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Abstract--We consider n independent points with a common but arbitrary density f in  R a. Two points 
(X~, Xj) are joined by an edge when a certain set S(X~, Xj) does not contain any other data points. The 
expected number E(N) of edges in the graph depends upon n, f and the definition of S. Examples include 
rectangles, spheres and loons; these lead to the graph of all dominance pairs, the Gabriel graph and the 
relative neighborhood graph, respectively. Other graphs covered by our analysis include the nearest 
neighbor graph and the directional nearest neighbor graph. In all cases, we obtain asymptotic lower 
bounds that do not depend uponf(and are hence useful in all applications involving these graphs, since 
we usually do not know f) .  For sparse graphs, exact asymptotic constants are obtained for E(N) that 
are valid for all densities. 

1. I N T R O D U C T I O N  

We consider a sample X1 . . . . .  X, of  independent points with a common but arbitrary density f in 
R d. These points form the vertices of  a graph. Two points (X,  Xj) are joined by an edge when a 
certain set S(Xi, Xj) does not contain any other data points. The definition of S is not affected by 
the other points. The number  of  edges in the graph is N. In this paper we seek relationships between 
E ( N )  and S, n andf .  To save space, we will call all graphs created in this manner  proximity graphs, 
even though this term could be misleading in some cases. 

Example I 

Direct dominance pairs. When S(Xi, Xj) is the rectangle with Xi and Xj as vertices, X, and Xj are 
said to define a direct dominance pair. The problem of  determining whether a pair is a dominance 
pair has applications in rectangle enclosure problems [1, 2]. Algorithms for reporting all direct 
dominance pairs are given in Gutt ing et al. [3], Klein [4] has shown that the expected number of  
direct dominance pairs for any density that is a product of  d marginal densities is asymptotic to 
n l o g a - l n / ( d -  1)! • 

Example 2 

Gabriel graph. The Gabriel graph [5] is obtained when S is the sphere centered at ½(X~ + Xj), with 
Xi and ~ at opposite poles. It has been used extensively in geographic variation analyses in biology 
(for a list of  references, see Matula  and Sokal [6]). Algorithms for finding the Gabriel graph in R z 
are discussed in Matula  and Sokal [6]. It  is also shown there that for the uniform distribution in 
square, E ( N )  .,~ 2n. We will see that for all densities, lim inf E(N) /n  t> 2 a-  ~ and that for most  
densities, E ( N )  ,,~ 2 u In. • 

Example 3 

The relative neighborhood graph. The RNG,  or relative neighborhood graph, is obtained by 
joining all pairs whose loon is empty, where the loon defined by a pair is the intersection of  two 
spheres of  equal radius, each having one point as center and the other point on its surface [7, 8]. 
It  is a subgraph of  the Gabriel graph. Supowit [9] has obtained an O (n log(n)) algorithm for finding 
the R N G  in two dimensions. We will see that for all densities, E(N) /n  >>. Ca+ o(1), where Ca is 
a constant depending upon d only (C2 is about  1.27). • 
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Example 4 

The Delaunay triangulation. In the Delaunay triangulation, two points are joined by an edge if 
they are Delaunay triangulation neighbors, i.e. when some sphere with the two points on its surface 
and center somewhere on the hyperplane that forms the locus of all points at equal distance from 
both points is empty, i.e. contains no other points. Delaunay triangulations are ubiquitous in 
computational geometry [10], yet it is still unclear how E(N) is related to f. We know of course 
that N ~< 3n - 6. Unfortunately, the Delaunay triangulation is not a special case of the kinds of 
graphs studied here, because the definition of S involves more than two points. However, since the 
Gabriel graph is a subgraph of the Delaunay triangulation, it is easy to see that the lower bounds 
derived for the Gabriel graph are applicable to the Delaunay triangulation as well. In particular, 
E(N)/n >1 (2 a- '  + o(1)). 

