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Abstract-The convex hull of X,,. . ., X., a sample of independent identically distributed Rd-valued 
random vectors with density f is called a random convex hull with parameters f and II. In this paper, we 
give an a orithm for the computer generation of random convex hulls when f is radial, i.e. when 
j(x) = g(ll $ l)Tor some function g. Then we look at the average time E(r) of the algorithm under a convenient 
computatibnal model. We consider only d = 2. 

We show that for any f, our &orithm takes average time fi(log n). This lower bound is achieved for all 
radial densities with a polynomially decreasing tail. For the radial densities with an exponentially decreasing 
tail, we $ha,w that E(T) = O(log3’*n). Finally, for the uniform density on the unit circle, we have 
E( 7J = O(,“l lo~?n). This rate is also shown to be optimal for this density. 

1. INTRODUCTION 
In computer science, one needs random convex hulls to test and time various algorithms that 
perform certain operations on convex hulls. In statistics, random convex hulls are needed to 
obtain Monte Carlo estimates of various statistics derived from the random convex hull. In this 
paper, we look at some algorithms for the fast generation of random convex hulls and their 
complexities. 

Definition. The conuex hull of {x1, . . . ,x,} E Rd is the collection of all Xi, 1 I i I n, with the 
property that there exists a closed linear halfspace H containing all Xi’s while interior(H) does 
not contain Xi. When f is a density on Rd, and n is a positive integer, then we define a random 
convex hull with parameters (f, n) as the convex hull of a random sample X,, . . . ,X, of 
independent identically distributed random vectors with common density f. 

For an elegant analysis, we make .the following convenient assumptions: 
(1) Real numbers can be stored in our computer. All common operations (+, -, ., I, mod, 

truncate, compare, move) take time bounded between a > 0 and b < m, regardless of the size of 
the operands. 

(2) We are given a perfect uniform random variate generator, capable of producing a 
sequence U,, U,, . . . of independent identically distributed random variables with a uniform 
density on (0,l). The time taken per random variate is a positive constant. 

(3) {Y,, * * * , YN} (the random convex hull generated by our algorithm) and T (time taken by 
the algorithm before it halts) are Bore1 measurable functions of U,, U,, . . . , and T < CO almost 
surely. 

Assumption 3 essentially insures us that the cardinality N and the time T are random 
variables. Thus, we may speak of the average time E(T) taken by the algorithm, etc. The 
Landau symbols 0, o and - will be used throughout the paper. The symbol fi is defined as 
follows: if a, and b, are two positive number sequences, then a, = fl(b,) when there exist n, 
and k > 0 such that a, 2 kb, for all n r n,. 

Any algorithmfor generating random convex hulls with parameters (j, n) must satisfy 

E(T) = NE(N)). (I) 

We also have an upper bound for E(T) when random convex hulls are generated by the naive 
algorithm given below: 

(1) Generate X,, . . . , X,,, independent identically distributed random variates with common 
density f. 
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(2) Find the convex hull of {X,, . . . ,X,} and exit. 
Step 1 takes average time O(n) if X, can be generated in average time O(1) (note: the latter 

part of this statement seems trivial, but it is necessary because some algorithms take average 
time E(T) = 03 although T < CC almost surely, e.g. let T = i with probability l/((i + l)i), i z 1). In 
many instances, Step 2 takes average time O(n) as well although the worst-case time of Step 2 
may be much worse. Linear average time is usually achieved by means of an elimination 
algorithm[9, 111, a bucketing algorithm [lo, 121; or a divide-and-conquer algorithm [3,13]. See 
Devroye [14] for a survey. In the plane, Step 2 can always be executed in time bounded by 
O(n log n)[15,31]. Thus, for all densities f, the naive algorithm satisfies 

E(T) = O(n log n). (2) 

For some densities j, the naive algorithm has E(T) = O(n), which is best possible since we must 
also have E(T) = a(n) in view of Step 1. In view of (1), the naive algorithm can only be 
expected to be a “good” algorithm for this problem when E(N) is close to n. It is known 
however that E(N) = o(n) for all densities f[ll]. In most practical cases, E(N) is much smaller 
than n, for example: E(N) - (2k/3) log IZ when f is uniform on a convex polygon of R* with k 
vertices [26,27]; E(N) - 2d(27r log n) when f is normal in R* [26]; E(N) - constant n”3 when f is 
uniform in the unit circle [6]. 

