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Abstract. Motivated by applications of Gabriel graphs and Yao graphs in wireless ad-hoc networks,
we show that the maximum degree of a random Gabriel graph or Yao graph defined on n points drawn
uniformly at random from a unit square grows as Θ(log n/ log log n) in probability.
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tion
Wireless ad-hoc networks consist of computers (or sensors) capable of communicating wirelessly with
each other without any centralized information, infrastructure, or organization. A common mathemat-
ical model of such networks is the unit disk graph in which the nodes consist of n points in R

2 and an
edge exists between two nodes if and only if the distance between them is at most r. Depending on
the value of r, which represents the transmission range of the wireless transmitters, the network can
be anything ranging from a set of isolated vertices to the complete graph. The unit disk graph is also
the basic model of continuum percolation theory [17].

The lack of centralized management and organization that occurs in ad-hoc networks means
that individual nodes in the network typically only have local information about the nodes that they
can communicate directly with. This makes even basic tasks, such as routing, highly non-trivial because
the combination of complete lack of organization and the unit disk graph topology is too unwieldy.

One approach to taming ad-hoc networks has been to compute the intersection of the unit
disk graph with some “nice” proximity graph, where the intersection of two graphs G1 = (V,E1) and
G2 = (V,E2) is the graph (V,E1 ∩ E2). If the right proximity graph is chosen, the resulting graph
will remain connected (if the original unit disk graph is connected) and will inherit some of the nice
properties of the proximity graph. Ideally, the intersection can be computed locally, so that individual
nodes can locally determine which of their incident edges belong to the intersection.

One such approach computes the intersection of the unit disk graph with the Gabriel graph
[10]. The Gabriel graph contain an edge between two points u and v if and only if the disk whose
diameter is ‖uv‖ and that contains u and v on its boundary contains no points other than u and v (see
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Figure 1: A point set with its Gabriel graph. No circle has any data point in its interior and every
circle has an edge as its diameter.

Figure 1). The Gabriel graph is planar and therefore has only a linear number of edges. Algorithms for
routing on planar graphs can be applied to the resulting graph or, more commonly, these algorithms
can be used for recovery when routing heuristics fail. A number of routing algorithms and protocols
have been proposed based on this strategy [2, 4, 13].

Another suggested approach uses the Yao graph [29]. Refer to Figure 2. Let p be a positive
integer, let θ = 2π/p, and let u be a point in R

2. The i-cone of u is the set of all points w ∈ R
2 such

that the angle ∠quw ∈ [(i− 1)θ, iθ), where q = u + (1, 0). The θ-Yao graph contains an edge from u to
the nearest point in each of u’s i-cones, for i = 1, . . . , p. For any constant p ≥ 6, the θ-Yao graph has at
most pn edges and is a spanner ; for any two vertices u and v, the θ-Yao graph contains a path whose
Euclidean length is at most t · ‖uv‖, where ‖uv‖ denotes the Euclidean distance between u and v and
t = 1/(1 − 2 sin(θ/2)) is called the stretch factor. When applied in the context of unit disk graphs, if
there is a path of Euclidean length ‖uv‖U in the original unit disk graph, then there is a path of length
at most t · ‖uv‖U in the intersection of the unit disk graph and the θ-Yao graph. Routing strategies
based on the Yao graph attempt to find power-efficient routing paths [12, 14, 22, 23].1.1 New Results
Motivated by the above applications in wireless networks, the current paper studies the Gabriel graph
and Yao graph of n points uniformly and independently distributed in a unit square. This distribution
assumption can be used to approximately model the unorganized nature of ad-hoc networks and is
commonly used in simulations of such networks [28]. Additionally, some types of sensor networks,
especially with military applications, are specifically designed to be deployed by randomly placing
(scattering) them in the deployment area. This distribution assumption models these applications very
well.
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u

Figure 2: The edges defined by a node u in a (π/3)-Yao graph.

We show that the maximum degree of any node in a Gabriel graph or a Yao graph is concentrated
at Θ(log n/(log log n)).1 More specifically, if ∆ is the maximum degree of either graph, then we show
that there exists constants a and b, such that

lim
n→∞

Pr

{

∆ ∈
[

a log n

log log n
,

b log n

log log n

]}

= 1 .

