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Introduction

Following Embrechts and Goldie (1994), a perpetuity is a random variable
Y=1+W +WiWo + WW W5+ + W Wy... W, +---

where the W;’s are i.i.d. random variables distributed as W and EW = m < 1. It occurs in
various fields such as financial modelling, hydrology, insurance mathematics and the analysis of
Hoare’s selection algorithm. Key references are Takacs (1955), Kesten (1973), Vervaat (1979),
Goldie and Griibel (1995), Griibel and Rosler (1996) and de Bruijn (1951). These are special
cases of more general random variables that may be written as

Ay + AW, + AW W + AW W W5 + - -

(Embrechts, Kliippelberg and Mikosch, 1997, section 8.4) and that occur as solutions of random
recurrence relations or in financial mathematics. The question we ask here is how we can exactly
generate such random variates given that we have an infinite source of i.i.d. uniform [0, 1] random
variates at our disposal. Approximations by appropriately truncating tails are not allowed.
We propose a solution based upon the rejection method. The density of Y is never needed
however, as convergent approximations suffice to make correct acceptance/rejection decisions.
The task at hand is quite formidable: it requires the development of good upper bounds and
explicit approximations for the density of Y. We will define the general strategy, and then
work out the details when W = U'/? 8 > 0, where U is uniform [0,1]. We are aware of other
attempts to solve this problem. Approximate random variate generation for Y in this situation
was considered by Chamayou (1997). As our perpetuities form a special subfamily of the
infinitely divisible distributions, one might consider applying general approximation algorithms
for infinitely divisible distributions with given Lévy measures. The earliest mention of this is in
Bondesson (1982) and Bouleau (1988). More recent work by Damien, Laud and Smith (1995),
and Walker (1996) uses Gibbs sampling. The present paper demonstrates that it is possible
to generate perpetuities exactly in finite time, but it does not claim that these methods are
inherently practical. Indeed, various design constants and inequalities are deliberately picked
in suboptimal ways to keep the paper relatively simple. After we described the problem (with
B = 1) to Jim Fill, he found an algorithm based on the perfect simulation paradigm proposed
by Propp and Wilson (1996). We have not seen it to date. Our approach has the advantage
of showing a worked out example that may be used as a prototype for many infinitely divisible
distributions, even those that are not perpetuities.

To keep the notation consistent, we use to following symbols throughout the paper: W is
the basic random variable in the definition of a perpetuity Y. The random variables Wy, W,, . ..

are i.i.d. and distributed as W. Sometimes, it is convenient to work with Z =Y — 1. Let

& E{W*}, m = u;, and 0> = V{W}. Throughout the paper, U denotes a uniform [0, 1]

random variable and f is the density of Z. We say that Z is a Vervaat random variable or
Vervaat perpetuity when W = U'/? for 8 > 0. In that case, the density of Z? will be denoted

by g.

Throughout, we assume that real numbers can be stored with infinite precision; that
all standard arithmetic operations take one unit of time; and that we have a source capable of
generating an infinite sequence of iid uniform [0, 1] random variates Uy, Us,.... Some of these
conditions are controversial (e.g., which operations are “standard” 7), but they are consistent
with those found in many recent articles and books on the subject (see e.g. Devroye (1986b)).



Basic properties of perpetuities.

In this section, some general properties are recalled for perpetuities.

LEMMA M1. Assume W >0 and m < 1. Then
def

Y _1+W1+W1W2+W1W2W3 +W1W2Wn

tends almost surely to a limit Y, which is a random variable with mean 1/(1 —m). The limit
random variable Y satisfies the distributional identity

YEYW +1,
where Y and W are independent. Also, V{Y'} =

2

2y provided that m? 4+ 0% < 1.

(1—m)2((17—m2—<7

PROOF. AsY, is nondecreasing, it has a limit Y, which is possibly infinite with positive probabil-
ity. However, by monotone convergence, EY = lim,,_,o EY,, = lim, ,o Y, m' =1/(1 —m) <
oo. Thus, Y < oo almost surely. []

Note that if m > 1, Y,, may not tend to a proper random variable (just take W = 1). To
avoid difficulties, we will assume m < 1 and leave the more challenging case m = 1 for another

time. It is easy to see that Z £ (Z + 1)W where Z and W are independent. The following
Lemma captures what is known about the tail of Z.