In view of this, even the best naive algorithm seems wasteful. We would like to give an 
algorithm in which the lower bound (1) is approached. Such an algorithm cannot possibly 
require the generation of X,, . . . , X,,. For general densities f, this problem seems very com- 
plicated. We will restrict ourselves to radial densities in the plane. 

Definition. A random variable X taking values in R* is said to be radial when it has a radial 
density f, i.e. when j can be written as 

f(x) = dll4l) 

for some function g. Here ()*I] is the usual Euclidean norm. 
For the distribution theory of radial random variables, see Kelker (1970). We would like to 

point out that R = (1X1( has density 

h(r) = 2vrg(r), r>o, 

when g(]]x(]) is the density of X in R*. We will call the distribution function of R H(r) = 
P(Rsr)=l-G(r), rr0. 

The algorithm 
Let pn E (0,l) be a given number depending upon f and n only. Determine a radius r, such 

that G(r,) = P”. Let f = fi + f2 = &lar.~ + &~~~~.r where I is the indicator function. 
Step 1. Generate a binomial (n,p,) random variable M. Given M, generate independent 

identically distributed random vectors W,, . . . , W, with common density fr/p.. 
Step 2. Find the convex hull of { W,, . . . , W,}, and find its radius R, where 

0, if M = 0 or if the origin does not belong to the convex 
R, = 

min 
set defined by the convex hull; 

all edges e 
distance (e, origin), otherwise. 

determined by adjacent 
vertices of the convex hull 

Step 3. If R,, 2 r,, exit with the given convex hull. Otherwise, generate WM+,, . . . , W,, 
independent random vectors with common density f2/(l - p), and conditionally independent of 
WI,..., W, (the condition is on M). Find the convex hull of WM+,, . . . , W,,, merge both 
convex hulls into a new convex hull, and exit. 
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1. [Validity]. When R, 1 r,, no point inside the circle of radius r, centered at the origin can 
possibly belong to the random convex hull. Thus, the algorithm given here is exact. Note here 
that to reduce E(T), P(R, 1 r”) should be close to 1. 

2. [Binomial random variate generation]. A binomial (n, p) random variate can be obtained 
in average time bounded by a constant c not depending upon n or p [2,8]. These algorithms are 
not crucial in the reduction of E(T). We will not alter the asymptotic rate of E( 2”) if binomial 
(n, p) random variates are generated in average time O(1 + np). This can be achieved by one of 
two simple “Exponential” algorithms: 

(A) Generate independent exponential random variates E,, E2,. . . until for the first time the 

sum 

Then X is binomial (n, p) [7]. 
(B) Generate independent exponential random variates El, E2,. . . until for the first time the 

sum 

x+1 

z1 *>-w-P). 
Then X is binomial (n, p)[24]. 

3. [Generating from f,/p,]. Every radial random variable X is distributed as 
(R cos 0, R sin 0) where R and 19 are independent random variables: R has distribution function 
H, and 19 is uniformly distributed on (0,2~). If H is invertible, then 

H-‘(U),H-‘(p,Ut(l-p,))andH-‘(U(l-p,)) 

are random variables with densities f, fJp, and f&l -p,) respectively, when U is a uniform 
(0,l) random variable. Let T, be the time needed to generate a random variate from each of 
these densities; then we will assume that 

sup E( T,) < a. 
n 

(3) 

In the case of the inversion method, this boils down to making an assumption about the average 
computation time of H-l. It was reported in Devroye[7] that the inversion method is not very 
accurate when p,, is small for generating random variates with distribution function (H(u)- 
H(r,))/(l -H(r,)), u > r,. Other methods, usually involving rejection at some point, seem to 
give more accurate results. If inversion cannot be used for generating a random variate R with 
distribution function H(u)/H(r,), u I r,, then we can use the following trivial rejection 
method: 