For Gabriel graphs, we show this for (a, b) = (1/12, 1) and for Yao graphs we show it for (a, b) = (1/8, 4).
The maximum degree is particularly important in wireless networks, since the degree of a node directly
impacts the amount of bookkeeping the node must do. With wireless nodes typically being battery
operated and often memory- and computation-constrained, the degree of a node should hopefully be
as small as possible in order to minimize this bookkeeping.1.2 Related Work
The monograph by Penrose [20] presents an comprehensive treatment of the properties of unit disk
graphs of points uniformly distributed in [0, 1]d including connectivity, minimum and maximum degree,
maximum clique size, and a number of other parameters.

A random Gabriel graph in this paper is a Gabriel graph for n points drawn uniformly and
at random from [0, 1]d. Its key properties were studied in great depth by Matula and Sokal [15]. For
example, the expected number of edges grows as 2d−1n [8, 15]. The length of an edge taken at random
from all edges has expected value and standard deviation Θ(n−1/d) [8]. These properties hold also for
many non-uniform distributions [8].

For a uniform Poisson process, introduced to avoid edge effects, Bern, Eppstein and Yao
[3] showed that the expected value of the maximum degree of a Delaunay triangulation grows as
Θ(log n/ log log n). For that model, their proof also works for Gabriel graphs. It is known that the
Gabriel graph is a subgraph of the Delaunay triangulation (see Toussaint [24]), so that our upper bound
on the maximum degree in a Gabriel graph would in fact follow without too much work from the cited
paper. Our work on Gabriel graphs differs in three aspects:

1Throughout this paper log x denote the natural logarithm of x.
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1. We show convergence in probability: the fact that the expected maximum degree grows as
Θ(log n/ log log n) does not imply that the probability of obtaining such large maximum degrees
tends to one. We show it does.

2. We deal with a fixed sample size model on a unit square, not the Poisson model on the entire
plane.

3. Our proofs are different.

The relative neighborhood graph is obtained by joining all pairs whose loon is empty, where the
loon defined by a pair is the intersection of two spheres of equal radius, each having one point as center
and the other point on its surface (see Toussaint [25]). As it is a subgraph of the Gabriel graph, our
results imply that its maximum degree is O(log n/ log log n) in probability. For a general discussion of
proximity graphs and their applications, we refer to the survey papers by Toussaint [24, 26]. For an
application of the relative neighbourhood graph to wireless networks, see Karp and Kung [13].

To the best of our knowledge, random Yao graphs have not been studied previously. Although
researchers have been interested in spanners having small maximum degree (see, the textbook by
Narasimhan and Smid [18] for a survey), most research in this area has been on constructing spanners
that have low degree in the worst-case. Some of these constructions have been adapted for use in the
unit disk graph model of wireless networks [27], but the computation of these spanners is not quite as
straightforward and local as that of Yao graphs.

The remainder of this paper is organized as follows. Section 2 presents our results on Gabriel
graphs. Section 3 presents our results on Yao graphs. Each of these sections concludes with a summary
and discussion of possible generalizations and limitations.2 Gabriel Graphs
In this section, we prove bounds on the maximum degree of vertices in a Gabriel graph. Before we
begin, we discuss an equation that is central to all our upper and lower bound, as well as many other
bounds of this type.

Let c > 0 be a constant, and let k = c log n/ log log n. In all our bounds, the value kk appears
at some point in the computations. Note that

kk = n
c
“

1+ log c−log log log n

log log n

”

= nc−o(1) . (1)

In particular, k = O(nc) and, for any ǫ > 0, k = Ω(nc−ǫ).2.1 A lower bound
In this section, we prove the following result.
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Theorem 1. For a random Gabriel graph defined on n points drawn independently from the uniform
distribution on [0, 1]2,

lim
n→∞

Pr

{

maximum degree <
c log n

log log n

}

= 0

for all c < 1/12.