LEMMA M2 (GOLDIE AND GRUBEL, 1996).
A. IfO<W < 1 and P{W = 1} < 1, then P{Z > t} < et(logm+o()),
B. If0 < W and P{W > 1} > 0, then P{Z > t} > t*+°) for some ¢ > —oo0.

C. If 0 < W <1 and W has a density f which remains bounded away from 0 and 1 on
[1 — ¢,1] for some small € > 0, then P{Z >t} < e~(+o()tlogt,

It is useful to have recurrences for all the moments of Y and Z. Clearly,
E{Z"} = mE{(Z + 1)*}

from which we easily derive the recurrences

E{Z*} = 1 X Z ( )E{ZJ

In particular, E{Z} = m/(1 —m) and E{Z?} = (Mz/(l — 119))(1+2m/(1 — m)). Note that

E{Y*} = Z ( )E{YJ}E{WJ} > B{Y*}E{W*}



so that for all moments of Y to be finite, it is necessary that all moments of W be less than
one, and thus |W| < 1 almost surely. We will assume 0 < W < 1.

REMARK: GENERAL BOUNDS ON THE DENSITY. Useful bounds on the density f are easily
derived when W has a nonincreasing density. A perpetuity is said to be monotone if W has
a nonincreasing density on [0,00) and if Z < oo almost surely (so that Z is a proper random
variable). A monotone perpetuity Z clearly has a nonincreasing density. Furthermore, as
P{Z < t} < P{W < t}, we see that f(0) < fu(0), where fy is the density of W. From all the
above, we may deduce simple upper bounds on the density f in terms of fi,. For example, by
Devroye (1986b, p. 313),

@) < min (fw(0), TEEEL)

where r > 0. With r = 1, we thus have

) < min (fwl0) o)

(1 —m)2?

This inequality may thus be used as the basis of a rejection method because

o 2m U
Jw(0)(1 —m) U,

has a density proportional to the upper bound when U;,U, are independent uniform [0, 1]
random variables (Devroye (1986b, p. 315)).

REMARK: GIBBS SAMPLER. Based upon the distributional identity Z £ W(Z + 1), a Gibbs
sampler may be constructed, but we do not accept that as it only yields an approximative
solution. It could be based upon the following algorithm, suitably stopped:



Z+c
repeat forever: generate W
Z <+ W(Z+1)

If this algorithm is stopped after n iterations, the value of Z at that time is distributed
as
W1+W1W2+"'+W1W2"'Wn71+CW1W2"'WH,1 .

The monotonicity argument of Lemma M1 shows that this converges in distribution to Z for
any value of ¢. It does not imply convergence of densities. If f,, is the density of Z after the
n-th iteration, then we denote by T'f, the density of W(Z + 1). Thus, as T'f = f,

[t =11= [1rta=111< [18.- 1,

so the total variation distance decreases monotonically. The rate of decrease to zero is governed
by the distribution of W.

The characteristic function.

In special cases, the characteristic function of Z is easy to derive. From the recurrence,

it is easy to show (see Vervaat, 1979) that if W £ U8 where U is uniform [0,1], then Z has
characteristic function

$(t) = exp (5/0 ¢ Ex— 1 d$> = exp (5/0 ezss_ 1 ds) . (1)

See also de Bruijn (1951) and Takécs (1954, 1955), who obtained ¢ as a limit characteristic
function in a certain random process. Interestingly, for 8 = 1, this is also the limit distribution
of (1/n) Y7, Y, where the Y;’s are independent and Y; = ¢ with probability 1/¢ and 0 otherwise.
However, the latter fact is of no use in the design of an exact method. If e’ here is replaced by
9 (tz) for a characteristic function 1 that corresponds to a finite mean random variable, then
¢ is still a valid characteristic function (Takdcs, 1954). The family of distributions above is
called the Takacs family for general 1) and the Vervaat family with shape parameter g for (1).
If W is distributed as —U'/? however, then —Z is beta (3, 3+ 1) (Chamayou and Schorr, 1975).
Further examples and a more thorough study of perpetuities in general can be found in the
work of Dufresne (1990, 1996, 1998).

