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THE STRONG UNIFORM CONSISTENCY OF NEAREST
NEIGHBOR DENSITY ESTIMATES

BY Luc P. DEVROYE AND T . J. WAGNER'

The University of Texas at Austin

Let X,, • • •, Xn be independent, identically distributed random vectors
with values in ]Rd and with a common probability density f. If Vk(x) is
the volume o f the smallest sphere centered at x and containing at least k
of the Xi, • • •, Xn then fn(x) = k/(nVk (x)) is a nearest neighbor density esti-
mate off. We show that if k = k(n) satisfies k(n)/n --~ 0 and k(n)/log n --* 00

then 51 x I fn(x) - f(x)J --~ 0 w .p . l when f is uniformly continuous on Rd .

Introduction . Suppose that Xi , • • • , Xn are independent, identically distributed
random vectors with values in W and with a common probability density f. If

Vk(x) is the volume of the smallest sphere centered at x and containing at least
k of the random vectors X,, • • • , Xn , then Loftsgaarden and Quesenberry (1965),
to estimate f(x) from X,, • • •, Xn , let

f%(x) = kl(RV.(x))

where k - k(n) is a sequence of positive integers satisfying

(2)

	

(a)

	

k(n)too
(b)

	

k(n)/n -* 0 .

(The factor k - 1 was used instead of k by Loftsgaarden and Quesenberry ; this
has no effect on any of the asymptotic results stated here .) They showed that
fn(x) is a consistent estimate of f(x) at each point where f is continuous and
positive . This result can also easily be inferred from the work of Fix and Hodges
(1951). For d - 1, Moore and Henrichon (1969) showed that

supx If%(x) - f(x)I --> 0 in probability

iff is uniformly continuous and positive on P and if, additionally,

(3)

	

k(n)/log n -~ oo .

Wagner (1973) showed that fn(x) is a strongly consistent estimate of f(x) at each
continuity point off if, in addition to (2b),

~i e-ak(n) < 00

536

for all a>0.

(Notice that (4) is always implied by (3) but (2 a) and (4) are needed to imply
(3) .) The result of this paper is the following theorem .
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THEOREM . If f is uniformly continuous on IEgd and if k(n) satisfies (2b) and
(3) then

SUpx I,/n(x) - f(x)l _ % O W .p . 1 .
If

f%(x) _ ~ n=1 K((x - x2)/r(n))/nr(n)d

where K is the uniform probability density for the unit sphere in Pd and {r(n)}

is a sequence of positive numbers, the recent results of Moore and Yackel

(1977) (see Theorem 3 .1) and the above theorem immediately yield that

sup x Ifxn () -f(x)I _*O w .p . 1

whenever f is uniformly continuous on IRd and r(n) -k 0, nr(n)dllog n -> oo . This

fact, an improvement over the previously published convergence results for the
kernel estimate with a uniform kernel (e .g ., see Theorem 2.1 of Moore and
Yackel (1977)), also is a special case of Theorem 4.9 of Devroye (1976) who
proves the same statement for all kernels K which are bounded probability den-
sities with compact support and whose discontinuity points have a closure with
Lebesgue measure 0 .

PROOF . To simplify notation we assume below that multiplications are always
carried out before division . Let > 0 and choose o > 0 such that

f(y) -f(x)I </2

whenever x and y are within a sphere of volume ~ . Deferring measurability
arguments for the moment,

P{SUpx If% (x) - J ( 'X)I > ~}

= P{U= [Vk(x) < k/n(f(x) + E)1} + P{U=: .rc=»E [Vk(x) > k/n(f(x) -

The event U x [Vk(x) < k/n(f(x) + s)] implies that, for some x, there must be
a sphere centered at x with volume less than k/n( f (x) + e) and containing k of
the random vectors X„ • • • , X,, . If k/ns < ~ then the probability measure of
such a sphere must be less than k(f(x) + s/2)/n(f(x) + e) so that, for one of
these spheres S,

~n(S) - u(s) > k
- k(f(x) -I- ~/ 2)

n

	

n( f (x) + s)

ke	>	ke
2n( f (x) + s) - 2n(F + e)

where F is the maximum of f on W, ,u is the measure on the Borel subsets of
W corresponding to f and ,un is the empirical measure on the Borel subsets of
I1$d for Xl , • • • , Xn. Thus, for k/ns < ~,

(5)

	

P{U x [vk(x) < k/n(f(x) + )]}
G P{supsE ,,, n Ii(S)~n - ~(S)I > ks/2n(F + s)}

where .Sfn is the class of all spheres in JI$ d whose volume is less than 4k/ns .
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Next, with 4k/ne < o,

Ux:fcx)>e [Vk(x) > k/n(f(x) - ~)} C U x :fcx)>e [Vk(x) > k/n(f(x) - (3~/4 ))]

which implies that, for some x with f(x) > s, there is a sphere S centered at x,
with volume < 4k/ne, and

f~(S) ~ k(.f(x) - ~/2)/n(f(x) - (a)~)
,u n (S) c k/n,

	

and

le(S) - ,un(S) > ke/4n(f(x) - (4)e)
Thus
(6) P[U=:,( .)>=[Vx(x) J kln(j(=) - E)1)

P{SUpSe,~n J,(S)

	

C- fln \'S )I ~ - kE/4nF} s

so that

P{supx If%(x) -- f(x)I >_ ~} ~ 2P{sup se n J(S)~n,(S)J > ks/4n(F + ~)} .