Proof. We start with a technical construction of a region and then a point configuration. This con-
struction is parameterized by an integer k and a positive number r. Define the angle ξ = 2π/(3k), and
partition the plane into 3k sectors of angle ξ each, with center at the origin. We refer to Figure 3 for
further explanations.

r
R

ξ

ξ

ξξ

Figure 3: The definition of a pearl

Draw two concentric circles, both centered at the origin, of radii r and R with R > r, so
that r = R cos ξ. If the sectors are numbered C1, C2, . . . , C3k (clockwise) and the circles are Sr and
SR, then we mark k regions (shown in darker color in Figure 3). These regions are of the form
(SR \ Sr) ∩ (C3i+1 ∪ C3i+2) for 0 ≤ i ≤ k − 1. Call these regions pearl regions and denote them by
P1, . . . , Pk. Any circle with its diameter being the segment linking the origin with any point in a pearl
region totally avoids any other pearl region. To see this, refer to Figure 3 and recall that r = R cos ξ.

Assume we are given m points in the plane, x1, . . . , xm and a center x. If x + A denotes the
translate of a set A by x, then we call x a (k, r)-tiara for x1, . . . , xm if exactly k of the points xi fall in

-5-



x + SR, and if each set x + Pj covers exactly one of these xi’s. If we construct the Gabriel graph for
x, x1, . . . , xm, then the degree of the vertex at x is at least k if x is a (k, r) tiara for x1, . . . , xm.

The above construction and definitions are for any point sets. Assume that a random sample
of size n is drawn from the uniform distribution on [0, 1]2, and denote it by X1, . . . ,Xn. Define
k = max(3, ⌊c log n/ log log n⌋) and r = 1/

√
n. We say that Xi is a jewel if Xi is a (k, r) tiara for

{Xj : j 6= i} and if Xi is at distance at least 2r from the perimeter of [0, 1]2. Note that R ≤ 2r, so that
Xi + Pj ⊆ [0, 1]2 for all j.

We compute the probability that X1 is a jewel given X1 = x, provided that x is at distance
at least 2r from the perimeter of the unit square. Note that this probability may be written as a
multinomial probability. If p is the area of x + Pj , we have in particular,

Pr{X1 is a jewel|X1 = x} =
(n − 1)!

(n − 1 − k)!
× pk ×

(

1 − πR2
)n−1−k

=
(n − 1)!

(n − 1 − k)!
× pk ×

(

1 − π/n cos2 ξ
)n−1−k

≥ (n − 1)!

(n − 1 − k)!
× pk × (1 − 2π/n)n−1−k [since ξ ≤ 2π/9 < π/4]

≥ (n − k)kpk(1 − 2π/n)n

≥ (n − k)kpk(1/3)2π .

As k ≥ 3, we have ξ ≤ 2π/9 < 1, so that tan ξ ≥ ξ. Therefore,

p = (R2 − r2)ξ = R2ξ sin2 ξ = r2ξ tan2 ξ ≥ ξ3/n .

Resubstitution yields

Pr{X1 is a jewel|X1 = x} ≥ (n − k)k
ξ3k

nk

(

1

3

)2π

=

(

1 − k

n

)k (1

3

)2π

ξ3k

=

(

1 − k

n

)k (1

3

)2π (2π

3

)3k

k−3k

≥ k−3k

when n is large enough, uniformly over all x at distance at least 2r from the perimeter of the unit
square. We may now uncondition. If N is the number of jewels among the data points, we have

E[N ] = n Pr{X1 is a jewel} ≥ n(1 − 4r)2k−3k ∼ nk−3k .

If k is as we picked it, and c < 1/3, then E[N ] → ∞. This is not quite enough to show that
Pr{N > 0} → 1. There are several routes one can follow at this point: one could Poissonize the sample
size; one might redefine jewels so that at most one jewel occurs in any region of a regular grid. Both
tricks create enough independence to get by. Instead, we opt to use the second moment method (for
references, see Palmer (1985) or Alon, Spencer and Erdös (1992)). When applied to a counting random
variable N =

∑n
i=1 Yi, where the Yi’s are {0, 1}-valued with a permutation-invariant joint distribution,

the second moment method implies that N/E[N ] → 1 in probability whenever E[N ] → ∞ and

lim sup
n→∞

E[Y1Y2]

E[Y1]E[Y2]
≤ 1 .
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In our case, we only need to verify the latter condition when Yi is the indicator that Xi is a jewel, so
that N is the number of jewels. Let A be the event that X1 or X2 is within 2r of the perimeter of
the unit square, or that ‖X1 − X2‖ ≤ 4r. On Ac, the complement of A, we have, by the multinomial
argument given above, but now applied to two tiaras,

E[Y1Y2|Ac] =
(n − 2)!