Finally, we note that (1) is in the Lévy form for infinitely divisible distributions, with
Lévy measure given by (8/x)1p,1j(z)dz. What will be said below can, in many cases, be extended
to other infinitely divisible distributions with suitable changes in the various approximations
and bounds.

The rejection method

In this paper, we find an approximation of f(z) denoted by f,(x), and explicit bounds

R, (x) such that
[/ (2) = fa(@)] < Ru(z)

and lim,,_,, R,,(z) = 0. We also find an explicit upper bound h(z) for f(z) with [~ h =c < 0o
such that the following rejection method is applicable:



repeat
generate U uniform [0, 1]
generate X with density proportional to h
set T < Uh(X)
Accept «+ [T < f(X)]
until Accept
return X

The decision “Accept < [T < f(X)]” in the algorithm above is carried out as follows:

n<+1

repeat forever:
if T < fu(X) — R,(X) then return ‘‘Accept = true’’
if T > fo(X)+ R,(X) then return °‘Accept = false’’

n+<n+1

If for all z, R,(z) — 0, and |f — f,| < R, then the last little piece of code correctly
sets the value of the Boolean variable “Accept”. It does so in a random but finite time, with
probability one. This approximation trick combined with the rejection method was developed
by the author in two papers in 1981, where an exact generator for the Kolmogorov-Smirnov dis-
tribution was derived. For a formal treatment, see Devroye (1986b, pp. 151-171). This method
was suggested for harder problems, such as when only characteristic functions are explicitly
known (Devroye, 1986a), when only moments or Fourier coefficients are known (Devroye, 1989),
or when a generating function is given (Devroye, 1991).

With this algorithm design methodology, we need only find a suitable upper bound A
for f, and a suitable pair (f,, R,). This is done in the remainder of the paper for the Vervaat
perpetuities.

Upper bounds for the Vervaat family

LEMMA V1. The density f of Z satisfies

f(2) < h(z) < min (w-:izl)ﬂ,ﬂzﬂ*) .



PROOF. Recall

E{Z*} = 1

X Z < )E{ZJ

As p, = BU*P = B/(B + k), and pi/(1 — i) = B/k, we see that EZ = 8 and EZ2 = £(1+2p).

Observe that Z° = U(Z + 1)°, so that Z° has a monotonically decreasing density. Now, if g is
the density of Z°, then

P{ZzP P{U <
z>0 z >0 T

But then, if f is the density of Z,
f(z) = B2 1g(") < 2P
Furthermore, by an inequality of Devroye (1986b),
r+ 1)E{Z°"
o(y) < T HEDEZT)

yT‘-‘,—l
for r > 0. The density f of Z then satisfies the following inequality:

T B-1 Br Br
f(z) = B2""1g(") < flr 1z)ﬁ(r+11E{Z Lo jzli{z }

As only the first few integral moments of Z are easy to calculate, it is convenient to set r = 1/4.

In that case, we obtain
(6+1EAZ} _ (B+1)5

22 22

=1.

f(z) <

Now, combine both bounds. [

The following lemma is adapted from Devroye (1986b) and permits us to generate a
random variate X with density proportional to h.

LEMMA V2. For A, B,a,b > 0, we have

/ min (Au®"", B/u*") du =
0

Ifp,q >0 and if U,V are i.i.d. uniform [0, 1], then the density of X = U?/V1 is

a+b (A”B“)“%" .

L in (2P, 1200011
Pty

The density of X' % (B/A)P/P+0 X jg
1

— min (Ax(l/p)fl,B/m(l/q)H) )
(p+ q)(B1AP) 75

If we apply lemma V2 with A =8, B=p(6+1), a =, b =1, then we see that

/ h= —5;1 (BBP(B+1)°) 71 = (B + 1)1



which is finite but grows unbounded as 8 — oo. The following random variable has density
proportional to h:

Q=

X:(ﬂ+1)ﬁ7.