For a general discussion of proximity graphs and their applications, we refer to the survey papers 
by Toussaint [7, 8, 11]. For example, in Toussaint [7, 8], it is shown that the minimal spanning tree 
is a subgraph of the RNG, which is a subgraph of the Gabriel graph, which in turn is a subgraph 
of the Delaunay triangulation. • 

Example 5 
Infinite strip graph. As an example of a more exotic graph, consider the graph formed when 

S(X~, ~ )  is the infinite strip defined by two parallel hyperplanes through Xt and Xj that are 
perpendicular to X~- Xj. This graph contains all dominance pairs as a subgraph, and cannot 
therefore possibly have a linear number of edges on the average. Since edges are created based 
upon a decision that is not "local", it cannot truly be called a proximity graph. For the same reason, 
the expected time analysis requires a different collection of tools. Its properties will be studied 
elsewhere. • 

Example 6 
Nearest neighbor graph. Consider the graph obtained by connecting each point with its nearest 

neighbor. The nearest neighbor graph is a subgraph of the Euclidean minimum spanning tree, and 
plays a role in closest point problems [10, pp. 180-181]. It is obvious that we have between n/2 
and n edges in such a graph. We will prove that for all densities, E(N)/n ~ 0.689 . . . .  [] 

Example 7 
The sphere of  influence graph. For each X~ in the plane, let Ci be the circle centered at X~ with 

the nearest neighbor of Xi on its surface. If (7,. and Cj have a nonempty intersection, X, and Xj are 
connected. The corresponding graph is known as the sphere on influence graph. Avis and 
Horton [12] have studied the sphere of influence graph, and have shown that it has at most 29 n 
edges. They also report that EI-Gindy has pointed out that it can be found in O(n log(n)) time 
by an algorithm of Bentley and Ottmann [13]. Unfortunately, there seems to be no inclusion 
property between any of the graphs discussed so far and the sphere of influence graph, which can 
often have several connected components. Also, the result of this paper do not apply directly to 
these graphs. • 

2. A USEFUL INEQUALITY 

Most of the results in this paper are simple corollaries of an inequality provided in Theorem 1. 
That is why we forge directly ahead into a rather technical section. Some restrictions have to be 
put on S. 

Definition of  a regular set 
In the halfplane {(u, v):u e R, v >, 0}, we consider a fixed bounded set T (T stands for "target 

set"). T is symmetric about u = 1/2. A regular set S is any set for which membership can be 
determined based upon some T, according to the procedure explained below. To determine whether 
z ~ S(x, y), we rotate and translate the space rigidly so that x coincides with the origin, and y 
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coincides with ( II x - y II, 0, 0, 0 . . . . .  0). Then we shrink the space by a factor II x - y II (shrinking 
by 2 means that w gets mapped to 2w). Finally, we rotate around the first axis such that the 
transformed z ends up in the positive halfplane (i.e. its second coordinate is nonnegative, and all 
coordinates from the third up are zero). The new location of  z after these three operations should 
fall in T. Note that because of the symmetry in T, z ~ S(x, y) if, and only if, z ~ S(y, x). • 

It is easy to see that if z ~ S(x, y) for some regular set S, than all the points at the same distance 
of  the line xy, and with the same projection on that line are also in S(x, y); in other words, we 
have rotational symmetry about xy. Examples include the loon defining the RNG, and the sphere 
defining the Gabriel graph. 

The Gabriel graph, the R N G  and the nearest neighbor graph are based on regular sets. The 
analysis of  the direct dominance graph will be carried out elsewhere. The thrust of  Theorem 1 is 
that the expected number of  edges in a proximity graph based upon a regular set is virtually 
independent o f f ;  the only factor truly influencing this expected number if the volume of  S(x, y) 
when II x - y [I = 1. It is curious that all such S's with the same volume, regardless of  their shape, 
give rise to the same expected number of  edges, asymptotically speaking. 

Theorem 1 
Let N be the number of  edges in a graph defined on the basis of  a regular set S defined on the 

basis of  a target set T. Then, for any density f ,  

lira inf E(N) >t Ira 
..o~ n 22(T) '  

where Va is the volume of  the unit sphere in R a, and 2(T)  is the d-dimensional volume of  the 
d-dimensional set obtained by rotating T about the first axis [equivalently, it is the volume of 
S(x, y) when II x - y II = 1]. 

Furthermore,  for almost all x. 

v. 
lim E(N(X,)IX, = x) = 2 ( T ) '  

where N(XO is the number of neighbors of  X,. 