(n − 2 − 2k)!
p2k(1 − 2πR2)n−2−2k ,

where p is the area of a pearl region Pj . We recall that

E[Y1] ≥
(n − 1)!

(n − 1 − k)!
pk
(

1 − πR2
)n−1−k ≥ k−3k

for n large enough. Thus, for such large n,

E[Y1Y2]

E[Y1]E[Y2]
=

Pr{A}E[Y1Y2|A]

E[Y1]E[Y2]
+

Pr{Ac}E[Y1Y2|Ac]

E[Y1]E[Y2]

≤ Pr{A}
E[Y1]E[Y2]

+
E[Y1Y2|Ac]

E[Y1]E[Y2]

≤ 8r + 16πr2

E[Y1]E[Y2]
+

(n − 2)!

(n − 2 − 2k)!
p2k(1 − 2πR2)n−2−2k × (n − 1 − k)!2

(n − 1)!2
p−2k

(

1 − πR2
)2k+2−2n

≤ 67

n1/2k−6k
+ 1 + O(k2/n) .

We are done if n1/2k−6k → ∞. For this, in the definition of k, we need only pick 6c < 1/2, or c < 1/12.
We have thus shown that N/E[N ] → 1 in probability when c < 1/12 in the definition of k. We conclude
that Pr{N = 0} → 0 for such choices of c. Therefore,

lim
n→∞

Pr

{

Maximum degree in Gabriel graph <
c log n

log log n

}

= 0

for all c < 1/12.2.2 An upper bound
Theorem 2. For a random Gabriel graph defined on n points drawn independently from the uniform
distribution on [0, 1]2,

lim
n→∞

Pr

{

maximum degree >
c log n

log log n

}

= 0

for all c > 1.

Proof. At a point x, partition the space into k equal sectors each having their apex at x and of angle
2π/k each, where k = ⌈√log n⌉. Within each sector, we color the point nearest to x red. If a sector has
a red point y, consider the perpendicular line at y to the segment (y, x) and call this line the separator.
All points in the same sector, on the same side of the separator as x are colored blue. In Figure 5,
these are precisely the points that fall in the shaded wedge.

We first claim that each Gabriel graph neighbor of x is colored red or blue. Indeed, any point y
excludes all points at the other side of the separator—the side that does not contain x. Thus, if there is
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Figure 4: The shaded regions define a (7, r) tiara.
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θ

x

y

Figure 5: The definition of a wedge

a red point in the sector, only blue points can possibly be Gabriel neighbors of x. Let r = 3
√

log n /n
and recolor any (blue or red) point z to be yellow if it is a Gabriel neighbour of x and ‖xz‖ > r.

Figure 6 shows several points with their separators. No point in the shaded area can be a
Gabriel neighbor of the point x at the origin. Note that for every point in the shaded area, the Gabriel
circle through the origin contains another point. Figure 7 shows several sectors and red points, together
with the wedges in which blue points must fall. The angle of each sector is θ = 2π/k.

Let Nr, Nb, and Ny be the total number of red, blue, and yellow points, respectively. Recall
that k = ⌈

√
log n⌉ = o(log n/ log log n), so Nr ≤ k = o(log n/ log log n). Also, conditioning on X1 = x,

E[Ny|X1 = x] = n Pr{X2 is a Gabriel neighbor of X1, ‖X2 − X1‖ ≥ r|X1 = x}
≤ n(1 − π(r/2)2/π)n−1

(because at least a 1/π fraction

of the Gabriel circle through x and X2 falls in the unit square)

≤ n(1 − r2/4)n−1

≤ ne−9(n−1) log n/(4n)

∼ n1−9/4

→ 0 .

Thus, it suffices to study Nb.

As tan θ ≤ θ + θ3 for 0 ≤ θ ≤ 1, the area of each wedge is at most

r2

2
(tan θ − θ) ≤ 9 log nθ3

2n

≤ 72 log nπ3

2nk3

≤ 1200 log n

nk3
.