(1) Generate a random variate R with distribution function H. 
(2) If R > r,, go to 1. Otherwise, exit with R. 
If generation from H takes average time c, then this algorithm takes average time 

proportional to c/( 1 - p.) = O( 1) when p. +O as n +m, and condition (3) is satisfied. 
4. [Finding the contrex hull]. The convex hull of {W,, . . . , W,} with clockwise ordering of 

the vertices can be found as follows: 
(A) Order W,, . . . , W, according to the polar angles &, . . . ,h$, (each Wi is presumably 

generated as (Ri cos 6, Ri sin 0,) where Ri and 01 are as explained in Remark 3). Find the 
mammal spacing S = ofn;L &i+,) - & where 0 = e,, < e,,, < - . . -c Of,, < BcM+,) = 29 are the 

order statistics of 0, el, 0, , . . . , OM, 2~. If the sorting is done by means of the bucket method, 
then all of this takes average time bounded by CM t 1 for some positive c not depending upon 
M[lO]. 
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03 If S 2 IT (origin does not belong to convex set defined by convex hull), reorder 
W 1,. . . , W, according to the angles of the lines joining these points with some interior point of 
the convex set. This can be done in time bounded by CM+ 1 for some positive c because in 
Step (A) we already have done most of the work. 

(C) Find the convex hull using Graham’s algorithm[l5]. Find R, (note that R,, = 0 if and 
only if M = 0 or S 5: 7~). Both operations take time bounded by CM + 1 for some constant c > 0. 

For given M, the average time of Step 2 in the algorithm is less than CM t 1. Thus, 
integrating over all values of M, we have an agerage time bounded by O@(M) t 1) = O(np, + 1). 

5. [Auoiding the sort]. The order statistics of the polar angles &, . . . ,O, of the random 
vectors W,, . . . , W, can be generated directly in average time bounded by CM t 1 for some 
constant c > 0 when exponential random variates can be obtained in average time O(1): let 
E I,..., EM+I be independent exponential random variables with sum V Define 

The random variables (do,, . . . , O,,,) are distributed as the order statistics of M independent 
uniform (0,2m) random variables (see Pyke[25] for a survey of the properties of uniform 
spacings). For the first mention of the possibility of directly generating order statistics without 
sorting, see Lurie and Hartley[21], Schucany[30] or Lurie and Mason[22]. The remarks about 
the average time given in Remark 4 remain valid if the sorting step (A) is replaced by the direct 
generation step described here. 

6. [Merging conuex hulls]. Shamos[31] has indicated that two convex hulls with clockwise 
ordered vertices can be merged into a new convex hull with clockwise ordered vertices in time 
proportional to the total number of points in the convex hulls. Thus, with the assumption (3) 
(Remark 3), we see that Step 3 of the algorithm takes time bounded by c when R, 2 r,, and it 
takes average time bounded by cn otherwise where c > 0 is a constant. 

7. [Average time taken by the algorithm]. If we take all the previous remarks into account, 
then the average time E(T) of the entire algorithm satisfies 

E(T) = O(np, t 1 t nP(R, -=c I,)) (4) 

and 

E(T) = O(np, t l+ nP(R, < rn)). (9 

The problem we are now faced with is that of choosing pn (and thus rJ such that the r.h.s. of 
(4) is minimal. The choice of pn will unfortunately enough depend upon f. In Sections 2 and 3, 
we take a closer look at (4) and (5) for large classes of radial densities. 

