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Automatic Pattern Recognition : A Study of the
Probability of Error

LUC DEVROYE

Abstract-A test sequence is used to select the best rule from a rich
class of discrimination rules defined in terms of the training sequence .
The Vapnik-Chervonenkis and related inequalities are used to obtain
distribution-free bounds on the difference between the probability of
error o€ the selected rule and the probability of error of the best rule
in the given class . The bounds are used to prove the consistency and
asymptotic optimality for several popular classes, including linear dis-
criminators, nearest neighbor rules, kernel-based rules, histogram
rules, binary tree classifiers, and Fourier series classifiers . In partic-
ular, the method can be used to choose the smoothing parameter in
kernel-based rules, to choose k in the k-nearest neighbor rule, and to
choose between parametric and nonparametric rules.

Index Terms-Automatic parameter selection, empirical risk, error
estimation, nonparametric rule, probability of error, statistical pat-
tern recognition, Vapnik-Chervonenkis inequality .

I . INTRODUCTION

N pattern recognition, we normally use the data, either
directly (via formulas) or indirectly (by peeking), in the

selection of a discrimination rule and/or its parameters .
For example, a quick inspection of the data can convince
us that a linear discriminator is appropriate in a given sit-
uation . The actual position of the discriminating hyper-
plane is usually determined from the data . In other words,
we choose our discriminator from a class D of discrimi-
nators . This class can be small (e .g ., ' all k-nearest neigh-
bor rules'') or large (e .g ., "all linear and quadratic dis-
criminators, and all nonparametric discriminators of the
kernel type with smoothing factor h > 0") . If we knew
the underlying distribution of the data, then the selection
process would be simple : we would pick the Bayes rule .
Unfortunately, the Bayes rule is not in D unless we are
incredibly lucky . Also, the underlying distribution is not
known. Thus, it is important to know how close we are
to the performance of the best discriminator in D . IfD is
large enough, then hopefully, the performance of the best
discriminator in it is close to that of the Bayes discrimi-
nator. There are two issues here which should be sepa-
rated from each other .

1) The closeness of the best element of D to the Bayes
rule .
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2) The closeness of the actual element picked from D
to the best element in D .

The former issue is related to the consistency of the
estimators in D, and will only be dealt with briefly . Our
main concern is with the second problem : to what extent
can we let the data select the discriminator, and how much
are we paying for this luxury? The paper is an exercise in
compromises : on the one hand, D should be rich enough
so that every Bayes rule can be asymptotically approached
by a sequence of rules picked from a sequence of D's,
and on the other hand, D should not be too rich because
it would lead to trivial selections, as any data can be fit
to some discriminator in such a class D . One of the big-
gest advantages of the empirical selection is that the pro-
grammer does not have to worry about the choice of
smoothing factors and design parameters .

Our statistical model is as follows . The data consists of
a sequence of n +, m iid R d x { 0, 1 } -valued random
vectors (X 1 , Y1 ), • • • , (Xn+m, Yn+m ) • The XD 's are called
the observations, and the Y's are usually called the
classes . The fact that we limit the number of classes to
two should not take anything away from the main mes-
sage of this paper. Note also that the data are artificially
split by us into two independent sequences, one of length
n, and one of length m . This will facilitate the discussion
and the ensuing analysis immensely . We will call the n
sequence the training sequence, and the m sequence the
testing sequence . The testing sequence is used as an im-
partial judge in the selection process . A discrimination
rule is a function : R d x (R d x {O, 1 } ) n { 0, 1 } .
It classifies a point x e R d as coming from class i (x, (X 1 ,
Y1), ' ' ' , (Xn+m~ Yn+m)) • We will write >'(x) for the
sake of convenience .
The probability of error is

Ln+m('Y) `Ln+m = P( (X)

* YI(X1, Y1), . . . , (Xn+m, Yn+m))

where (X, Y) is independent of the data sequence and is
distributed as (X1 , Y1 ) . Of course, we would like Ln+m to
be small, although we know that Ln+m cannot be smaller
than the Bayes probability of error

LBayes - inf

	

P(t~(X) ~ Y) .
~ :R'-'{fl,l}

In the construction of a rule with small probability of er-
ror, we proceed as follows : D is a (possibly infinite) cot-
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lection of functions 4 : R d x (Rd x { 0, 1 } )n { 0, 1 },
from which a particular function 4' is picked by minimiz-
ing the empirical risk based upon the testing sequence

1 n+m

Ln,m(~ ) ` `

	

I[~'(X,)~Y+1m i=n+I
} n+m

= min --
QED m i=n+I

Here it is noted that

c(Z) _ ~ ( x1, (XI, Y1 ) , . . . , (Xn, Yn))

~'(X1 ) = q'(X1, (XI, Y) , . . . , (Xn, i )),

i .e ., the discriminators themselves are based upon the
training sequence . Let us formally write

(x) = (x, (X~ , YI ) , , . . , (Xn+m , Yn+m))

_ 4 '( x , (X I, YI ) , , . , , (Xn, Yn )),

	

x e Rd .

It is necessary to do this because depends upon both the
training sequence and the testing sequence . Since Ln,m ( )
is an unbiased binomial estimate of L n ( ), it is not un-
likely that L n +m ( ) is close to inf QED Ln ( ), yet this has
to be proven rigorously . It is this closeness that is under
investigation here . We observe that the idea of minimiz-
ing the empirical risk in the construction of a rule goes
back to Vapnik and Chervonenkis [130] -[134] . If we de-
fine our empirical risk entirely in terms of the training
sequence, i .e ., if we count the number of errors commit-
ted by a rule on the training sequence itself, then we can
end up with strange rules . Consider, for example, the
problem of the data-based choice of k in a k-NN rule . It
is obvious that no errors are committed on the training
sequence itself when k = 1, yet k = 1 can, but does not
have to be the optimal choice in a given situation . Glick
[53], [55] has shown, however, that for many nonpara-
metric rules such as the kernel rule, counting the errors
on the training sequence is essentially harmless provided
that the nonparametric rule is consistent . Unfortunately,
we want to choose the best discriminator from huge col-
lections of discriminators from which it is possible to draw
many nonconsistent sequences. The presence of noncon-
sistent rules is practically appealing (one can mix para-
metric and nonparametric discriminators ; recall also that
we can include all k-NN rules in D without restriction on
k), but dangerous since we surely do not want our pro-
cedure to lead to nonconsistency .