-9-



Figure 6: Several points and their separators

The total wedge area around X1 = x is thus not more than

1200 log n

nk2
≤ 1200

n
.

Given X1 = x and the collection of red points, the n − 1 − Nr other points are uniformly distributed
on the unit square but not in any of the Nr circular sectors just inside the wedges, and not in any
circular sectors of radius r defined when no red point is present in the sector. Call the density f and
its support set S. Clearly, 1 ≤ f ≤ 1/(1 − πr2). Of the n − 1 − Nr points, let M denote the total
number of points falling in the wedges. Clearly, M is stochastically smaller than a binomial random
variable with parameters m = n − 1 − Nr and p = 1200/n(1 − πr2). In particular, using l! ≥ (l/e)l,
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Figure 7: Sectors, red points, and blue wedges.
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and letting Pr denote the conditional probability,

Pr{M ≥ l} ≤
m
∑

j=l

(

m

j

)

pj(1 − p)m−j

≤
∞
∑

j=l

(mp)j

j!

=
(mp)l

l!

∞
∑

j=0

(mp)j l!

(l + j)!

≤ (mp)l

l!

∞
∑

j=0

(mp

l

)j

=
(mp)l

l!(1 − mp/l)

≤ (mpe/l)l

(1 − mp/l)

≤ (npe/l)l

(1 − np/l)
.

We set l = ⌈c log n/ log log n⌉ for a constant c and note that np/l = o(1). By the union bound, the
probability that there exists a point x for which the number of blue points in the wedge collection for
x is greater than or equal to l does not exceed

n × (npe/l)l

(1 − np/l)
.

As np = 1200 + o(1), the above expression is for all n large enough not more than

2n(3600/l)l .

By (1), this tends to zero when c > 1.

The probability that for one of the data points, Ny > 0 is not more than

n × (1 + o(1))n1−9/4 → 0 .

Thus, we have shown that for c > 1, the probability that the maximum degree exceeds k + l tends to
zero. As k + l ∼ l, we are done.2.3 RemarksHigher dimensions. Just as Bern, Eppstein and Yao (1991) showed for the expected maximum degree
in a Delaunay triangulation, the results for in probability convergence for Gabriel graphs extend easily
to R

d. In particular, for any d, there exist constants a > 0 and b < ∞ only depending upon d such
that

lim
n→∞

Pr

{

maximum degree 6∈
(

a log n

log log n
,

b log n

log log n

)}

= 0 .
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Edge lengths. The results on Ny in the proof above show that the expected number of Gabriel edges
of length at least 3

√

log n /n is o(1). Hence, the probability that the maximum edge length exceeds
3
√

log n /n tends to zero. Bounds on sums of functions of the edges lengths of random Gabriel graphs
are given by Penrose and Yukich [21].3 Yao Graphs
In this section we present our results on Yao graphs. For simplicity we consider θ-Yao graphs with
θ = π/2. The modifications required for other (smaller) values of θ are discussed at the end of this
section. The lower bound in Section 3.1 is obtained using a construction and argument similar to the
pearl used to prove Theorem 1. The upper bound in Section 3.2 uses different arguments based on
maxima.

For the upper bound, we change the distribution model slightly by rotating it by π/4. More
precisely, let D

2 denote the unit square rotated by π/4. The upper bound assumes that points are
distributed uniformly and independently in D

2. At the end of this section, we discuss why this slightly
different assumption is necessary.3.1 A lower bound
Our lower bound argument is similar to that used for Gabriel graphs, in that we define a configuration
of points whose existence implies a vertex of degree k and show that, with high probability, this
configuration exists in a random point set.

Theorem 3. For a random π/2-Yao graph defined by n points drawn independently from the uniform
distribution on [0, 1]2,

lim
n→∞

Pr

{

maximum degree <
c log n

log log n

}

= 0 ,

for all c < 1/8.

Proof. Refer to Figure 8.a. Let r > 0 be a real number and let k be a positive integer. Define k square
regions P1, . . . , Pk where Pi = [(i − 1)r/k, ir/k] × [r − ir/k, r − (i − 1)r/k]. These regions are called
steps.