Here, U and V are independent uniform [0, 1] random variables. Improved exponential tails and
corresponding generators are presented in a later section.

Approximation bounds for the characteristic function

We define, for ¢ > 0,

and note that this may be written as a function of the sine integral function S(t) = fot sins/sds
and the entire cosine integral function C(t) = fot (1 —coss)/sds:

P(t) =1iS(t) — C(t) .

We will first describe bounds assuming that both functions are available to the user (see
Abramowitz and Stegun, 1975; Spanier and Oldham, 1987, for numerical methods). We also
need the fact that

C(t) > max (0, + logt)

where v = 0.0772156649 . . . is 0.5 less than Euler’s constant (Spanier and Oldham, 1987, p. 363).
Recall that ¢ = ef¥ is the characteristic function of the Vervaat perpetuity Z. To define f,,, we
approximate the inversion formula

1 .
f@) =5 [ ot dt
2m
by cutting off the tails, and using a simple trapezoidal rule on a compact interval. Using the

fact that R{4(t)} = R{p(—1)} and I{p(t)} = —3{#(—t)}, we observe that

@) =1 / " (RU6(1)} cos(ta) + S{6(2)} sinta) i

™

_1! /0°° e M) (cos(BS(t)) cos(tz) + sin(BS(t)) sin(tz)) dt

T
1 oo
= —/ e PC® cos(BS(t) — tx) dt .
T Jo
We introduce two positive integers whose values will increase with n to co, M and L. The value
of ¢ (and thus, ¢) is computed for all values j/L such that 0 < j/L < M. This implies ML + 1
computations. In particular, the tail contribution is simply bounded as follows:

1|7~ 1 [~ M'-P

— / e PC® cos(BS(t) — tx) dt‘ < —/ tPdt = ——

™ [Jm ™ Jm 7T(ﬂ_l)

for 8 > 1. For the whole range of 8 values, a bit more work yields the following bound:




LeMmMA B1. For all positive M,

1 oo
— / e PC® cos(BS(t) — tx) dt‘ <

T |\Jm

8
Tz MB

PROOF. It is convenient to use the representation
1

™

/00 e W cos(BS(t) — tx) dt

M

1

™

/00 e™P® (cos(BS(t)) cos(tz) + sin(BS(t)) sin(tz)) dt

M

By partial integration,

/00 e P cos(BS(t)) cos(tz) dt = —e PCD cos(ﬁS(M))M

+ 5/}: (C'(t) cos(BS(t)) + S'(2) sin(ﬁs(t)))eﬂcu)siniitw) i
and thus, since C'(t) = (1 — cost)/t € [0,2/¢] and S'(t) = sint/t € [~1/¢,1/t], and C(¢) > logt,

‘/OO e €D cos(BS(t)) cos(tx) dt‘

e—BC(M) 0

< + 5 e W gt
u tT
1 >~ 3
< dt
— zMP”P +ﬁ/w ti+hy
4
MBS

The term involving sin(8S(t)) sin(¢z) is bounded by the same expression, so that, multiplying
with 1/7, we obtain the bound. [

We set
1 ML—-1

fale) = — Z e U cos(BS(j/L) — (j/L)x) - (2)

LEMMA B2. For M, L positive integers, the above approximation satisfies, for all z > 0,

o)~ J()] < Ry(a) 2 2HEEMT B 3)




Proor. Clearly,
M
|fn(z) — f(z)| < — sup ‘e‘ﬁc(s) cos(BS(s) — sz) — e WD cos(BS(t) — t:v)|
T 0<t<s<M,|t—s|<1/L

+ 1 / e PC® cos(BS(t) — tx) dt
T /M

Using the triangle inequality, |cosu — cosv| < |[u —v|, and e * — e ?| < |u — v| (u,v > 0), and
lemma B1, the first term in the upper bound may be further bounded by