Cover [22] suggested taking m = 1, and counting the
number of errors committed by considering n + 1 training
sets, each time leaving one of the observations (X e , Y)
out, and verifying whether the rule classifies the deleted
Xi as Y . This, at least, reduces the anomaly observed
when our collection of discriminators includes the 1-NN
rule and no deletion is employed . Our approach is nothing
more than an attempt to obtain an alternative to Cover's
suggestion for which we can obtain good analytical guar-
antees of the performance . Not separating a training set
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from a testing set works in some cases, but it seems that
good bounds on the probability of error can only be ob-
tained when the collections are very nice or simple .

When D is large, infQED Ln ( ) is probably close to
LBayes this is the case when D contains all k-NN rules or
when it contains all kernel-type rules. On the other hand,
D can be so small that there is no hope of getting close to
LBayes . A point in case is the class D of all linear discrim-
ination rules . Having settled on a class D, it is important
to ensure that Ln +m ( ) is close to infQED Ln (4 ) . Often
this is more important than actually knowing (even ap-
proximately) the value Ln+m ( ) .

A last word about our split into a training sequence and
a testing sequence . This split is primarily aimed at deriv-
ing results that are valid for many classes D. There are
well-known tricks of the trade such as cross validation (or
leave-one-out) (Lunts and Brailovsky [85], Stone [121]),
holdout, resubstitution, rotation, and bootstrap (Efron
[39], [40]) which can be employed to construct an empir-
ical risk from the training sequence, thus obviating the
need for a testing sequence (see Kanal [74], Cover and
Wagner [23], and Toussaint [126] for surveys, and Giick
[56] for a discussion and empirical comparison) . This
works well in many important situations (see Vapnik and
Chervonenkis [132]-[134], Vapnik [136], Devroye and
Wagner [28]-[30]), but can fail miserably in other cir-
cumstances . This would then force us to restrict D to such
an extent that our results would be less powerful . We will
make a case for the split-data method by showing just how
good the empirical choice is for most popular discrimi-
nation rules . This universality seems more difficult to ob-
tain with other methods . In addition, we will argue that
the testing sequence can often be taken much smaller than
the training sequence (iii = o(n)) . It seems probable that
more sophisticated methods such as cross validation would
be equally good or better than the split-data method, but
we have not been able to show this thus far .

Error estimation is used by us as a tool ; we are not
interested in actual values of error estimates per se, al-
though it is always nice to have some good estimates of
the probability of error . Thus, we will not address issues
such as the bias and variance of error estimates, which
have led to interesting discussions in the past (see Lach-
enbruch and Mickey [81], McLachlan [88] . Glick [54],
[56], Lachenbruch et al. [82], and Lissack and Fu [84]) .
On the other hand, good automatic selection is impossible
without good error estimates, and thus it should come as
no surprise that the estimate on which the automatic se-
lection is based can serve as an estimate of the probability
of error of the selected rule. This relationship is captured
in the following .

The Fundamental Inequalities :

Ln+m('Y) - inf Ln (~) ~ 2 sup 1Lnm () ,~-4ED

	

QED

ILn,m(cY) - Ln+m('Y)I ~ sup ILn,m(~) - Ln()I .qED
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Proof• Everything is based upon the following ob-
servation ;

Ln+m() _ inf Ln(~)
QED

= Ln+m() ` Ln m(~ ' ) + Ln m(Y' ' ) - inf Ln(~)
QED

Ln+m() - Ln m(4'') + sup (Ln,m() - Ln(~))
QED

~ 2 sup
QED

The second inequality is trivially true .

	

∎
We see that upper bounds for SUP ED Ln,m ( ) -

Ln (~) provide us with upper bounds for two things
simultaneously :

1) an upper bound for the suboptimality of >' within D,
Ln+m('Y) - inf~EDLn(4),

2) an upper bound for the error 1 Ln , m (~') - Ln+m ( )
committed when Ln m ( ~') is used to estimate the proba-
bility of error Ln +m ( > ) .

In other words, by bounding supQED Ln,m ( ~) _
Ln (~) , we kill two flies at once . It is particularly useful
to know that even though Ln , m (~' ) is usually optimisti-
cally biased, it is within given bounds of the unknown
probability of error with ', and that no other test sample
is needed to estimate this probability of error . Whenever
our bounds indicate that we are close to the optimum in
D, we must at the same time have a good estimate of the
probability of error, and vice versa .

All the probabilities and expected values written P n and
En are conditional on the training sequence of length n,
whereas P and E refer to unconditional probabilities and
expected values . The bounds derived below refer to con-
ditional quantities, and they do not depend upon the train-
ing sequence . In other words, they are valid uniformly
over all training sequences . The important consequence
of this is that the testing sequence should have the right
distribution and be iid, but the training sequence can, in
fact, be arbitrary . In particular, annoying phenomena such
as dependence between observations, noisy data, etc ., be-
come irrelevant for our bounds----they could have a nega-
tive impact on the actual value of the probability of error,
though .

IL FINITE CLASSES

We consider first finite classes D, with cardinality
bounded by Nn. We have the following .

Theorem 1 : Let D be a finite class with cardinal-
ity bounded by Nn . For all E > 0,

Pn (sun 1 Ln,m(~) - Ln(~)
QED
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> F ~ 2Nne -2mf2

and

En (sup I Ln, m ( ~) - Ln ( )
QED

C

In the proof of Theorem 1, we will need the following .

Lemma 1 : If a nonnegative random variable Z sat-
isfies the inequality P(Z > t) 5 ce-2nt2 for all t >
0 and some c > D, then

E(Z) ~ log (c) +	 1		∎
2n

	

8n log (c)

Proof of Lemma 1 : For all u > 0,

E(Z) _
0

log (2Nn ) +

	

1

2m

	

J8m log (2Nn )

P(Z > t) dt ~

~ u+c
i2u2n

f ir

	

(°°

	

1

J~

o

	

u

Ill	1

	

1

2n 2u J I

. exp [-(2u J)2/2]

- 2 nut

~u+c

u+

	

e
4 un

/log(c)	1	
\J 2n

	

J8nlog(c)
Proof of Theorem 1 :

Pn (sup ~Ln,m(cb) - Ln(c&) I > r )QED

f

u
dt +

	

Ce -2 nt2 dt

e
-t2/2

dt

where we used Gordon's inequality for the tail of the nor-
mal distribution (cordon [59] ; Mitrinovic [91, p . 177]) .
The last expression is approximately minimized for u
,flog (c) /2 n . The corresponding value is

∎

C : p (ILn,m(c) - L(q)QED
-2me25 2Nn e

where we used Hoeffding's inequality (Hoeffding [73])
and the fact that mLn , m (4) is binomially distributed with
parameters m and Ln ( ), The last part of Theorem 1 is a
direct corollary of Lemma l .

