$

all n large enough.
Also, $\exp \left(-\rho_{n} / 2 \sqrt{n}\right) \leq \exp \left(-c \sqrt{n} \log _{3} n / 2 \log n\right) \leq \exp \left(-n^{1 / 3}\right)$ for n large enough. By combining these estimates, and using the inequality $\log (1-u) \geq-u /(1-u), u \in(0,1)$, we have

$$
\begin{aligned}
P\left(A_{n}\right) & \geq \exp \left(-k_{n} \exp \left(-\left[c \log _{3} n-5 c \log _{2} n \log _{3} n / \log n\right]\right) /\left(1-\exp \left(-(c / 2) \log _{3} n\right)\right)\right) \\
& -\exp \left(-n^{1 / 3}\right) \\
& \geq \exp \left(-2 \log _{2} n\left(1+O\left(\left(\log _{2} n\right)^{-c / 2}\right)\right)\right)-\exp \left(-n^{1 / 3}\right)
\end{aligned}
$$

We used the asymptotic estimate for k_{n} given in the Note following Lemma 2.6. Replacing n by n_{j} gives

$$
\begin{aligned}
P\left(A_{n_{j}}\right) & \geq \exp \left(-2 \log \sqrt{2 c^{\prime} j \log _{2} j}\left(1+O\left((\log j)^{-c / 2}\right)\right)\right)-\exp \left(-n_{j}^{1 / 3}\right) \\
& =\left[\frac{1}{2 c^{\prime} j \log _{2} j}\right]^{1+O\left((\log j)^{-c / 2}\right)}-O\left(e^{-j}\right)
\end{aligned}
$$

The last expression is not summable in j when $c^{\prime}>0, c \geq 2$. This concludes the proof of (3.3) and the Theorem.

REFERENCES

[1] Barndorff-Nielsen, O. (1961). On the rate of growth of the partial maxima of a sequence of independent identically distributed random variables. Math. Scand. 9 383-394.
[2] Deheuvels, P. (1982). Strong limiting bounds for maximal uniform spacings. Ann. Probability 10, to appear.
[3] Devroye, L. (1981). Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probability 9 860-867.
[4] Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann. Probability 6 899-929.
[5] Iofisescu, M. and Theodorescu, R. (1969). Random Processes and Learning. Springer-Verlag, New York.
[6] Mallows, C. L. (1968). An inequality involving multinomial probabilities. Biometrika 55 422-424.
[7] Окамото, M. (1958). Some inequalities related to the partial sum of binomial probabilities. Ann. Inst. Statist. Math. 10 29-35.
[8] Serfling, R. J. (1975). A general Poisson approximation theorem. Ann. Probability 3 726-731.
School of Computer Science McGill University
805 Sherbrooke Street West Montreal, Canada H3A2K6

[^0]: Received June 1981.
 ${ }^{1}$ This research was sponsored in part by National Research Council of Canada Grant No. A3456. AMS 1980 subject classification. Primary 60F15.
 Key words and phrases. Law of the iterated logarithm, uniform spacings, strong laws, almost sure convergence, order statistics.