Proof of  Theorem I 

We let N(Xi) be the number of  neighbors of Xi, and observe that 

1 i U -- g N(X3. 
i = l  

Assume that for almost all x~ (with respect to f ) ,  

v~ 
lim.4®inf E(N(x, )) >1 2(T----)' 

where N(xl) refers to the sample I"2 . . . . .  X.. Then, applying Fatou's lemma, 

lira inf E(N) = lira inf f 
E(N(x l ) ) f  (x, ) 

. ~  n .~o~ j 2n dxl 

fl" " fE (N(x , ) ) f ( x , )  j ,z,n dx, 

22(T)" 

Thus, we need only show the pointwise result. We will use the symbol # ( . )  to denote the probability 
measure of  a set, i.e. the integral of  f over the set in question. Also, 2( . )  denotes I_¢besgue measure, 
the E is an arbitrary small positive number. 
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W e  observe that 

-- 1) f ( l  -- #(S(x,, x2)))"-2f(x2) dx2 E(N(xl )) (n 

/> (n -- 1) I (1 -- (1 + e)f(xl)2(S(xl, x2)))"-2f(x2) dx2, 
~ ! l  X 2 -- x l  II ~< 6 

where 6 > 0 is so small that 

and 

It(S(x,, x~)) f(x,)J <. ef(x,) 
~(S(x,, xO) I 

#(B(xl,x2)) f ( x , )  <~ ef (x,), 
~(B(x,, x2)) 

for all [I x2 - xl [I < 6, where B(xl, x2) is the ball of radius [[ x2 - xt [[ centered at xj. The fact that 
this can be done is a consequence of the fixed structure of S (S can only be translated, rotated 
and shrunk uniformly in all directions), the boundedness of S, and the Lebesgue density 
theorem [14, pp. 108-109]. It should be noted that 6 depends upon xt. A point xl w i t h f ( x l )  > 0 
and 6 > 0 for every e > 0 will be called a Lebesgue point. The Lebesgue density theorem states 
that almost all points (with respect to f )  are Lebesgue points. We assume that x~ is a Lebesgue 
point. 

Next, we introduce the nonincreasing funtion 

T(r) - -  (1 - (1 + e)2(T)f(xl)r9 "-2 Ir<,~, 

where r > 0. We note that the volume of S(x, y) is 2(T) times 1[ x - y  [I d. Thus, the lower bound 

for E(N(x~)) is 

1) ~ (1 --(1 +e)f(xl)2(T)llxl--x2lld)"-2f(XE)dX: (n  
dl ]x 2 - x !  H ~< 

= (n -- 1)E(~( 11 )(2 - x, II )) 

fO l = (n  - -  l )  P ( ~ (  II X2 - x ,  II) > t)  dt 

;o(f  ) = (n -- l) f(XE) dX2 dt 
2:~(11 x 2 - X l  IL > t 

l (1 -- e)Vd(~-I(t))df(xl) dt >>, (n l) 
j ,  : 0 < t <  I ; ~ - I ( t )  ~ ~ 

where we once again applied the Lebesgue density theorem; the 6 > 0 introduced here is the same 
as the one used in the definition of ~. We note that 

1 - -  t n/(n - 2) 
(~' - ' ( t ) y  = 

(1 + e)2(T)f(x~)' 

when t i> (1 - ( l  + e ) 2 ( T ) f  (X~)6d) n-2. Resubstitution of this in the last expression gives us yet 
another lower bound (because we integrate over fewer t's): 

f t  1 - t t/in- 2) dt 
(n - 1) (1 - e )V j (X l ) (1  + £),~(T)f (xl) :>t~>~ 
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(where ~ ---(1 - (1 + E)2(T)f(x~)6d) n-2) 

= ( n - - l )  l------~E lid ft (1-tm/~n-2))dt 
1 + E 2 ( T )  :l>t>~ 

> ~ ( n _ l )  l - - E  Vd ( 1 ) 
1 ~ 2 ( - ~  \ n - ~ _  1 - ¢  

1- -E  Vd 
= (1 + o(1)) 1 -t----~ 2(T~'  

because ~ 10. Recalling that  e was arbi t rary,  this concludes the p roo f  o f  the lower bound  for E (N) ,  
and for the lower bound  for E(N(x~)) at all Lebesgue points Xl. 