Remark 1-Size of the Error: If we take m = n and
assume that Nn is large, then Theorem 1 shows that on the
average, we are within ,flog (N)/(2n)n of the best pos-
sible error rate, whatever it is . Since most common error
probabilities tend to the Bayes probability of error at a
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rate much slower than 1 / ~, the loss in error rate studied
here is asymptotically negligible in many cases relative to
the difference between the probability of error and LBa y es,
at least when Nn increases at a polynomial rate in n . ∎
Remark 2-Distribution-Free Properties : Theorem 1

shows that the problem studied here is purely combina-
torial . The actual distribution of the data does not play a
role at all in the upper bounds . ∎
Remark 3-The k-Nearest Neighbor Rule : When D

contains all k-nearest neighbor rules, then Nn = n since
there are only n possible values for k . It is easily seen that

E, (L, +m ('N) ` inf Ln( ))

C
log (2n)

..I 2m
1

	 .
$m log (2n)

Since k/n -4 0, k -~ oo imply that E(L) -+ LBayes for the
k-nearest neighbor with data-independent (deterministic)
k for all possible distributions (Stone [119]), we see that
our strategy leads to a universally consistent rule when-
ever log (n) /m -4 0 . Thus, we can take m equal to a
small fraction of n without losing consistency . That we
cannot take m = 1 and hope to obtain consistency should
be obvious . It should also be noted that for m = n, we
are roughly within log (n) /n of the best possible prob-
ability of error within the given class . The same remark
remains valid for k-nearest neighbor rules defined in terms
of all Lp metrics or in terms of the transformation-invari-
ant metric of Olshen (see Olshen [9b], Devroye [27]). ∎

III . CONSISTENCY

Although it was not our objective to discuss consistency
of our rules, it is perhaps worth our while to present Theo-
rem 2 . Let us first recall the definition of a consistent rule
(to be more precise, a consistent sequence of 4's) : a rule
is consistent if E ( L„ ) - LBayes as n -r oo . Consistency
may depend upon the distribution of the data . If it does
not, then we say that the rule is universally consistent .

Theorem 2-Consistency : Assume that from each
D (recall that D varies with n), we can pick one
such that the sequence of ~'s is consistent for a cer-
tain class of distributions . Then the automatic rule
1 defined above is consistent for the same class of
distributions (i .e ., E(Ln+m(1')) LBayes as n - oo)
if

m
lim

	

=co.
n -,oolog(1+Nn )

Proof of Theorem 2 : This is a direct corollary of
Theorem l . ∎

If one is just worried about consistency, Theorem 2 re-
assures us that nothing is lost as long as we take m much
larger than log (Na ) . Often, this reduces to a very weak
condition on the size m of the training set : recall Remark
3 for the k-nearest neighbor estimate .
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Remark 4-Infinite Nn: Taking Nn very large, possibly
infinite can be dangerous . One might even lose consis-
tency in the process . Consider, for example, the class D
of all measurable functions , i .e ., all rules . This class
contains by definition the Bayes rule, but it also contains
many rules which agree completely with the training se-
quence, i .e ., functions 4 for which (X; ) = Y, for all n
+ 1 s i ~ n + m . Our selection process selects one of
the latter 4's . If it happens to select the function which
takes the value 0 everywhere except possibly at the points
X, (where 4 (X,) = 1';), then there is no hope of obtaining
universal consistency. The culprit here is the size of N n .
Note that consistency is lost regardless of how large m is
picked .

	

∎

IV. ASYMPTOTIC OPTIMALITY
Let us now introduce the notion of asymptotic optimal-

ity . A sequence of rules is said to be asymptotically
optimal for a given distribution of (X, Y) when

E (L,, +m(') )

	

LBayes
-1 .

E inf Ln(~)
QED

Our definition is not entirely fair because > uses n + m
observations, whereas the class of rules in the denomi-
nator is restricted to using n observations . If i' is not taken
from the same D, then it is possible to have a ratio which
is smaller than one. But if _ ~' E D, then the ratio
always is at least one . That is why the definition makes
sense in our setup .

When our selected rule is asymptotically optimal, we
have achieved something very strong : we have, in effect,
picked a rule (or better, a sequence of rules) which has a
probability of error converging at the optimal rate attain-
able within the sequence of D's . And we do not even have
to know what the optimal rate of convergence is. This is
especially important in nonparametric rules where some
researchers choose smoothing factors in function of the-
oretical results about the optimal attainable rate of con-
vergence for certain classes of problems .

We are constantly faced with the problem of choosing
between parametric and nonparametric discriminators .
Parametric discriminators are based upon an underlying
model in which a finite number of unknown parameters is
estimated from the data . A point in case is the multivari-
ate normal distribution, which leads to linear or quadratic
discriminators. If the model is wrong, parametric meth-
ods can perform very poorly ; when the model is right,
their performance is difficult to beat . Our method chooses
among the best discriminator depending upon which hap-
pens to be best for the given data . We can throw in D a
variety of rules, including nearest neighbor rules, a few
linear discriminators, a couple of tree classifiers, and per-
haps a kernel-type rule . Theorems 1 and 2 should be used
when the cardinality of D does not get out of hand .

To save space further on in the paper, we introduce here
the notion of e,, optimality where E n is a positive sequence

lira
n -~ 00

- LBayes
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decreasing to 0 with n . A rule is said to be en optimal
when

E(L1,+rn( ;)) - LBayes
lim

	

= 1

lim
n -i 00

lim
n-00

E inf L0 ())
¢ED

E inf Ln (~)
¢ED

E inf Ln+m(~)
¢ED

x

E n

Ilog (1 + N„) /n

E(Ln+,n(~))

E(Ln+,n(~G)) -

¢ED
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- LBayes

for all distributions of (X, Y) for which

LBayes

E inf L0()) - LBayes
¢ED

lim

LBayes

E inf L,+,0()

	

~- LBayes
¢ED

LBayes

LBayes

E inf Ln ( ) - LBayes
¢ED

= oo ,

For finite classes, we see that the empirical selection rule
is log (1 + Nn ) / m optimal .
Remark 5 : Let us now treat n + m as the sample size .