8. [Avoiding trigonometric functions]. A radial random vector X was generated as RZ, 
where R is a random variable with distribution function H, and 2 is a random vector 
independent of R, distributed as (cos 0, sin (9) where t9 is uniformly distributed on (0,27r). It is 
well-known that 2 can also be generated as follows: 

(1) Generate (U, V) uniformly in [0, 112, and set StU2 t V. 
(2) If S>l,go to 1. 
(3) Exit with Z+(UI~S, V/dS). 
The square root can also be avoided by replacing 3 by 3’: 
(3’) Exit with Z+[( U2 - v2)/S, (2UV/S)]. 
At one point we have to sort the polar angles of W,, . . . , W, where now each Wi is 

generated as Riq and 4 = (Ui, Vi) is distributed as (COS Oi, sin 0,). It is obvious that we should 
not have to compute 0, as arc cos Ui or as arc sin Vi or as arc tan VJUi. Rather, we propose to 
sort W,,..., W, in two steps: 

(1) Sort all the w’s with Q > 0 according to increasing values of 
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(2) Sort all the w’s with Ui < 0 according to decreasing values of the same function of Q 
and Vi* Concatenate the sorted sets. 

The density of VI/U, is Cauchy. Now, if X is Cauchy distributed, then X/(1 + 1x1) has 
density 

f(x) = l r(l +2x2 - 21x1)’ 
1x1 Il. 

Since this density is bounded and has compact support, we see that the sorting of the Wi’s by 
the bucket method takes average time bounded by CM + 1 for some constant c > 0. The average 
time for the generation and the sorting of W,, . . . , W, is bounded by CM + 1 for fixed M, just 
as for the method explained in Remarks 3 and 4 with the trigonometric functions present. It is 
clear that we may expect a smaller constant “c” if these functions are avoided. 

9. [Modification of Step 31. The following time-saving step can be used instead of Step 3: 
Step 3*. If R,, 2 r,, exit with the given convex hull. Otherwise, compute qt(H(r,) - 