What  follows is simply an upper  bound  for E(N(Xl)) at Lebesgue points xj. 
We observe that  

(n -- 1) fexpt- (. - 2 )#(S(x , ,  x2))]f(x2) dx2 E(N(Xl )) <~ 

(n - 1) f exp[ - (n - 2 )~(S(x , ,  x2))]f(x2) dx2 ~< 
31 ix2- xtll ~<6 

+ (n -- 1) f exp[ -- (n -- 2)//(S(Xl, x2))]f(x2) dx 2, 
31 Px2-xlll>6 

where 6 > 0 is as defined above. Thus,  

E(N(xl))<~(n - -1 )  ~l~2_~,lr ~ exp[ -- (n -- 2 ) 2 ( T ) f ( x l )  (1 - -  c) llx2 -- x, l ld]f(x2)dx2 

+ ( n  -- 1 ) ~  e x p [ -  (n -2)2(T)f(xj)(1 --E)[[X2--XI[[d]f(x2)dx2 
d Ix2-xlll >~ 

f exp[ - -  (n --2)2(T)f(xl)(1 - - Q l [ x 2 - - x l  [[d]f(x2)dx2 ~<n 
Ix2-xlll ~<6 

+ n exp[ -- (n -- 2)2(T)f(xl) (1 -- E)6d]. 

The second term in the upper  bound  is o(1). The first term is handled as in the lower bound.  It 
can be written as 

n E(~U( II X2 - xt II )) 

(where ~ (r) __4 ~ ,  ~ exp[ - (n - 2)2 (T)  f (xt)  ( 1 -- E )r d]) 

f' =n e(W(l lXz-xl l l )>t)dt  
o 

= n f ( x 2 )  dx  2 dt  
2:~'(llx2- xlll)>t 
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=nfolfx2:djx2_x,,~,_t(,)f(x2)dx2dt 

<<.rift dt +n f, fx (l+E)f(x,)dx2dt 
:~-I(t)  > 6 :O<t<l;~-l(t)~6 2:lqx2-xlll<<.~-l(t ) 

(Lebesgue density theorem) 

=n 'eO) + n f,:~,(6)~t< t (1 +e)f(xl) gd[lll-l(t)]ddt 

= o(1) + n log dt i"Z e (n - 2)2(T) 
(6) 

= o ( l )  + n [1 -- ~ ( 6 )  + ~ ( 6 ) 1 o g ( ~ ( 6 ) ) 1 - -  
I+E v~ 
1 - E (n - 2)2(T) 

I + E  Va 
= o(1) + (1 + o ( 1 ) )  1 - - E 2 ( T ) '  

since n ~ ( 6 ) ~  0. This concludes the proof of Theorem 1. III 

3. DISCUSSION OF THEOREM 1 

It is noteworthy that the lower bound depends upon the volume induced by T only. It is 
applicable to all densities f .  

Perhaps equally interesting is the fact that for almost all x, conditional on X~ = x, the expected 
number of neighbors of XI is Vd/2(T)+ o(1). This is due to the fact that locally, every density, 
no matter how pathological, is "almost" uniform in a small neighborhood of almost all points. 
Hence, since the decision to include an edge or not is virtually always based upon the points in 
a small neighborhood of the candidate vertices, the expected degree of each vertex is roughly as 
for the uniform density. 

One should not conclude from Theorem 1 that all the properties of N or N(XI) are 
distribution-free. Indeed, the rate of convergence of the various quantities in Theorem 1 to their 
asymptotic values depends very much on f. Thus, it is certainly not possible to argue as follows: 

E(N) ~ 1 I'd 
lira sup ~< , -  lira sup E((N(X~)IX~ = x) f  (x) dx = - - ,  

, ~  n 32 . ~  22(T) 

by Theorem 1. One can bring the limit supremum under the integral only under certain conditions. 
One such condition is that the integrand, a function of n and x here, can be uniformly bounded 
from above in n by an integrable function. The lower bound of Theorem 1 can be attained however 
for some distributions, as we will see below. 