Assume that

= o0

where we draw attention to the fact that this condition
does not involve m. Then, it is possible to find a sequence
m such that

E inf L0 ()

	

~- LBayes
¢ED

E inf Ln+m(~)

1

where D is appropriately enlarged to accommodate train-
ing sequences of size n + m . The condition under which
this is true is very mild :
E (inf ¢0D L„ ( )) - LBayes is regularly varying at oo with

parameter p E ( -oo, 0] (a sequence an is regularly vary-
ing at oo with parameter p if lim 11 00 a n/a Cn J = c

_p
for

all positive c) .
The proof uses the following decomposition :

E (Ln + m ( )) - LBayes

- LBayes

where the second factor tends to lim (n /(n + m )) P if this
limit exists and is finite. Choose m = Len] for e posi-
tive, but very small . This shows that the second factor can
be made arbitrarily close to 1 . The first factor is less than

1 + 4(Jlog (1 + Nn )/m)/(MJlog (1 + Nn )/n)

for some large M and all n large enough (apply Theorem
1 and our assumption) . This, in turn, is less than one plus
a constant times M -1 times , which can be made
arbitrarily small by choice of M .

	

∎

V, INFINI'T'E CLASSES
Theorem 1 is useless when Nn = oo . It is here that we

can apply the inequality of Vapnik and Chervonenkis
[130], [131] or one of its modifications . We will need
some new notation . Let µ be the probability measure of
(X, Y) on J = R d x { 0, 1 } , and let µ 00 be the empirical
measure based upon (Xn+1, Yn+1 ), ' ' • , (Xn+m, Yn+m) •
Then

Sup Ln, m ( ) - L(q) - sup µm ( C )
¢ED

	

CEC
- (C)

where C is the collection of all sets

{{x: ~ = 1} x {0}} U ~{x: ~ = 0} x {1}},

'ED.

At this point, we recall the Vapnik-Chervonenkis in-
equality .

Theorem 3: Let Nc (x 1 ,

	

, x00), (x 1 ,
E jm be the number of different sets in

{{ x1, . . . , x00 } rl C CEC}

and define the shatter coe dent as

s(C, m) =

	

max

	

Nc(x1 ,
(xi, . . . x~„)ESZm

Then, for all e > 0,

P sup ~µm(C) - µ(C)~ > eCEC

~ 4s(C, 200) e -(0002/8)

x 00)

(mr 2 ? 2)
(Vapnik and Chervonenkis [130j, [131]) and

P sup µ00(C) - µ(C) > ECEC

~ cs(C, m2) e -20002

where the constant c does not exceed 4 e 4f + 422 (De-
vroye [33]) . Also

E (sup µ 00 (C) - µ(C)
CEC

C
2m

1

)

log (4e 8s(C, m2 ))
4q

J8m log (4e8s(C, m 2 ))

For more information about these inequalities, see also
Vapnik [136], Gaenssler [48], Gaenssler and Stute [47],
and Massart [87] . Devroye's bound provides competitive
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values when m E 2 is large . It cannot compete for medium
range values of m f

2 and relatively small values of s (C,
m 2 ) with Massart's [87] and Alexander's [5] inequalities .
For example, Alexander's bound is

P (sup µm (C) - µ(C) i > E
c~C
I6(Jr)4°6"e

2inE2 (m€ 2 ~ 64)

where V is the index of the class C, i.e ., the least integer
k ? I for which s ( C, k) < 2 k . V can be considered as
the complexity or size of C . A set C for which V < oo is
called a Vapnik-Chervonenkis (or VC) set. The bounds of
Theorem 3 are useful when the shatter coefficients do not
increase too quickly with m. For example, if C contains
all Borel sets of S1, then we can shatter any collection of
m different points at will, and obtain s ( C, m ) = 2 m . This
would be useless, of course . The smaller is C, the smaller
is the shatter coefficient . It suffices now to compute a few
shatter coefficients for certain classes of discrimination
rules. For examples, see Cover [21], Vapnik and Cher-
vonenkis [131], Devroye and Wagner [28]-[30], Feinholz
[41] Devroye [33], Massart [87], and Dudley [38] . Note
that every D yields one class C for every fixed training
sequence . Thus, collecting results, we have the follow-
mg.

Theorem 4 : For fixed training sequence (x,, y, ),
. . . , (x n , yn ), let C be the collection of all sets

{{x:= 1} x {o}} U {{x :

	

= o} x {1}~,

q E D.

Define

S(n, m) =

	

sup

	

s(C, m) .
(xi,yi), . . .

Then

and

Pn sup Ln,m ( )
QED

~ 4S(n, 2m) e

En ( sup I Ln,m(~) - Ln( )
QED

Ln( ,

_( mE2/8)

8 log (4S(n, 2m))
C

m

1

+ J(m/2) log
	 (

4S(n, 2m)
)

'

Pn sup ~ Ln,m ( ) - Ln ( ) I >
QED

~ cS(n, m2) e
-2mE 2

(m€ 2

1)

2),

where the constant c can be taken equal to 4e4E+4E2

and

En sup ~ Ln, m ()
QED

C
log (4e 8S(n, m 2 ))

2m

1

'J8m log (4e 8S(n, m2)) •

From Alexander's bound, we derive the following

bound .

Theorem 5 : Let C be a Vapnik-Chervonenkis
class with index V. Then

E CsuP I N-m (C) - Fi~C~I 1¢eC

C
64j ;;

sv e28 V

4(}96 ~

Proof of Theorem 5 : We will need the auxiliary in-
equality

0 D

	

b -2a 2
tbe-2`2dt<

ae

	

(4a2 >b>o,a>o)
a

	

4a - b/a

which can easily be obtained by a standard analytical ar-
gument. Now,

E (SUP µm (C) - µ(C}
CEC

P Sup
0

	

µm(C) - µ(C) > t dt
CEC

~ 64V/2m + m-l~2

	

lbt4096Ve-2r2 dt
64Jvj2

where we used Alexander's inequality and the fact that V
~ I . The threshold value 64 .IV/2 is an approximation
of the optimal threshold value . The last integral in the
upper bound does not exceed

16(64 V/2 )	
4096 V e46 '_09

4(64 V/2) - 64

(64 fv/2 ) 4096 V e -4096 V

4(4 V/2} - 4

	

8 /
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The dominating factor in the bound of Theorem 5 is
V2048 V . Even though the bound decreases as 1 / J for
fixed V, it is not as useful as the bound of Theorem 3
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when V is very large . In most of our examples, V in-
creases with m due to the fact that consistency forces the
class D to become richer and richer as n (and m) grow . In
comparison, note that since s ( C, m ) < m V for m ? 2
(Vapnik and Chervonenkis [130], [131]), we see that
Jlog (s(C, in))/in is at most 1IV log (m)/m . This is in
our applications often smaller than V28 V/ ~. For fixed
v, Theorem 5 is usually preferable . We will compute the
functions s ( C, m ) for several important discrimination
rules . The index V of C cannot be determined directly
from these computations, so some additional (and often
nontrivial) work will be required of the users .
The suprema in Theorems 3 and 4 are not always mea-

surable ; the measurability must be verified for every class
C (for all our examples, the quantities are indeed mea-
surable) . For more on the measurability question, see
Dudley [37], [38], Massart [87], and Gaenssler [48] . Gine
and Zinn [52] and Yukich [141] provide further work on
suprema of the type shown in Theorems 3 and 4 .