H(R,))/H(r,), generate an independent binomial (n -M, q) random variate M*, and generate 
independent sequence of random &f+1, * - * 9 with density 

~~~)&+~l+~ ]/(q(l -p )) Find the convex hull o6?EqueEe, mergeI!$iionvex hulls into a 
new convex “hull, and “exit. 

The algorithm remains valid, and the upper bound for E(T) (see (4)) is still applicable. 

2. A LOWER BOUND FOR THE AVFRAGE COMPLEXITY 

THEOREM 1 
For every density f, the given algorithm must satisfy 

E( 7’) = R(log n). 

Proof. Consider the circle C centered at the origin with radius r,. It is clear that 

Thus, by (3, 
IR, < ~12 j, [xi E cl. 

E(T)=fl(np,+ltn(l-p,)“). (6) 

The function u t (1 - u)“, 0 I u I 1, is minimal when 1 - n(1 - u)n-l = 0, i.e. for u = 1 - n-‘““-r). 
Thus, 

np, t n(1 -p,)” h n(1 - n-1”“-1’ )t,!l-,-I,n)=,(l-exp(-F)) 

>n I_ - ( ( l_~t;(!!i!f))=logn_~. 

This concludes the proof of Theorem 1. 

Remarks 
(1) Theorem 1 remains valid for all the modified versions of the basic algorithm, including 

the version in which Step 3 is replaced by Step 3*. 
(2) Theorem 1 is valid for all densities f, not just the radial densities. It is also obvious that 

the dimension is not used in the proof. Thus, the lower bound also applies to any algorithm that 
uses our strategy to generate a random convex hull in Rd. In R’, the convex hull of X,, . . . , X, 
consists of min Xi and max Xi. Thus, the given algorithm allows us to generate the extreme 

I I 
order statistics of a random sample. However, as Theorem 1 shows, regardless of how pn is 
chosen, the average time taken by the algorithm must be fl(log n). For a comparison of this 
algorithm with other algorithms for generating the extreme order statistics, see Devroye[7]. 

3. UPPER BOUNDS FOR THE AVERAGE COMPLEXITY 
We will now show that E(T) = O(log n) for the radial densities with’a polynomial tail, and 

that E(T) = O(log n)“‘) for radial densities with an exponential tail. We will not discuss other 
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classes of radial densities because we could find no interesting class for which E(N)/n 
converges quickly to 0. One should also keep in mind that for every monotonically increasing 
function w with w(n) = o(n), there exists a radial density for which E(N) = fi(w(n)). For this 
density, we necessarily have E( 7’) = Q( w(n)) (1). In the last part of this section, we show that 
for the uniform density on the unit circle, E(T) = O(n *I3 log 2’3n), and we also prove that this is 
optimal. Unless explicitly indicated, all the results below remain valid for our algorithm with 
and without the modification of Remark 9. 

3.1 Two inequalities 
Consider the circle C centered at the origin with radius r,, and let A be the collection of 

points (x, y) for which x 2 r,. Thus, A is a halfspace determined by the tangent to C at (r”, 0). 
Let a,, be defined by 

Inequality 1 
For all radial densities f, 

P(R, 5 r,,) I emnP* t 2enp, eenan. (7) 

Proof. For each Xi outside C, consider the two tangents ii1 and li2 to C. These lines define 
open outer halfspaces (halfspaces not containing the origin) Ail and Ai2. Clearly, 

where 1.1 denotes the cardinality of a set (the number of Xj’S, 1~ j 5 n, contained in the set). 
Thus, by symmetry, 

p(R, 5 r”) I 2nP(X, E C; /Ail/ = 0) t (1 -p,)” 5 2np,(l- an)‘-’ + e-“‘. 5 2enp, eenan + emnpn. 

Inequality 2. [Lower bounds for a,]. 
Let 19 E (0, r/2) be a given angle. Then, for all radial densities, 

When h is nonincreasing for r 2 r*, then also 

a, 2 2r,(l -cos 8)312h(&), r, 1 r*. 

(9) 

(10) 

Proof. Consider the circle C’ centered at the origin with radius s = r,/cos 0, and let D be the 
cone {(x, y)lx > 0, [arc tan (y/x)1 < 0). It is obvious, from a simple geometrical argument, that A 
contains D - C’. But then 

This proves (9). To prove (lo), we note that 

r2 1’ V/[l - (r,lr)21h(r) dr 2 5 IS V(Tz - r,,%(r) dr 
‘II ‘n 

(11) 