M

— sup (ﬁ\C(s) —C(t)| + e‘ﬁc(t)|ﬁ8(s) — sz — BS(t) + t:v|)
T 0<t<s<M,|t—s|<1/L
Mp
< — sup (IC(s) =C(®)| +[S(s) = S)| + z[s — t[/B)
T 0<t<s<M,|t—s|<1/L
M ! !
<8 qup (C'(0)] +18'0)] + 2/8)
L o<t<m
Mp |1 — cost] | sin ¢|
< 27 it | >
<77 (e 5 s
< 2MpB+ Mz
- L ’

Now conclude by applying the bound of lemma B1 to the tail integral in the upper bound. [

The full algorithm

We use h, f, and R, from the previous two sections, but still need to offer choices for
the free parameters M and L as a function of n. One possible strategy picks these parameters
such that R, < h(z)/2". A sufficient choice, by lemma B2, is

= | () | @

n+1
L [(QMﬂ + Mz)2 W )
wh(x)
With such a choice for R, (z), given z, the probability of [|T"— f,(z)| < R,(z)] is not more than
2R, (z)/h(z) < 27", uniformly over all z. This will surely imply that the expected number of
iterations (i.e., different n used until the condition is violated) is not more than 4 for any z.
With these choices, we summarize the algorithm:

and

10



repeat
generate U uniform [0, 1]
generate X with density proportional to h
(generate Vl,VQ 1ndependent uniform [0,1] random variables)

(X « (B+ 1) V7V )
set T + Uh(X)
(recall definition from lemma Vi: A(X)= Bmin((8+1)/X2 XP1))
n<+1
repeat
compute M and L1 as in (4) and (5):
on+1 El n+1
= [() ] o e
compute fn( ) as in (2):
falw) = Fp 30,00 T enPeurm C08(55( /L) = (3/L)z)
compute R,(X) as in (3): R,(X)=(2MpB+ MX)/(xL)+ 8/(rmX MP)
n<—n+1
until [T — fo(X)| > Rn(X)
Accept = [T' < fu(X) — Ra(X)]
until Accept
return X

Complexity.

We know that the above algorithm halts with probability one, and returns a correctly
distributed random variate. The expected number of outer loop iterations is [ h < oo, but this
is hardly an appropriate measure of the complexity of the algorithm. In the n-th iteration of
the inner loop, we expend effort proportional to LM, which in turn is proportional to 27(1+1/8)
The probability of not halting after n iterations decreases as 2'~™ for a given candidate random
variable X. It should thus be clear that for any particular X, the expected work in the inner
loop is infinite. For this reason, serious improvements are needed. These are sketched below.

Refinement 1: Improved complexity

The rectangular approximation of an integral used in the definition of f,, may be replaced
by higher order Newton-Cotes integration formulas, such as the trapezoidal rule, Simpson’s rule,
and Boole’s rule (see Davis and Rabinowitz, 1975). This improvement has been suggested in
Devroye (1986b, p. 701) precisely for the situation at hand. Theorem 14.3.2 there covers error
bounds. For example, if we use Simpson’s rule in the definition of f,, i.e.,

o=z 3 (5 (3) o (57 + o ()

T(t) e W cos(BS(L) — tz) |

where

11



while maintaining the parameters M and L, then we can obtain

oM(z +m)* N 8
w L4 TxM?B

Rn(z) =

where o & 1/(3607), and m = (E {Z4})"/4. Recall that m is known from remarks made earlier.

THEOREM C1. Consider the algorithm of the previous section with Simpson’s rule in f,, and
with .
oM (z + m) 8
R,(z) = .
(z) w4 + TxMP

Furthermore, choose M as in (4) and pick

[l

Let C be the time taken by the algorithm to process a candidate random variable X (regardless of
acceptance or rejection), where each basic computation or standard function takes one time unit.
Then for each X = z, C < oo with probability one, and if 8 > 5/3, we have E {C|X =z} < oo.