Theorem 6-Consistency and Asymptotic Opti-
mality : Assume that from each D (recall that D var-
ies with n), we can pick one such that the se-
quence of ~'s is consistent for a certain class of
distributions . Then the automatic rule I& defined
above is consistent for the same class of distribu-
tions (i .e ., E (Ln + m (II ))

	

LBayes as n - oa) if

log (1 + S(n, m 2 ))
lim

	

=0.
n-*c

	

m

Furthermore, > is Jlog (1 + S (n, m 2 ))/m opti-
mal .

VI . COMPUTATION OF S(n, m )
For a collection D of the form D = U J= 1 D1 , we have

k

S(n, m) ~

	

S1 (n, m)
1=1

where S1 (n, m) is computed for D1 only. This allows us
to treat each homogeneous subcollection of D separately .

A. Linear Discrimination

Consider all rules that split the space R d in two by vir-
tue of a half plane, and assign class 1 to one half space,
and class 0 to the other. Points on the border are treated
as belonging to the same half space . Because the training
sequence is not even used in the definition of the collec-
tion, S(n, m) cannot possibly depend upon n . In other
words, S (n, m) = s (C, m) .

There are at most
d

2 ~ m
k=a

	

k
1\1 ~ 2(md + 1)

ways of dichotomizing m points in R d by hyperplanes (see,
e.g ., Cover [21]) (this takes into account that there are
two ways of attaching 0's and 1's to the two half spaces) .

We see that
d

S(n, m) ~ 2
k=o

m

	

1

	

< 2(and + l) .k

In this case, it is clearly indicated to take n = 0 . The
resulting discriminator picks the best separating hyper-
plane from all possible hyperplanes simply based upon the
testing sample m . Glick [55] pointed out that for this es-
timator, Ln, n, ( ~' ) - L n ( ~' ) I - 0 almost surely . Bounds
of the type obtained above can also be found in Devroye
and Wagner [26], [28]-[30] .

When n > 0 and the training sequence is used to assign
a class to each half space by a majority vote, then

S(n, m) C
d
~ n+m-
k=0

	

k '))
~ ((n + m) d + 1) .

B. Generalized Linear Discrimination Rules
A rule IJ in which the set { x : 4 (x) = 1 } coincides with

a set of the form
d*

x :ao+
j~1

a1jj(x)?0
=

for given fixed functions f1 , • • • , fd * and some real num-
bers ao , • • • , ad * is called a generalized linear discrim-
ination rule (see Duda and Hart [36]) . These include, for
example, all quadratic discrimination rules in R d when we
choose all functions that are either components of x, or
squares of components of x, or products of two compo-
nents of x . In all, d * = 2 d + d (d - 1)/2. The argument
of the previous section remains valid, and we obtain

d*
S(n, m)

	

2

	

m- 1

	

5 2(md* + 1) .k=o

	

k

Note, nevertheless, that unless d * is allowed to increase
with m, there is no hope of obtaining universal consis-
tency .

C. k-NN Rules
In the k-NN rule (Fix and Hodges [42], Cover and Hart

[20]), a majority vote decision is made based upon the k
nearest neighbors of X in the training set . If D contains
all NN rules (all values of k), then, unlike most of the
collections of the previous sections, D increases with n,
and depends very much on the training set. A trivial bound
in this case is

S(n, m) ~ n

because there are only n members in D. For universal
consistency, we need m /log (n) -; oo . The selected rule
is Jlog (n) /m optimal .

D. Variable Metric NN Rules
Fukunaga has observed in a series of papers (Fukunaga

and Hostetler [45], Short and Fukunaga [115], Fukunaga
and Flick [46]) that it is perhaps better to first define a
suitable metric in R d based upon the data, and then use
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this metric in the determination of near neighbors . Typi-
cally, the metric is an L2 metric based upon a data-depen-
dent positive definite scale-rotation matrix. If D contains
all NN rules with metric dependent upon the training se-
quence only, then the bound S (n, m) n of the previous
section remains valid . If, however, D includes all NN
rules with all L2 metrics, then the situation is very differ-
ent. The collection no longer depends upon n (as in the
linear discrimination case), and it contains an infinite
number of rules . If k is not properly restricted, there is
virtually no hope of obtaining a useful bound for S (n, m) .

E. NN Rule Based upon Reference Data
Hart [71], Gates [49], Wilson [139], Wagner [138],

Ullmann [128], Ritter et al . [107], Tomek [125], and
Devijver and Kittler [25] all study 1-NN rules based upon
a subsequence of the training sequence . This sequence can
be considered as representative of the whole training se-
quence . Its choice is based upon certain criteria, which do
not concern us here . Certainly, it seems that the most im-
partial criterion is the one that uses the empirical risk
computed from a testing sequence . Assume thus that D
includes all condensed (or edited) NN rules with reduced
training set of at most k members, i .e ., all NN rules based
upon a subset of k (X,, Y )'s selected from the training
sequence . A simple counting argument shows that D has
at most

k (n<k+i
nJ-I J

members. The rule is Jk log (n) /m optimal . This im-
plies, for example, that to obtain n -2/5 optimality, we can
take k no larger than O (n 1/5/log (n)) when m = n . Thus,
k needs to be restricted . We also note that k -p oo and
m / (k log (n)) -p oo are sufficient for universal consis-
tency .

F. Weighted NN Rules
In the k-NN rule, each of the k nearest neighbors of a

point x plays an equally important role in the decision,
Royal/ [1 10] first suggested using rules in which the k
nearest neighbors are given unequal voting powers in the
decision : the i th nearest neighbor receives weight v, where
usually vI ? v2 ? • ? vk ? 0 and the v's sum to
one. For consistency, the integer k and the v,'s have to
satisfy certain properties given by Stone [1 19] and De-
vroye and Wagner [31], [32] . It is possible to let the test-
ing sequence choose the best weight vector for a fixed k .
In that case, D contains all weighted k-NN rules. Its car-
dinality is infinite . To compute S (n, ,n), note that each
Xf in the testing set is classified as 1 or 0 according to
whether the sign of the following expression is positive
or nonpositive :

k

1=1 ate
where a1~ E { - 1, 1 } depends upon the class of the i th
nearest neighbor of X3 in the training sequence (and does
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not depend upon the vt's) . Every weight vector v = ( VI,
, vk) yields a vector of m classes to which the XD's

in the testing sequence are assigned . In the computation
of s (C, m), we consider the au's as fixed numbers . Let V
be the k-dimensional space of all weight vectors v . The
collection of all v's for which X1 is assigned to class 1 is
a linear half space of V . Therefore, s ( C, m ) is bounded
from above by the cardinality of the partition of V defined
by m linear hyperplanes . This is bounded by mk . Thus,

S(n, m) ~ mk .