>mc0s 8 
- d\/m I ‘d(r-*,)h(r)drr$!/ 

rn 

,” cos e(j,l h(r)dr)J[(frl rMr)dr/[rl h(r)dr)-r.] 
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where we used Jensen’s inequality (last step: d(r - r”) is concave on r 2 r”) and the fact that 
arc cos u = arc sin d/(1 - u2) r d/(1 - u2), 0 I u I 1. But 

1’ (r - r,,)h(r) dr 2; r:(& - l)2h(s), r, 2 r*. 
‘” 

Combining these inequalities gives 

2 2(1 -cos @r.h(s) j/(---&j- 1) 

2 2( 1 - cos 8)3’2r,h(s). 

Remark 
From (11) we can easily obtain a slightly weaker inequality than (10) (one in which “2” is 

replaced by “4d(2)/3”) as follows: 

4v2 = 3 r,h(s)(l - cos 0)3’2/V(cos e), r, 2 r*. 

3.2 Densities with a polynomial tail 
Definition. P(a) is the collection of radial densities such that G is regularly varying at 

infinity with parameter - (Y, i.e. for all c > 0, we have 

lim G(cr) 1 
I-+-- G(r)=7 

THEOREM 2 
When f E g(a) and p,, = c(a)(log n/n), where c(a) is a constant greater than 

P 

o<lgnf,12 e (cos ey ’ 

then E(T) = O(log n) for the algorithm described in Section 1. 
Proof. The proof is based upon a combination of (4), (7) and (9): Note that for fixed angle 

e E (0, r/2), a,, 2 (e/p)G(r,/cos e) - (e/lr)G(r,)(cos ey = (eh)(c0s e)apn. Thus, 

E(T) = O(np, + 1 t nP(R, 2 r,,)) = O(log n) t O(n emnpn) t O(n log n e-“‘n) 

= (-J(log n) + (yn I-c(n)) + O(log n . n l-c(~)(Nrrwx wl+om) 

= O(log n) 

in view of our choice of c(a): indeed, since (Y 2 0, we must have c(a) 2 2. 

Remarks 
1. [Optimality of the result]. In view of the lower bound of Theorem 1, we will not be able 

to improve upon Theorem 2. 
2. [The average value of N]. Carnal (1970) has shown that for f E I, 

Fz E(N) = K(cu) = 4TI( a t ;)/zfq 
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dz. 

It is easy to check that K(a) is increasing in (Y, and that K(0) = 4 and K(1) = 6. Thus, the 
collections B(cw) have sparse convex hulls. It is interesting however that we can control to a 
certain extent the average size of our random convex hull by choosing (Y and applying our 
algorithm with a very large n. 

3. [Examples]. The multivariate t-distribution with parameter v > 0 has density 

Thus, h(r) = rl(l + ?/v)‘+“‘~, r > 0. When v = 1, we obtain the multivariate Cauchy 
distribution[l7]. Random variables from this distribution can be obtained in many different 
manners: (1) as d(2vElY) where E is an exponential random variate, and Y is a chi-square 
random variate with v degrees of freedom; (2) by the rejection method. We also need to 
generate random variates from the tail of h in uniformly bounded average time: here the 
obvious method seems to be the rejection method with a dominating Pareto density c/r’+“. The 
details are trivial to work out. For fast algorithms for the generation of chi-square random 
variates, we refer to a recent survey article by Tadikamalla and Johnson[32]. For v greater than 
2, competitive algorithms include G4PE [29], GRUB [20], and RGAMA [16,23]. Best [4] has 
given a very short but marginally slower algorithm. For v smaller than 2, see Ahrens and 
Dieter [ 11. 

4. [Choice of c(a)]. The function 13(cos e)o ,is unimodal on 0 5 13 d 7r/2, so its maximum can 
easily be obtained numerically for each (Y > 0. For those who are not willing to go through this 
small effort and those who want an idea of how c(a) changes with (Y, we give a couple of tight 
sufficient lower bounds for c(o): 

(1) c(0) > 2. 
(2) For all (Y L 1, c(a) > &OS 1. 
(3) For (Y > (4/.lr2) - (l/2), it suffices to take c(o) > [d((u + 1/2)/cos”(l/~(cy + l/2))]. 
To see this, note that B(cos 0)” 2 t9( 1 - e2/2y, and that the latter expression is maximal when 

e2 = l/ta + i/2). 
As (Y +m, the maximum of O(cos f)y is reached for e(o) - l/d/a, and the infimum of 

r/(B(cos 0)a) - rd(ae). It is easy to check that if the smallest possible value is taken for c(a), 
then our upper bound for E(T) is O(log n) where the constant in “0” is proportional to d/(y: 