PROOF. From the fact that for each z, R,(x) — 0, we conclude that C' < oo with probability
one. Given X = z, the n+1-st iteration is reached with probability not exceeding 2R,,(z)/h(z) <
1/2™ by our choice of M and L. Let us write M,, and L,, to make the dependence on n explicit.
Thus, the expected work is not more than a constant times

Note that

o)) (- (52
LN B/ ol 4 om)Aont Y
()" (s

Lolatmiy (L8 \¥ (ol@tm)t\*
wxh(z) wh(x)
=1+I+1I+1I1.

Note that > -, 1/2" =1, 3> 1/2" < ¢;/(zh(z))"/? (for B > 1),

i IT/2" < cy(z + m)/h(z)/*(xh(z))"/“P)

n=1

12



(for 8 > 1/3), and
D IIT/2" < (@ + m)/h(z)* (zh(z))* P

n=1
(for B > 5/3), where the ¢;’s are finite constants depending upon g only. Thus, E{C|X =z} <
oo for f>5/3. 0

While theorem C1 implies that the algorithm halts with probability one, it is unfortunate
that the tail of h is too large, and we still have E {C'} = oo for all values of 8 and the given
choices for M and L. The squeeze steps suggested in a further section will finally eliminate this
last obstacle.

Refinement 2: Without trigonometric integral functions

In the absence of the trigonometric integral functions C and S, we need to adjust the
algorithm above only slightly, as we will now show. We recall the following fast converging
series:

(_1)nt2n+1
S(t) = Z !
“(2n+1) (2n +1)!

and
nth

Z ) (2n)! )

n=1

This permits us to define approximations

U G Ve
Sn(t) = ; @n+1)2n+ 1)

N nt2n
Cn max( Z ) .

Thus, we generalize the definition of f,, as follows:

and

Fiw) = o5 3 e cos(S (/L) - (/L)) ©)

LEMMA B3. For M, L, N positive integers such that N +1 > eM, the above approximation
satisfies, for all z > 0,

|f(x) = f(@)| < R} (2) <

(2M,B+Mx)+ 8 N B
7w TrMB = me22N+2 °

(7)

13



Proor. Clearly,

def

[fn(@) = f(@)] < [fa(@) = fu(@)| + [ fulz) = f(@)]| = T+ 1T .
Since IT is bounded by (3) in lemma B2, it suffices to bound I.

I=fa(z) = ful2)]
M

< — sup |e7PD cos(BS(t) — tx) — e PN cos(BSn(t) — tz)|
T 0<t<M
M M
<= sup [e D — e PO + — gup |cos(BS(t) — tx) — cos(BSn(t) — tx)]
T 0<t<M T 0<t<M
M
< 220 (sup, o)~ Cx(0]+ sup, 15() ~ w0
T \o<t<M 0<t<M
o ] t"
<P s >
™ 05t<M":2N+2nn!
B =1 (eM)n
TR
i n=2N-+2 n n
BM = 1 (1)"
< 27 il
> (3
n=2N+42
< /BM
~ m(N + 1)22N+2
_ B
— e 22N+2

if N4+ 1> eM. This completes the proof. [J

We apply the algorithm with R, (z) replaced by R (z) and f,,(z) replaced by f*(x). For
its validity, we only require that R} (z) — 0 for all z. We can make R}, (z) less than 2h(z)/2" by
taking L and M as in (4) and (5) (and thus, as in the full algorithm shown earlier), and picking
N in the following manner:

= e (ea0. (0 0m (12 )))] ©

The computational burden per iteration grows as M N L instead of M L. Yet, with the choices of
the three parameters suggested here, the algorithm yields exactly distributed random variates.

Purists may even object to the fact that we have the exp and cos functions in f. Even
these can be avoided! In fact, it suffices to replace both by appropriately truncated Taylor
series with K terms, with K yet another parameter that increases with n. Simple additional
bounding not unlike that of lemma B3 allows one to get yet another value of the approximation
error (to replace R’ (z)). As exp and cos are pretty standard, we will not proceed along these
lines though.