The proof will be completed if we show that for each E > 0

(7)

	

n P{sup~E n Ii-(5) - B(S)I > k~/4n(F + ~)} <

	

.

To prove (7) we employ a variation of the argument used by Vapnik and
Chervonenkis (1971) . In this variation use will be made of the following result .
If Yl , . . ., Yn represent independent drawings without replacement from a popu-
lation of k 0's and l's then, for > 0 and k >_ n,

(8)

	

P[IQ Y2)/n -

	

~, ~ 2e -ne 2/(2P +e)

where ;u, the {number of 1's}/k, is assumed to be < 2 . Additionally (8) holds
when Y1 , . . ., Yn are Bernoulli random variables with parameter ~ 2 . (Use
the two-sided version of Theorem 3 of Hoeffding (1963) along with 2 and
log (1 + (s/,4) >_ 2E/(2 ;u + ~) . See also Section 6 of this paper .)

Now, if sup er ;u (A) <_ M and n >_ 8M/d2, an easy modification of Lemma 1
of Vapnik and Chervonenkis (1971) yields

(9) P[sup,,, Ii(A) un - l~(A)I > o] G 2P[sup,,, Ii(A)~n - f~n'(A)I ~ ~/211

where ~e n'(A) is the empirical measure for A with Xn+1 , . . . , X2n and

	

is any
class of Borel sets in Pd for which

sup Ii(A) - and super Ii(A) un -

are random variables . Putting $Y -

	

,, we see that M can be taken to be
4kF/n~ . Since, for a > 0,

P[sup n J(A);u n - len'(A)I >_ o/2 ]

(10)

	

P[sup n J(A)l~n - l~n'(A)I

	

o/2; sup

	

, 2%(A) < aM]

+ P[sup n /2%(A) > aM]

we see, using (3) and putting o = k~/4n(F + E), that (7) follows whenever both
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terms of the right-hand side of (10) are summable for some a > 0. Looking at
the first term, we note that it equals

1
S pend

(2n) .
!

	

I[sup n ~u n(A)-un (A)I?b/2] I[supJ %p2n(A)<_aM] d
Q

where IE is the indicator of the set E c W and Q is the probability measure on
R 2 '"d for X1 , • . . , X2n and where the inner summation is taken over all (2n)! per-
mutations of x 1 , . . . , x2n . But this last integral equals

S 2nd

	

'[ sup ,n u2n(A)5_aM] sup~n 1[lu n (A)-un(A)I~a/2] dQ
)((2n .

1
Spend

	

t

	

1[sup nu2n(A)~aM] 5U1[lun(A)-un(A)I?8/2] dQ
2n) .

<	 1Spend LJAe ''[sup np2%(A)5aM] (2n) '

	

1[Jp%(A)-P2n(A)I~a/4] dQ
.

where $f' _ Sf'(xl , . . . , x2n) is any finite subclass of Jn which yields the
same class of intersections with {x 1 , . . . , x2n } and where the inner summation
is again taken over the (2n)! permutations of x1 , . . . , x 2n . The quantity within
{ • } is bounded above, using (8), by

A) +4a)

whenever ;i 2%(A) ~ Z . Since M = 4kF/n~ we see, from (3), that for all n suf-
ficiently large the last integral is upper-bounded by

2 52%d e-n82/(32aM+48)( Ae ' 1) dQ .

Choosing Jf' to be a smallest possible subclass, we have (Vapnik and
Chervonenkis (1971), Cover (1965)) that ( A€ ' 1) < 1 + (2n)d+ 3 and, using
(3) again, that the first term of (10) is summable for all a > 0 .

Looking at the second term of (10), let r be the radius of a sphere in W
whose volume is 4k/ne . If some sphere of radius r contains I of the points
X1 , . . . , X2n then there must be at least one sphere or radius 2r, centered at one
of the points X1 , . . . , X2n which contains at least l points . Thus

P[sup~n ;u 2%(A) > aM] < 2nP[~c 2n(SXl(2r)) > aM]

where S(t) denotes the sphere of radius t centered at x . But

P[ ;u2n(SX l(2r)) > aM]

max xeJ d P[1~2n_l(Sx(2r)) > (a2nM - 1)/(2n -- 1)]

< maxx a ~d P[;u2n_ l (Sx(2r)) - p(Sx(2r)) > [(a2nM -1)/(2n -1)] - 2d4kF/n~] .

At this point it is not difficult, using (3) and (8), to show that the second term
of (9) is summable as long as a > 2d .

Finally, to complete the proof, it is easy to see that all of the uncountable
unions over x are indeed events and that the various supremums over Jn are
indeed random variables .
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