It is known that planar graphs cannot have more than 3 n -  6 edges. Thus, results like 
Theorem 1 can be used to prove possible nonplanarity of certain graphs; indeed, if 
E(N) >1 (or + o(l))n for some a > 3 and all densities, it is easy to see that the proximity graph 
defined by that particular S must have some configuration for which it cannot possibly be planar. 

4. THE GABRIEL GRAPH 

For the Gabriel graph, 2 ( T ) =  Vd/2 d. Thus, we conclude that 

lim inf E(N) i> 2 d- 1, 

for all f .  In addition, at almost all x, E(N(X~ )IX~ = x) tends to 2 d. This generalizes some results 
of Matula and Sokal [6]. They have shown that the Gabriel graph in the plane is planar and has 
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at most  3n - 8  edges. They also showed that the expected number  of  edges is asymptotic to 2n 
for the uniform distribution on the unit square. We will see in Theorem 3 that the latter result 
remains valid for nearly all densities of  interest to users. 

5. T H E  R E L A T I V E  N E I G H B O R H O O D  G R A P H  

Since the loon defining the R N G  contains the set S defining the Gabriel graph, it is clear that 
the R N G  is contained in the Gabriel graph. To obtain exact information on how E(N) varies with 
n, we need to compute the area of  the unit loon generated by T with some care. We have, for d = 2, 

V 2 - r e \ 3  4 ,] 

2 3 I/2 
- 3 2n = 0.3910022190 . . . .  

Therefore, the expected degree at almost all x is 2.557530243 . .  • + o(1). Also, the expected number 
of  edges is at least n(1.2787651215 .. • + o(1)) for any density. 

For  d > 2, we have 
f~ I/2/2 

2(T)  = 2((1 - r2) 1/2 - ½) d (V:a ) ,  

which yields the formula 

Vd 1 

2 (T)  --1-:/2/2 2((1 - r 2 )  1/2 - 1 )  dr d- 1 dr 
Jo  

for the asymptotic degree at almost all x. 

6. T H E  N E A R E S T  N E I G H B O R  G R A P H  

Let S(x, y) be the union of  the spheres of  radius IIx - y  It centered at x and y, respectively. I f  
S(x,y) contains no data points, then x and y are each other 's nearest neighbors, hence they 
correspond to a double edge in the nearest neighbor graph. In 2d, the area 2 (T)  is equal to 2V 2 
minus the area of  the loon of  the RNG,  i.e. 

2 (T)  4 3 I/2 
V2 = 3 + ~-n = 1.6089977809 . . . .  

Thus, if E(N) is the expected number  of  double edges, 

lim inf E(N) >1 1 
n~o~ n 8 31/2" 

+ 
3 n 

Since the number  of  edges in the nearest neighbor graph is n minus the number  of  double edges, 
we have, for all densities f ,  

E (number of  edges in nearest neighbor graph) 
lim sup 

5 3 t/2 

3 n ~ < - -  
8 31/2 

+ 
3 n 

5n + 27 ~/2 
- 8n + 27 ~/2 

= 0.6892475516 . . . .  
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We will see below (Theorem 2) that for all densities, the expected number of edges in the nearest 
neighbor graph is (c + o(1))n, where c = 0.6892475516... is the constant defined above. 

For uniform distributions in the plane (more precisely, homogeneous Poisson processes in the 
plane), many statistical properties of nearest neighbor graphs are well-known; for a tour of these 
results, one can consult Getis and Boots [15], where references to applications in geography and 
biology are given. For example, it is known that the probability that X, will form a reciprocal 
nearest neighbor pair with its nearest neighbor (i.e. Xj is the nearest neighbor of its nearest 
neighbor) is asymptotic to 

6~ 
c ~ = 0 .6215 . . . ,  

87t + 27 '/2 

see Refs [16-18]. This implies that the expected number of edges in the nearest neighbor graph is 
asymptotic to. 

(;+(, + 
where the first contribution comes from the double edges, and the second term from the single 
edges. We verify easily that 

c 5rt + 27 I,'2 
+ (1 -- c) = 8n + 27,/2 . 

This corresponds to what we found to be true for all densities. 