thus, as (Y grows larger, our algorithm will require more time. This is not surprising since E(N) 
is also an increasing function of (Y. 

3.3 Densities with an exponential tail 
Definition. 8((u) is the collection of radial densities such that H has a density h that is 

non&creasing for all r large enough, and 

where L(r) = -log G(r). 

lim rL’(r) -=a>>, 
YQ L(r) 

THEOREM 3 
When f E %((Y) and P,, = c(a)[(log n)3’2/n], where c(a) is a constant greater than 

e 2ea “2 -- 
( > 33 ’ 

then E(T) = O((log n)3’2) for the algorithm described in Section 1. 
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Proof. The proof uses (4), (7) and (10). First we find E E (0,l) such that with b = cr(1 t E), 

a = a(1 - f), we have 

2eb 3’2 1 
c(a)> 3 ( > T;;= t. (12) 

Let T* be so large that for all rl r*, we have (rL’(r)/L(r)) ~(a, b). Now, for rz r*, 

h(r)=L’(r)G(r)+(r)G(r) (13) 

and for 6 > 0, 

‘+S L.‘(u) r+S 

log L( r + 8) = log L(r) t Lo du 5 log L(r) t ;du=logL(r)+blog 

Thus, L(r+ 8) I L(r)(i t (~?/r))~, and thus, for 6 2 1, 

G(r,j) = e-L(r@ 2 e-L(r)sb = G(r)S”. (14) 

Assume that we can show that 

Then, by (4) and (7), 

E(T) = O(np, + n eenpn + 1 t n2p, em”‘,) = O((log n)3’2(1 + n e-“‘n)). (16) 

But na, 2 (1 + o(l))c(log n)3’2/td(log n) = (1 + o(l))(c/t) log n. Hence, n emnan = O(n ‘-(c”)o+oo))) = 
O(1) when c = c(a) > t. Replacement in (16) gives the desired result. We are left now with the 
proof of (15). Combining (lo), (13) and (14) gives for r,, 2 r*, 0 < c? < ?r/2, 

II, 2 2r,(l- cos 8)3’2h(rn/cos 0) 

2 2a cos BL(r,/cos B)G(r,,lcos 0)(1 - cos 8)3’2 

2 2a cos ~L(r,JG(r,JcoS~bg(l - cos d)3’2 

= 2a cos 8 logi p”C0S-b8(1 - cos 8)3’2. 

Let cos8=1-u where u=u(n)qO as n+m. Then (~-cos~)~‘~=u~‘~, cosrY=lto(l) and 
cosbe = (1- u)-~ = 1 + bu +O(u2). It is clear that we should choose u so as to maximize 
u312pnbu: this gives the choice u = 3426 log (Up,)), and we have u3j2pnbU = [3/(2be log (l/~.))]~‘~. 
Also, p,,“’ --, 1 as n -$m. Combining all these estimates gives 

a, 2 (1 + o(l))2a0/(2be))“‘p~/~( log $), 
n 

which is identical to (15). 

Remarks 
1. [Examples]. Assume that 

G(r) = exp (- fQ(r)), a > 0, 

where Q is such that -G’(r) is eventually monotone and that (rQ’(r)/Q(r))+O as r+=. 
Generally speaking, Q must be a function that does not increase or decrease too quickly as 
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r+m. For example, with Q(r) = 1, we obtain an exponential family that includes the normal 
density for (Y = 2, and generation of random variates with distribution function G is trivial by 
the inversion method. If Q satisfies the given conditions, then f is in $(a). For more 
complicated functions Q, the inversion method will no longer be useful for the generation of 
random variates. Also, the solution of the equation G(r,) = pn seems to be harder. 

2. [Average value of N]. Carnal has shown in 1970 that for the class of radial densities with 
G(r) = exp (- rcr), (Y > 0, we have 

E(N) - V(4m log n). 

As for the class g(a), E(T) is about log n times larger than E(N). 
3. [Generalizations]. It is easy to apply the principles developed in the present paper to 

other classes of distributions. In essence the class 9(O) contains all very fat-tailed radial 
densities, and m$P(~) contains all polynomial-tailed radial densities. As a prototype of 

small-tailed radial densities, we took %(a), (Y > 0. It is clear that there are many other classes 
with even smaller infinite tails. 

3.4 The uniform density on the circle 
Let f be the uniform density on the circle C with unit radius and center at the origin. 

Clearly, if ~9 E (0,7r/2) is the angle between the x-axis and the point where A cuts C, then 8 
depends upon n, and the following relations hold: 

pn = l-r,‘, r, =cos 0, a, = 8-isin28. 

We have the following inequalities: 

0 = arc cos d( 1 - p,) = arc sin d/p, 2 d/p,. 