We observe that even though s ( C, m ) depends upon the
training sequence (and thus, n) via the au's, we used an
argument that did not require the actual values of the a,~'s .
The bound on S (n, m) does not depend upon n .

The rule is universally consistent when k -> oo and
m / (k log (m)) -3 oo . It is [k log (m) /m optimal . Au-
tomatic selection is useful here when Jk log (m) /m is
small compared to the difference between the actual prob-
ability of error of the rule and the Bayes rule, which is
nearly always at least 1 / . In the extreme case m = n,
our bound is not good enough, as I will now show . With
m = n, the choice k = n415 (which is optimal in certain
ways) leads to Jlog n n optimality . Taking k smaller
is not something we would like to do because the rate of
convergence of the best rule within D is likely to slow
down. In other words, D is too rich for the interesting
values of k to apply automatic selection .

G. Kernel-Based Rules
Kernel-based rules are derived from the kernel estimate

in density estimation originally studied by Parzen [98],
Rosenblatt [108], and Cacoullos [16] . A point x is as-
signed class 1 if

g(x)
n
:

	

1

	

x

	

X
•Y--=I

	

2)K

	

h
and to class 0 otherwise where K is a fixed function called
the kernel and h > 0 is a smoothing factor. It is easy to
verify that this is a voting scheme in which the i th obser-
vation carries weight K(x - X~/h) . Thus, K is usually
decreasing along rays . For particular choices of K, rules
of this sort have been proposed by Fix and Hodges [42],
[43], Sebestyen [112], Bashkirov et al . [11], Aizerman et
al. [1]-[4], Braverman [13], Braverman and Pyatniskii
[14], Van Ryzin [129], and Meisel [89] . Statistical anal-
ysis of these rules and/or the corresponding regression
function estimate can be found in Nadaraya [93], [95],
Rejto and Revesz [106], Devroye and Wagner [26], [31],
[32], and Greblicki [60]-[62] .
Hardle and Marron [70] proposed and studied a cross-

validation method for choosing the optimal h for the ker-
nel regression estimate . They obtain asymptotic optimal-
ity for the integrated square error . Although their method
gives us a choice for h if we consider P (Y = 1 X = x )
as the regression function, it is not clear that the thus ob-
tained h is optimal for the probability of error . Consider
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next two well-separated classes . Then a little thought
shows that the optimal h is, in fact, constant, independent
of n . This shows that we should not a priori exclude any
values of h, as is commonly done in studies on regression
and density estimation .
Devroye and Wagner [28]-[30] obtained distribution-

free error bounds for the cross-validation estimate of the
probability of error . Unfortunately, their results are only
valid for fixed choices of K and h .

We begin by considering the collection D of all kernel
rules for all values of h, but fixed kernel K = IA where I
is the indicator function and A is any star-shaped set of
unit Lebesgue measure (a set A is star shaped if x A
implies that cx A for all c ? 1) . We vary h monotoni-
cally from 0 to oo . For fixed X1 in the testing sequence,
the function g (X 1 ) on which the decision is based can at
most take n values. Therefore,

s(C, m) : inn + 1

and

S(m,n)~mn+l .

If K = E ; = 1 a 1 IA ; for some finite k, some numbers a ; , and
some star-shaped sets A ; , then S (m, n) ~ kmn + 1 .

We can generalize in several directions . First, there is
the question of more general K . There is an interesting
subclass of kernels K of the form

K(x) = Ilxll rIA (x)

where A is star shaped and r ? 0 is a constant . Observe
that Kh (x) = hr-d I xI -rIA (x/h) . Thus, for fixed ;,

n

	

1

	

J

i=1 ( Y` - 2) K

	

h

x - x;

n

	

1
hr

-d
~ Y; -
i=1

	

2

. II ; - Xii riA((xi - X)/h)

changes sign at most n times as h increases from 0 to oQ .

For these kernels, we also have S ( m, n ) ~ mn + 1 . The
kernels have the desirable property that if a decision is
based upon l points, then changing h does not change the
decision unless one or more points become excluded or
new points are considered in the decision . For r = 0, we
obtain the uniform kernel discussed earlier . For 0 < r <
d, the kernel is integrable, but has an infinite peak at the
origin . For r ? d, the kernel is not integrable . It has been
pointed out by several authors that the integrability of K
is not necessary for the consistency of kernel rules in dis-
crimination and regression : in fact, kernels with r = d
have been suggested as early as 1962 by Sebestyen t112} .
In the class D considered above, only one parameter

was varied . In d-dimensional pattern recognition, it is
often necessary to adjust the scales of many component
variables . Thus, it seems natural to classify x = (x 1 ,

•

	

, xd ) in class one if

= n

	

-

	

dg(x)

	

Y2

	

n K

	

_ 0
i=1

	

2

	

1=1

	

hi

where now K is a one-dimensional kernel, h 1 , • • • , hd
are d positive numbers, and X11 is the l th component of
xi . It should be noted that this is certainly not the only
way of introducing d different smoothing factors, one for
each component . Let D be the collection of all rules of
this type considered over all possible values h 1 , h d .
For this class, we will now show that

S(m, n) ~ (mn) d + 1

when K is the function I [ - I . I] . Note that the rule is a ma-
jority vote over centered rectangles with sides equal to
2h 1 , 2h 2 , • • • , 2 h d . To see this, consider the d-dimen-

sional quadrant of mn points obtained by taking the ab-
solute values of the vectors X~ - X;, n < j < n + m, 1
~ i s n (the absolute value of a vector is a vector whose
components are the absolute values of the components of
the vector) . To compute S (m, n), it suffices to count how
many different subsets can be obtained from these mn
points by considering all possible rectangles with one ver-
tex at the origin and the diagonally opposite vertex in the
quadrant. This is 1 + (mn)d .
The consistency of the class D is ensured when K is the

uniform kernel on the unit hypercube, by applying the
universal consistency theorem of Devroye and Wagner
[31], [32] and Spiegelman and Sacks [117] (see also Gre-
blicki et al. [67] or Krzyzak [76]) provided that

m
lim
n- r d log (mn )

= as

	 m
lim log(

n
	 ) - oo .