7. D I R E C T I O N A L  NEAREST NEIGHBOR GRAPHS 

Flinchbaugh and Jones [19] studied the directional nearest neighbor graph in R 2, obtained by 
connecting each point with its nearest neighbor in one of r fixed divisions. The divisions are 
obtained by positioning the origin at a point, and partitioning the space into infinite slices of a 
pie, each with angle 2~/r. The number of edges grows at most linearly in n, so that Theorem 3 
below applies, but unfortunately, a crucial symmetry condition on S used by us is violated. 

Nevertheless, we can get some idea of the expected number of edges in similar graphs obtained 
as follows: join X, and Xj if in the cone of angle ~t centered at X, with ~ on its bisector, Xj is the 
nearest point to X,. 

Here too, we proceed first by computing the expected number of double edges. We note in 
passing that for ~ = 2n/3, every double edge corresponds to a RNG edge. For ~ ~< 2n/3, the double 
edges define a supergraph of the RNG. A simple computation shows that in Theorems 1 and 3, 
which are both applicable here, 

2 ( T ) = 2 5 - ~ t a n ~  ). 

Hence, for all densities of Theorem 3, and 0 < ~ ~< 2n/3, 

E(N)/n 
2ct + t an (2  ) "  

For the RNG (~ = 2n/3), we obtain the limit value 1/(4/3 - y/2/n) = 1.2787651215 . . . .  Let us now 
consider a graph in which we associate with each edge one or two directions; an edge with two 
directions is said to be a double edge; and X, points to Xj whenever ~ is the nearest neighbor of 
Xi. Above, we have already counted the expected number of double edges. The total expected 
number of directions attached to edges is easily seen to be asymptotic to n x V2/~,(T), where T 
now stands for the cone of angle ct, intersected with the unit circle. Thus, the expected number of 
directions is asymptotic to 2 n n/~. The expected number of edges is obtained by subtracting from 
this the expected number of double edges. This yields the result (valid for 0 < ~ <~ 2n/3) 

n ct 4 + - tan 
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which is valid for all densities of  Theorem 3. It is interesting to observe that this limit varies as 
8n/(50t) and ~t ~0, so that by controlling ~t, we have in fact full control on the sparseness of the 
graph. For small ~t, these graphs cannot possibly be planar. 

8. ASYMPTOTICS FOR GRAPHS WITH BOUNDED 
MAXIMAL DEGREE 

We have hinted at the fact that the lower bound on E(N) given in Theorem 1 can be attained 
for some densities. 

In some proximity graphs, the maximal degree of  each vertex is bounded by a number depending 
upon d only; for example, for any value of d, is is known that the nearest neighbor graph has 
maximal vertex degree bounded by a constant C depending upon d only. For all such graphs, we 
have a very general property, valid for all densities (Theorem 2): the lower bound of Theorem l 
is attained for all densities. 

In the next section, we will consider proximity graphs that are worst-case sparse, i.e. for any 
xl . . . . .  x,, the number of edges does not exceed Cn for some constant C. It suffices to note that 
this condition is satisfied for all planar graphs: hence, for d = 2, it holds for most of the graphs 
discussed above, including the RNG, the graph formed by double edges in the nearest neighbor 
graph, and the Gabriel graph. For worst-case sparse graphs, possibly having unbounded maximal 
vertex degree, the lower bound of  Theorem 1 is attained under some (mild) conditions on the 
underlying distribution (Theorem 3). 

Theorem 2 

Consider a proximity graph based on a regular set S, and assume that the maximal vertex degree 
is bounded by a constant C depending upon d only. Then, for all densities, 

lim E(N) _ V d 
,-.~ n 22(T)" 

Proof of  Theorem 2 

For every e, 6 > 0, we can partition R d into a set G,,~, and its complement, B,,6. The " G "  stands 
for "good" and the " B "  stands for "bad".  G,.6 is the collection of all x for which 

g(S(x,y))2(S(x,y)) - f ( x )  <~ e f ( x )  

and 

#(B(x,y))  f ( x )  <~Ef(x), 
~(B(x, y)) 

for all y with ][ x - y I[ < 6, where B(x, y) is the ball centered at x with radius II x - y [1, and 
[I x [[ ~< 1/6. By the Lebesgue density theorem, it is possible to find 6 < 0 depending upon c, such 
that/~(B,,~) < E. We pick 6 in this manner, and write G, and B, from here onwards. 