Assume we are given m points in the plane, x1, . . . , xm and a center x. Then we call x a (k, r)-
staircase for x1, . . . , xm if exactly k of the points xi fall into the square x + [−r, r]2 and if each step
x + Pj covers exactly one of these xi’s. If we construct the π/2-Yao graph for x, x1, . . . , xm and x is a
(k, r)-staircase for x1, . . . , xm, then every point in each of the k steps is adjacent to x, so x is a vertex
of degree at least k (Figure 8.b).

Let k = c log n/ log log n, let r =
√

2/n, and let X1, . . . ,Xn be n points drawn uniformly and
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(a) (b)

Figure 8: An (8, r) staircase.

independently from [0, 1]2. Then the area, p, of a step in a (k, r)-staircase is p = (r/k)2 = 2/nk2, so

Pr{X1 is a (k, r)-staircase | X1 ∈ [r, 1 − r]2} =
(n − 1)!

(n − k − 1)!
pk(1 − 8/n)n−k−1

≥ (1 − k/n)k(1 − 8/n)n2kk−2k

≥ k−2k ,

for n sufficiently large. Thus, if N is the number of staircases among X1, . . . ,Xn, then

E[N ] ≥ n(1 − 2r)2k−2k = Ω(n1−2c−ǫ) → ∞ ,

provided that c < 1/2.

As before, we finish the proof using the second moment method. Let A denote the event that
{X1,X2} 6⊂ [r, 1 − r]2 or that X2 ∈ X1 + [−r, r]2, and let Ac denote the complement of A. Let Yi,
i ∈ {1, 2}, denote the indicator variable that Xi is a staircase. Then, for sufficiently large n,

E[Y1Y2]

E[Y1]E[Y2]
≤ E[Y1Y2]

k−4k

= k4k(Pr{A}E[Y1Y2|A] + Pr{Ac}E[Y1Y2|Ac])

≤ k4k((4r + 4r2) + Pr{Ac}E[Y1Y2|Ac])

≤ k4k

(

(4r + 4r2) +
(n − 2)!

(n − 2 − 2k)!

(

1

nk2

)2k

(1 − 16/n)n−2−2k

)

≤ k4k

(

(4r + 4r2) + n2k

(

1

nk2

)2k

(1 − 16/n)n−2−2k

)

≤ k4k
(

4
√

2/n + 8/n
)

+ 1

= 1 + O(n4c−1/2) ,

so limn→∞
E[Y1Y2]

E[Y1]E[Y2]
= 1 for any c < 1/8.

-14-



3.2 An upper bound
Next we prove an upper bound on the maximum degree in a (π/2)-Yao graph. The upper bound is
based on the observation that the neighbours of a node in a Yao graph are so-called minima. Let
x1, . . . , xn be a set of points. We say that a point xi dominates xj if the x- and y-coordinate of xi are
larger than the x- and y-coordinate of xj, respectively. A point x is maximal with respect to x1, . . . , xn

if x is not dominated by any xi. A point x is minimal if x does not dominate any point xi.

Before we can present the upper bound, we require a few preliminary results about maxima
and minima. First, though, we recall a classic result obtained using Chernoff’s bounding method [5]:

Lemma 1. Let Y1, . . . , Ym be a sequence of independent {0, 1}-valued random variables, let Y =
∑m

i=1 Yi, and let µ = E[Y ]. Then, for any, δ > 0,

Pr{Y > (1 + δ)µ} ≤
(

eδ

(1 + δ)(1+δ)

)µ

.

The following result is already quite well-known. We include a proof sketch only for the sake
of completeness.

Lemma 2. Let X1, . . . ,Xm be a sequence of points drawn independently and uniformly from a rectangle
[a, b] × [c, d] having area greater than 0 and let M be the number of maximal (respectively, minimal)
points among X1, . . . ,Xm. Then, for any δ > 0,

log m ≤ E[M ] ≤ log m + 1 (2)

and

Pr{M > (1 + δ)E[M ]} ≤
(

eδ

(1 + δ)1+δ

)log m

. (3)

Proof. Sort the elements of X1, . . . ,Xm by decreasing x-coordinate, so that Xi is maximal if and only
if its y-coordinate is the maximum among the y-coordinates of X1, . . . ,Xi. Let Yi = 1 if Xi is maximal
and Yi = 0 otherwise. Obviously E[Yi] = 1/i, so

E[M ] = E

[

m
∑

i=1

Yi

]

=
m
∑

1=1

1/i .