is id log (mn) /2m optimal when both m, n --~ oo . In
particular, it is /log (n) /n optimal when m = n . This is
good news since the standard bounds for relating the
probability of error to the L 1 error in density estimation
(see, e .g ., Devroye and Gyorfi [35]), combined with well-
known results about the best possible expected error with
any kernel density estimate (i .e ., the best possible ex-
pected L 1 error is about equal to a constant times
n -2/(4+d)~ see Devroye and Gyorfi [35], give us upper
bounds for E (Ln ( ) - LBayes ) that decrease asn-27(4+d) where is the kernel discrimination rule in
which the h is chosen in an optimal way for the underlying
densities . Since this tends to 0 slower than Jlog (n) /n,
it seems plausible that the automatic selection rule with m
= n I -E

(with an appropriately picked small r) is asymp-
totically optimal for large classes of distributions . There
are distributions for which s/log (n) /n optimality does not
give us asymptotic optimality : consider, for example, dis-
crete distributions putting all their mass on a finite number
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of points . For such distributions, the optimal rule within
D has an error rate roughly equal to LBayeS plus a constant
times 1 1~. Hence, the error introduced by the selection
process exceeds the error of the best rule when all errors
are considered relative to LBayeS . Even when X has a den-
sity, the best h for density estimation is usually not the
optimal h for discrimination, and the bounds linking den-
sity estimation errors to classification errors are subopti-
mal. Thus, we cannot just claim that the automatic selec-
tion rule is asymptotically optimal for all densities . A case
in point is when given Y = 1, X puts its mass on [0, 1],
and given Y = 0, it puts its mass on [3, 4] . The kernel
rule with h = 1 and kernel uniform on [- 1, 1 ] has ex-
pected error tending to zero at an exponential rate, while
the Bayes error is 0 . Yet, this choice for h is far from
optimal for the individual density estimates since it usu-
ally does not even imply consistency of the density esti-
mates!

H. Histogram Rules
Histogram rules are simply rules in which R d is parti-

tioned into a countable (but usually finite) number of sets
A;, and the decision for x e A r is based upon a majority
vote among all pairs (X;, Y;) for which X; e A 1 . In case of
a voting tie, we arbitrarily classify x as coming from class
one (our strategy in case of a tie does not matter much) .
The partitions can be ordinary rectangular grids in which
all A;'s are translates of A I . If D contains all partitions
into k or fewer sets without restriction as to the shape of
the sets, then

S(n, m)
k

n + mC

2= I l

where { n
m } denotes a Stirling number of the second

kind, i .e ., the number of ways of partitioning n + m
points into i nonempty subsets . Even for k = 2, this is
much too large since

z
n+m 2n+m-l

i _ I i

Thus, we need to restrict D drastically . Consider first
ordinary histogram rules on R I , i .e ., rules defined by a
regular interval partition of the real line : all intervals are
of the form [ a + hi, a + h (i + 1)) where h is the interval
width, i is an integer, and a is the position of a fixed point
of the partition . There are two free parameters, h and a .

The ordinary histogram rules can be traced back to a
histogram regression function estimate of Tukey [127] .
The consistency is established by Glick [54] and Gordon
and Olshen [57], [58] . Devroye and Gyorfi [34] showed
that for all distributions of (X, Y), the simple histogram
rule is strongly consistent, provided that h -~ 0 and nh
00asn-p oo .

When h is fixed, a quick but rather loose upper bound
for S (n, m) can be obtained as follows : start with a = 0 ;
clearly, we need only count the number of different m
vectors of decisions as a increases to h (because of peri-
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odicity) . It is straightforward to see that the vector of de-
cisions can only change when a histogram interval bound-
ary point reaches one of the n + m data points . Therefore,

S(n,m)~n+m+1 .
If a = 0 is fixed, but h varies, a much more common
assumption, S (n, m) becomes very large .

Rather than varying h over an infinite range, it is often
computationally more attractive to restrict h to all possi-
ble values X; - X; I , 1 ~ i C j ~ n . In that case, we
can use Theorem 1 with Nn = n (n -- l)/2 . The d-di-
mensional generalization in which we consider all rect-
angular partitions with two training points as extreme ver-
tices has the same Nn .

I. Statistically Equivalent Blocks

Considerable attention has been paid over the years to
histogram rules based upon order statistics . Basically, the
order statistics of the components of the training data are
used to construct a partition into rectangles . The great ad-
vantage of these rules is their invariance with respect to
all strictly monotone transformations of the coordinate
axes. For example, it has been suggested to partition the
real line by using the kth, 2kth, etc ., order statistics (Ma-
halanobis [8b] ; see also Parthasarathy and Bhattacharya
[97]): when k is the free design parameter in the class of
rules, Theorem 1 can be used with N n = n . The d-dimen-
sional generalizations of these rules include rules based
upon statistically equivalent blocks . The idea is to define
rectangles containing k points each . For example, the kth
smallest x coordinate among the training data could define
the first cut . The (infinite) rectangle with n - k points can
be cut according to the y axis, isolating another k points .
This can be repeated on a rotational basis for all coordi-
nate axes . However, it is obvious that one can proceed in
many other ways as well ; see, e .g., Anderson [8], Patrick
[99], Patrick and Fisher [ 100], Quesenberry and Gessa-
man [105], and Gessaman and Gessaman [51] . Consider
now all rules in which the partition depends entirely upon
the training data sequence and upon k, and let k be the
free design parameter. Once again, regardless of the di-
mension, Theorem 1 is applicable with N n = n. The uni-
versal consistency is guaranteed by the results of Gordon
and Olshen [57] when d = 1 and the kth-order statistics
are used with k/n -i 0 and k/I -~ oo .

Rules have been developed in which the rectangular
partition depends not only upon the X's in the training
sequence, but also upon the Y's ; see, e .g ., Henrichon and
Fu [72], Meisel and Michalopoulos [90], and Friedman
[44] . For example, Friedman cuts the axes at the places
where the absolute differences between the marginal em-
pirical distribution functions are largest to ensure minimal
empirical error after the cut . His procedure is based upon
an observation of Stoller [1 18] .

The rules described above are called distribution free
since they remain invariant under monotone transforma-
tions of the coordinate axes. For a survey of such rules,
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see Das Gupta [24]. The problem of designing automatic
distribution-free rules was first attacked in the papers of
Anderson and Benning [7] and Beakley and Tuteur [12] .