The data points are partitioned into two sets, according to membership in G, or its complement. 
The number of edges N can be written as NG + NB, where NG refers to the edges in which both 
vertices are in (7,. Ns refers to the other edges. The expected number of Ns is bounded by 
CE(cardinality of B,) (because every vertex has degree C in the worst case). This is Cn I~ (B,) <~ Cn E. 
When divided by n, this is as small as desired by our choice of E. 

What follows is simply an upper bound for E(N~). 
We observe that 

f l  exp[ - (n - 2)/~(S(xl, x2))]f(xOf(x2) dx2 dxl E(N~)/(n/2) <~ (n 1) 

x I ,,X2 ~ G~ 

f l  exp[ - (n - 2)#(S(xl, x2))]f(xl)f(x2) dx 2 dxl ~< (n 1) 

x t  ,x2 e Ge; ll x2  - x l  ll ~ 6 

C,A.M.W.A. 15/I--E 
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+ ( n  - -  1) f f  exp[ - -  ( n  - 2 ) / ~ ( S ( x , ,  x2))]f(x,)f(x2) d x 2  d x , .  

Xl ,x2 • Gc ; l} X2 -- Xl II > 6 

~< ( n  - -  1) f f  exp[-- (n --2)2(T)f(x,) (1 - - e ) I I  x2 - x ,  I1 a]f(x,)f(x2)dx2 dx, 
Xl , x 2 e G t ,  II x2 -- x l  II <~ 6 

+ ( n  - 1) f f  exp[ - -  ( n  - -  2 ) 2 ( T ) f  (xl) (1 - e)fdlf(x,)f(x2) dx2 dx, 
x l  ~ G~, ll x2 - x l  ll >6 

~<n I 1  e x p [ -  (n --2)2(T)f(xl)(1 -Ql lx2-x ,  lla]f(x,)f(x2)dx2dx, 
x l  ,x2 ~ G , ,  H x2 - x l  ll <~ 6 

+ n ~ exp[ -- (n -- 2)2(T)f(xl) (1 -- e)6d]f(xl) dxj. 
.Ix I E G ¢  

The second term in the upper bound is o(1). This can be seen as follows: using the fact that 
ne -~  ~< 1/(eu) for all n/> 1 and all u > 0, it is easy to see that the integrand is uniformly bounded 
in n by an integrable function (here we also need the fact that G, vanishes outside a big square). 
Furthermore, the integrand tends to zero with n for almost all x~, so that we can apply the Lebesgue 
dominated convergence theorem. The first term is handled as in the proof  of  the lower bound (see 
Theorem 1): it can be written as 

where 

zx y~ [E(~(  II X2 - x, II )IA(X2))]f(x, ) dx,, 
c 

A ~ {xz 'x2 e G~, [I x2 - xl II ~ 0 }, 
However, for fixed x, e G,, 

E(~(IIX2-x~I[)IA(X2))=n P(X2eA,~(llX2-x~ll)>t)dt 

;fx = n f(x2) dx: dt 
2 : ~ (X2  ,X I ) > I,X2 E .4 

= n f (x 2 )  dx2 dt 
2: II x2 - x l  II ~ ~ ' -  I (0 ,x2 ~ A 

: ~ - I ( t ) >  6 :0  < t < 1 ; t ~ - l ( t )  ~ 6 2 : l l x 2 - x l l l ~ - l ( t )  

(xt e G~) 

= n ~ (6 )  + n ft:,(6)~,<, (1 + Qf(x, ) Va(~-l(t))ddt 

= n ~ u ( 6 )  + log dt - -  
J ~o) k 

1-FE V d 
1 -- e (n -- 2)2(T) 



Geometrical graphs 63 

l + c  Va 
n ~ (6 )  + n 

1 - c (n - 2)2(T)" 

We have seen above that 

~ n tP(6 ) f ( x l )dx  I~O 
¢ 

as n ~ ~ ;  hence the first term in the upper bound has an o(1) contribution to E(N)/n [note that 
7 t depends upon x~, so it was not enough to just verify that n7.'(6) --* 0 for all Xl ]. The second term 
in the upper bound does not depend upon xl, so that we can conclude, by the arbitrary nature 
of  E, that lim sup E(N)/n <~ Vd/(2 2(T)).  This, combined with the lower bound of Theorem 1, 
concludes the proof  of  Theorem 2. • 