The inequality log m ≤ E[M ] ≤ log m + 1 is then obtained by bounding the above harmonic sum using
the integral

∫m
1 (1/x)dx (see, e.g., Cormen et al [6, Appendix A.2]).

To prove the second part of the lemma, we use the fact that the random variables Y1, . . . , Ym

are independent [8, 11]. The result then follows immediately from Lemma 1.

Unfortunately, the points we consider will not always be drawn from a rectangle. A t-shape is
a closed maximal subset of R

2 that is bounded by the x- and y-axes and a y-monotone polygonal path
consisting of at most t edges (a piecewise linear function of y having at most t pieces). See Figure 9.a.
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(a) (b) (c)

Figure 9: (a) a t-shape S, (b) covering S to obtain a shape S′ and uniformly distributing points in S′,
and (c) reflecting the points in S′ to obtain points uniformly distributed in S.

Lemma 3. Let X1, . . . ,Xm be a sequence of points drawn independently and uniformly from a t-shape
S having area greater than 0 and let M be the number of minimal points among X1, . . . ,Xm. Then,
for any δ > 0,

E[M ] ≤ 2t(log m + 1) (4)

and

Pr{M > (1 + δ)2t(log m + 1)} ≤ 2t

(

eδ

(1 + δ)1+δ

)log m

. (5)

Proof. Cover S with at most t rectangles R1, . . . , Rℓ, ℓ ≤ t whose total area is twice the area of S, as
shown in Figure 9.b. Let S′ =

⋃ℓ
i=1 Ri be the resulting subset of R

2. Generate points Z = {Z1, . . . , Zm}
uniformly and independently in S′. For each point Zi in Rj, if Zi ∈ S then set Xi = Zi. Otherwise,
set Xi to be the reflection of Zi through the center of Rj . Observe that X1, . . . ,Xm are uniformly
distributed in S. Furthermore, if Xi ∈ Rj is minimal with respect to X1, . . . ,Xm, then Zi is either
maximal or minimal with respect to Z ∩ Rj .

Therefore, if Mj denotes the number of minimal elements of X contained in Rj, then, by the
first part of Lemma 2, E[Mj ] ≤ 2(log m + 1) and

E[M ] = E





t
∑

j=1

Mj



 ≤ 2t(log m + 1) .

By applying the second part of Lemma 2 t times, and using the union bound, we also obtain

Pr{M > (1 + δ)2t(log m + 1)} ≤ 2t

(

eδ

(1 + δ)1+δ

)log m

as required.

We now have all the tools required to prove our upper bound

Theorem 4. For a random (π/2)-Yao graph defined on n points drawn independently from the uniform
distribution on D

2,

lim
n→∞

Pr

{

maximum degree >
4c log n

log log n

}

= 0

for all c > 4.
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Proof. Let X1, . . . ,Xn be points uniformly and independently distributed in D
2 and let G be the (π/2)-

Yao graph of X1, . . . ,Xn. Let ℓ =
√

d log n/n. We will first consider the edges of G whose length is
at most ℓ. Consider the square S = X1 + [0, ℓ]2, that contains all neighbours of X1 in X1’s 1-cone.
Let N denote the number of points of X2, . . . ,Xn contained in S. Then E[N ] ≤ nℓ2 = d log n and, by
Lemma 1,

Pr{N > 2d log n} ≤ (e/4)d log n = nd(1−log 4) .

Let N ′ denote the number of points in S that are neighbours of X1 in the Yao graph. Each such
point is minimal with respect to the N points of X2, . . . ,Xn contained in S. Furthermore, S ∩ D

2 is a
t-shape, for t ≤ 2. By the first part of Lemma 3, conditioned on N ≤ 2d log n, the expected number of
minimal points, and hence the number of neighbours of X1 in S is small;

E[N ′|N ≤ 2d log n] ≤ 4(log(2d log n) + 1) = 4 log log n + Θ(1) .