AS 8+0, pn -SO, we have 

r, = 1-$+()(S4); pn = d2+O(d4); a, =y+O(@); f3=d(pn)+O(Pn3’*). 

THEOREM 4 
The original random convex hull algorithm without the modification of Remark 9 of Section 

1 must always satisfy 

E(T) = Q(n”3 log 2’3n) 

when f is the uniform density on the circle C. Also, if we choose 

2/3 

where c z 312 is a constant, then 

E( T) = 0( n ‘I3 log *“n). 



On the computer generation of random convex hulls 11 

b, = np, + 1+ nP(R, < r”). 

By (7) we have 

p(R, 5 rn) I e-npn t 2enp, eenan. 

To prove the second half of Theorem 4, we merely substitute the given value of p,, into the 
inequality for b,. Since np” = exp (p, log n) + 1 and c 2 312, we have 

b, I [c*n log* nIlI t 1 t n exp (- [c*n log* n]‘13) 

+ 2e[c*n log* n]“3 exp (-; c log n * (l-O(&)) = O(n”3 log*‘3 n). 

By (4), the second half of Theorem 4 follows. 
To prove the first half of the Theorem, we fix d = e (L 2) disjoint open segments of the 

shape and size of A around the circle (all are outside the circle with radius r,, but touch it at 
some point). Call these segments A,, . . . , A,,. Then 

P(R, < r,,) 2 P(,i, &+I = 01) = I- fJ P(IAjI > OIi”j [IAil > 01) 

2 l-~P(~Ajl>O)=l-(l-(l-a.)“)d 

>l-exp(-d(l-a,)“)s~min(l,d(l-a.)”) 

where we used the inequalities 1 - e-” 2 x - x2/2 2 x/2, x 5 1, and 1 - eeX 2 1 - l/e 2 l/2, x 5 1. 
Thus, 

b”rnp,t5min(l,d(l-a”)“). 

The theorem follows by (5) if we can show that b, = il(n”3 log2’3 n) for any choice of pn. 
To see this, we consider three cases (with possible overlap): 
(1) d(l- a,)” 2 1: b, 2 n/2. 
(2) d( 1 - a”)” c 1, O3 2 (log n/n)( 1 - (log log n/log n)): b, 2 nf3’/4 = (1 t 0( 1)/4)n”3 102’~ n. 
(3) d( 1 - a,)” < 1, o3 < (log n/n)( 1 -(log log n/log n)): for n so large that e3 5 3/2, we have 

because 1 - x 2 exp (- x/(1 - x)), x E (0,l). 
Thus, 

b, z n exp 
(( 

-~logn+~loglogn )/(l-;v)) 

> n 113 log213 n . 
-(2/3)+(2/3-2lognln) 

- = n u3 log2’3 n * (1 + o( 1)). 

Combining these cases shows that b, = fl(n”3 log2j3 n). 

Remarks 
1. [Optimality]. In Theorem 4, we established the optimal rate of convergence for our 

algorithm, and indicated how it can be achieved by a proper choice of p.. Note that the optimal 
rate n’13 102’~ n for E(T) is again slightly larger than the lower bound established in (1) for all 
algorithms: E(T) = R(E(N)) = Q(nla). 

CAMWA Vol. 8, No. 1-B 
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2. [Generalizations]. Carnal has shown that if G(r) = 0, r> 1, and G(r) - c(1 - r)* for some 
c, q > 0 as r t 1, then E(N) - ~‘n”~**+‘) for some c’ > 0. This result takes care of a large group 
of radial densities with compact support. The uniform density on the unit circle is obtained for 
G(r) = 1 - 3 - 2( 1 - r), r t 1. With minor additional effort, Theorem 4 can be extended to include 
this class of radial densities as well. 

4. ELLIPTICALLY SYMMETRIC DISTRIBUTIONS 

Let A be a 2 x 2 positive definite matrix, and let L be the unique lower triangular matrix 
(2 x 2) such that A = LL’ (t denotes the transpose). Then, by elementary results on trans- 
formations of random vectors (see for example, Roussas ([28], p. 168)), we know that if X has 
the density 

f(x) = &x*x) = g@ll), x E R’, 

then Y = LX has the density 

]det L/-‘g(x’L-“L-lx) = ldet A/-‘/*g(xfA-‘x), x E R2. 

Any random variable that can be obtained by such a transformation from a radial random 
variable is said to be elliptically symmetric: its density has elliptical equal-probability contours. 
Since covex hulls are invariant under linear transformations, the problem of the generation of a 
random convex hull for an underlying density f of an elliptically symmetric random variable 
seems trivial: first generate the random convex hull for the corresponding radial density, and 
then apply the appropriate linear transformation to the components of the random convex hull. 
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