9. A S Y M P T O T I C S  FOR SPARSE G RA P H S  

We now introduce a regularity condition for a densityf. For  every E,6 > 0, let B,.a be the collection 
of  all x ~ R d for which 

inf inf f ( z )  < (1 - Q f ( x )  
y:!!y-xli<~6 z:z~S(x,y) or Nz-xll~<O 

o r  

sup sup f ( z )  > (1 + Q f ( x ) .  
y:lly--x][<~6 z:z~S(x,y) or I Iz-xl l~<6 

We demand that the boundary of B,.~ have zero Lebesgue measure, where the boundary of  a set 
is defined as the closure of  a set minus the set itself. The boundary of a closed set is obviously 
empty. Examples of  sufficient conditions follow. 

Example 8 

Uniform density on a convex set. W h e n f i s  the uniform density on a convex set C, and E is small 
enough B,,~ consists of  all the points in C that are within distance 6 of  the complement of  C, and 
all the points of  the complement of  C that are within distance 6 of  C. This in turn is the difference 
of  two nested convex sets. Its boundary has zero Lebesgue measure. • 

Example 9 

The multivariate normal density. For the multivariate normal density, the argument is 
rather simple. In fact, the regularity condition is satisfied for most unimodal radially symmetric 
densities. • 

Theorem 3 

Consider a proximity graph based on a regular set S, and assume that it is worst-case sparse. 
Then, for all densities satisfying the regularity condition given above, 

lim E(N) _ lid 
.~o~ n 2 2(T)" 

Proof of Theorem 3 

Let E, 6, G, and B, be as in the proof  of  Theorem 2. The data points are partitioned into two 
sets, according to membership in G, or its complement. The number of  edges N can be partitioned 
into three collections, N~G (connecting vertices entirely within G,), NBB (connecting vertices entirely 
in B,), and Nm (connecting vertices from G, with vertices in B,). 

If  we consider the proximity graph formed on the basis of the points in B, alone, then the 
expected number of  edges [and thus E(NBB)] is bounded by CE(cardinality of  B,) because the 
proximity graph is worst-case sparse. This is Cn#(B,) <~ CnE. When divided by n, this is as small 
as desired by our choice of  E. 
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E ( N ~ )  is handled exactly as in the p r o o f  o f  Theorem 2 [it is called E ( N c )  there]. Using the 
nota t ion  o f  the p r o o f  o f  Theorem 2, we can conclude that  

limsupE(N~G)___< (1 + O V  a 
n "~ 2(1 - c ) 2 ( T ) '  

Thus,  we need only be concerned here with the smallness o f  E(Nn~). This too can be handled in 
the manner  we handled the upper  bound  for E ( N a )  in the p r o o f  o f  Theorem 2, provided that we 
replace everywhere the event ?(2 e G, or  the s tatement  x2 ~ G, by the corresponding event and 
statement involving B,. Fur thermore ,  when breaking up the integral with respect to dt  into two 
pieces, we consider a breakpoint  defined by the condi t ion { t : ~ - ~ ( t )  > p} for some p ~(0, 6). It 
can be verified that  we have 

E(NBG) (1 +E)Va f 
n / - ~  <~ 0(1) -t 2 0  - - - E ) ~ )  ,dxleGoHx2-xlll<~p fo . . . . . .  2eBc 

f (x| ) dx, . 

We are done  if we can prove that  the integral in the last upper  bound  can be made  as small as 
desired by our  choice o f  p, for every fixed E and 6. This is precisely where the regularity condit ion 
comes into play. Indeed,  the funct ion f is integrable, and as p ~ 0, the set over which we integrate 
shrinks down to a set o f  zero Lebesgue measure (because the closure o f  B~ intersected with G~ has 
zero Lebesgue measure). Therefore,  by the Lebesgue domina ted  convergence theorem, the integral 
can be made  as small as desired by the choice o f  p. This, together with Theorem 1, concludes the 
p r o o f  o f  Theorem 3. • 
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