Define v = log(2d log n) and let k = (c log n)/(log log n). By the second part of Lemma 3, with t = 2,

Pr
{

N ′ > k|N ≤ 2d log n
}

= Pr

{

N ′ >
c log n

4(v + 1)(log log n)
· (4(v + 1))|N ≤ 2d log n

}

≤ 4(f(n)/g(n))log(2d log n)

≤ 4(f(n)/g(n))log log n

where

f(n)log log n = exp

(

c log n

4(v + 1)(log log n)
− 1

)log log n

≤ exp

(

c log n

4(v + 1)
− 1

)

= no(1)

and

g(n)log log n =

(

(

c log n

4(v + 1)(log log n)

)
c log n

4(v+1)(log log n)

)log log n

=

(

c log n

4(v + 1)(log log n)

)
c log n

4(v+1)

= Ω(nc/4−ǫ)

for any ǫ > 0. Putting this all together, we obtain

Pr
{

N ′ > k|N ≤ 2d log n
}

≤ no(1)/Ω(nc/4−ǫ) = O(n−c/4+ǫ) .

Unconditioning, we obtain

Pr{N ′ > k} = O(n−c/4+ǫ + nd(1−log 4)) .

Let G′ be the subgraph of G consisting only of edges of length at most ℓ and let D′ denote the maximum
degree of a vertex in G′. Repeating the above argument 4n times and using the union bound gives

Pr{D′ > 4k} = O(n1−c/4+ǫ + n1+d(1−log 4))

Finally, all that remains is to argue that G has no edges of length greater than ℓ. An edge of
length at least ℓ defines an empty region of area at least πℓ2/4. For ℓ < 1/2, a portion of this empty
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ℓ

D
2

ℓ

Figure 10: An edge of length ℓ defines an empty subset of D
2 whose area is at least (ℓ/2)2.

region whose area is at least (ℓ/2)2 is contained in D
2 (see Figure 10). Therefore, the probability of

there being any edge of length greater than ℓ =
√

d log n/n is at most

4n(1 − ℓ2/4)n−2 = 4n

(

1 − d log n

4n

)n−2

≤ 4ne−(n−1)d log n/4n

≤ 4n1−(n−1)d/4n

= 4n1−(1−1/n)d/4

At last, let D be the maximum degree of any vertex in G. Putting everything together, we
obtain

Pr{D > 4k} = O(n1−c/4+ǫ + n1+d(1−log 4) + n1−(1−1/n)d/4) → 0

for any c > 4 and d > max{1/(log 4 − 1), 4}.3.3 RemarksWhy D
2? The proof of Theorem 4 actually shows that the probability that G has a vertex of degree

more than c log n/ log log n is n−Ω(c). The last step in the proof requires that any edge of length ℓ
defines portion of the support set of area Ω(ℓ2) that is empty of points. This is true when the support
set is D

2 but not true when the support set is the unit square [0, 1]2. Indeed, the proof breaks down for
points drawn from the unit square, since with probability 1/n, some element, say X1, simultaneously
has the minimum x- and y-coordinate. In this case, the expected degree of X1 is equal to the expected
number of minimal elements among X2, . . . ,Xn, which is, by Lemma 2, Θ(log n).

In a situation where points are uniformly distributed in the unit square, the upper bound in
Theorem 4 holds if one considers only the points whose distance from the boundary of the square is at
least

√

d log n/n.Smaller values of θ. For any constant value of θ ≤ π/2, the upper and lower bounds of Theorem 3
and Theorem 4 still hold. The arguments are almost identical with the exception that the definition of
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a staircase and of minima and maxima are modified to take the value of θ into account. Although the
value of θ appears in the intermediate calculations, for any constant θ, the constants c = 1/8 and c = 4
in Theorem 3 and Theorem 4 are unchanged (though the constant 4c in Theorem 4 becomes (2π/θ)c).
However, as noted above, to prove a version of Theorem 4 the support set must be rotated so that the
difference in angle between any side of the support set and iθ, for 0 ≤ i ≤ 2π/θ is lower-bounded by a
constant.Higher dimensions. Yao graphs are also defined for point sets in R

d. The lower bound of Theorem 3
can be extended to show that Yao graphs of n points uniformly and independently distributed in [0, 1]d

have maximum degree Ω(log n/ log log n). Unfortunately, the proof of the upper bound in Theorem 4
does not continue to hold in R
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