In our setup, we should let the test data decide where
cuts should be made. This leads very quickly to oversized
classes of rules, so we will impose reasonable restric-
tions . We consider cuts into at most k rectangles where k
is a number picked beforehand . Recall that for a fixed
partition, the class assigned to every rectangle is decided
upon by a majority vote among the training points . On the
real line, choosing a partition into at most k sets is equiv-
alent to choosing k - 1 cut positions from n + m + 1
spacings between all test and training points . Hence,

k-1}~ ~ n+m+l
~(n+m+1}k-IS(n, m

1= I

	

J

For d-dimensional partitions defined by at most k - 1
consecutive orthogonal cuts, we see that for the first cut,
there are at most 1 + d (n + m) possible combinations
of spacings-directions to choose from. This yields the
loose upper bound

S(n, m) 5 (1 + d(n + m)) k I ,

This bound is also valid for all grids defined by at most k
- 1 cuts . The main difference here is that every cut de-
fines two half spaces, so that we usually end up with many
more than k rectangles in the partition .

Assume that D contains all histograms with partitions
into at most k (possibly infinite) rectangles . Then, consid-
ering that a rectangle in R d requires choosing 2d spacings
between all test and training points, two per coordinate
axis,

2d(k- 1)
S(n, m)

	

(n + m + 1)

See Feinholz [41] for more work on such partitions .

J. Binary Tree Classifiers
Binary tree classifiers have become increasingly im-

portant because of their conceptual simplicity and com-
putational feasibility . The forefathers of these classifiers
are the histogram rules based upon statistically equivalent
blocks described in the previous section . Many strategies
have been proposed for constructing the binary decision
tree (in which each internal node corresponds to a cut, and
each terminal node corresponds to a set in the partition :
see, for example, You and Fu [140], Bartolucci et al . [10],
Sethi and Chatterjee [113], Payne and Meisel [101],
Swain and Hauska [122], Taylor et al . [124], Kulkarni
[77], Kulkarni and Kanal [78], Anderson and Fu [6,] Mui
and Fu [92], Gustafson et al . [69], Rounds [109], Sethi
and Sarvarayudu [114], Argentiero et al. [9], Qing-Yun
and Fu [104], Kurzynski [79], Lin and Fu [83], Breiman
et al . [15], and Casey and Nagy [17] .

If we consider all binary trees in which each internal
node corresponds to a split perpendicular to one of the
axes, then, as we have shown in the previous section

k-1
S(n, m) ~ (1 + d(n + m))
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Frequently, researchers consider smaller classes of rules,
with particular recipes (dependent upon the training se-
quence only) for computing the cuts. In those situations,
the bound is pessimistic . Others have proposed to gener-
alize orthogonal cuts by including linear cuts in any di-
rection. Recall that there are at most

d

j=0 J

S(n, m) ~

C (n + m) d + 1

ways of dichotomizing n + m points in R d by hyperplanes
(see, e .g ., Cover [21]) . Thus, if we allow up to k - 1
internal nodes (or linear cuts),

d k-1
S(n, m) ~ (1 + (n + m}

The restriction imposed on the number of internal nodes
is rather unrealistic. For example, Breiman et al. [15]
construct a tree with n leaves, one per training point .
Then, the tree is trimmed from the bottom up by combin-
ing leaves . Yet, without some sort of condition on the size
of D, our results are not useful .

K. Boolean Classifiers
Pearl [102] has studied Boolean classifiers . These clas-

sifiers can only be used when X takes values in { 0, 1 } d .

Each discrimination rule, { 0, 1 }-valued itself, can be
written as a Boolean expression involving NOT, OR, and
AND bit operations . The complexity c of such a discrimi-
nation rule is the minimum number of such operations
needed to describe the discrimination rule . Thus, c ade-
quately represents the computation time needed to apply
the discrimination rule . Let D be the collection of all dis-
crimination rules with complexity not exceeding c . Then

16(d + c)2
C

(Pippenger [103]) . The use of this expression in the Yap-
nik-Chervonenkis inequality leads to an inequality of
Pearl [102] . Again, we should take n = 0, as the training
data are not used in the definition of D .

L. Series Method
Some classifiers are derived from the Fourier series es-

timate or other series estimates of an unknown density .
The density estimates go back to the work of Cencov [18],
Schwartz [111], Kronmal and Tarter [75], Tarter and
Kronmal [123], and Specht [116] . Their use in classifi-
cation was considered by Greblicki [64] and Greblicki and
Pawlak [63], [65], [66] .

Nearly all these estimators can be put into the following
form : classify x as belonging to class 1 if

N

at, n g~ (x )=1 2
where the g's are fixed functions, forming a base for the
series estimate, a ; n is a fixed function of the training data,
and N controls the amount of smoothing . When the g's
are the usual trigonometric base, then this leads to the
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Fourier series classifier studied by Greblicki and Pawlak
[63], [65] . When the g i's form an orthonormal system
based upon Hermite polynomials, we obtain the classi-
fiers studied by Greblicki [64] and Greblicki and Pawlak
[6b], [68] .

If we let D be the class of all classifiers of one type
(i .e ., one set of g's and corresponding functions a i, n ),
with N restricted to 1, 2, . . . , k where k is a large integer
usually not exceeding n, then the class is finite, with k
members . Hence, we can choose the amount of smooth-
ing automatically, and have ,flog (k)/m optimality . The
rates of convergence of the probability of error to the
Bayes probability of error commonly found in the litera-
ture are typically 0 ( n ~~ ) for some constant 0 < a
1 /2 (see, e .g ., Greblicki and Pawlak [65], [66]) . When k
= m = n, the selected rule is 'Ilog (n) /n optimal, and
thus possibly asymptotically optimal . The difficulty in the
verification of the asymptotic optimality is due to the fact
that lower bounds on actual rates of convergence to
LBayes are not available .

If the collection of g,'s is fixed, but D contains all clas-
sifiers for all 1 ~ N ~ k and all values of a i, n , then we
are back in the position of the generalized linear discrim-
ination rules with dimension k . Thus,

k

S(n, m) ~ 2 (iO

m - 1

	

~ 2(m k + 1) .
=

	

Z

The selected rule ,~ is 0 ( .Jk log (m) /m) optimal, and this
puts a modest restriction on k . Obviously, we should take
n = 0 . Greblicki and Pawlak have pointed out that for the
d-dimensional Fourier series classifier, N -~ m 11(5d) yields
a classifier whose expected error rate is equal to LBayes plus
O (m _2/5 ) under appropriate smoothness conditions on the
distribution of (X, Y) . (Note that m temporarily plays the
role of the size of the data since n = 0 .) Taking k
O (m I 1°/log (m)) yields a rule that is m -2/5 optimal .
The Greblicki-Pawlak choice for N is entirely within the
range (i .e ., N ~ k) when d > 2 .
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