14



Refinement 3: Exponential tail bounds and squeezing

Finally, a serious improvement is possible thanks to a squeeze step. The decision [T <
f(X)] in the algorithm is costly for large X because we need to take L proportional to X/h(X),
and h has indeed a fat tail. A squeeze step can be introduced in the algorithm, which can
very quickly reject, that is, we find a bound f(z) < h*(z), and perform a quick rejection
if T > h*(X). [Note: in the algorithm above, insert the lines “Accept < False” and “if
T < h*(X) then” before the line “n = 1”7, and append the line “end if” after the statement
“Accept = [T < fo(X) — R,(X)]”.] If h* has small tails, a nice speed-up will result. Note that
it is not necessary at all to generate random variates from a density proportional to h*, so we
need only be concerned with its general shape.

LEMMA V3. For the Vervaat family,

< 28P{Z > t/21/5}
= t ?

f(t) t>0.

Lemma M2 indicates that the tail of Z drops off like that of a Poisson random variable.
We will now derive an explicit Poisson tail inequality and other inequalities. In part D, we
obtain the Poisson tail result of Goldie and Griibel (1995) mentioned in part C of lemma M2.

LEMMA V4. Let Z be a Vervaat random variable and ' = max(1,f3).
A. For allt > 0, and all s > 0,
P{Z+ 1>t} <el®st,
where p(s) = 20'se’ /(1 —e™®).
B. For allt > 0,
P{Z+ 1>t} <edOF~t,

C. Fort > 12p',
P{Z+ 1>t} < e /Dlost/25)

D. Ast — o,
P{Z >t} <exp(—(1+o0(1))tlogt) .
Lemmas V3 and V4 may be combined to yield fast decreasing tail bounds on f. For
example, part A yields the bound
2 1
o< 2 oo
valid for any choice s > 0. Part B yields

* © 2/8 I_1_¢/91
fO)<h () - o8-618'—1-t/21/% o)
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We are finally ready for an overall analysis for the algorithm with squeezing based on
(9), and with Simpson’s rule for f,, and the choices of M = M,, and L = L,, suggested there.
The final complexity result is the following.

THEOREM C2. Consider the algorithm with Simpson’s rule in f,, and with

oM (z + m)* n 8
wLA mxMP

Introduce the squeeze step based on (9). Furthermore, choose M as in (4) and pick

()|

Let C be the time taken by the algorithm to generate X. Then C < oo with probability one.
Also, when 8 > 5/3, we have E {C} < oo.

Rn(m) =

PROOF. We note that X has density k(z)/ [ h, and that the expected number of outer iterations
of the algorithm is [ h. By Wald’s lemma, the overall expected work is thus [k times the
expected work in one iteration (regardless of acceptance or rejection). The effect of the squeeze
step is to generate X from the density proportional to min(h, h*). Let C be the complexity due
to processing X. For a fixed z, we may still apply the bound on E {C|X = z} derived in the
proof of theorem C1. Taking expected value with respect to the density of X (which is now
proportional to min(h, h*)), we see that E {C} is finite if 8 > 5/3 and

1 T +m z+m

| min(h(a). @) (1 T @@ T @ A h@) T @) zh(z)5

By considering integration over [0,1] and [1,00) separately, it is easy to see that the interval
[1,00) yields a finite contribution due to the exponential decrease of h*. The integral on [0, 1]
is finite when 8 > 4/3. [

)dw<oo.

Extensions

The methods developed here can be used for infinitely divisible distributions given in
Lévy or Kolmogorov form, provided we also have enough information to be able to find a
dominating density for rejection. For the Vervaat family, we were lucky to find a suitable Lévy
form. For more general perpetuities, the problem is much harder. We are working on a solution
based on the moment method of Devroye (1989) (which requires finite time computability of all
moments, as in our case) in combination with Lagrange approximations of functions.
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Appendix

PROOF OF LEMMA V3. Let g be the density of Z°. Note that f(z) = 82°71g(2”). Since Z° has
a monotone density on the positive halfline, we have
v Po(t?) _ P10t

P{Z’ >t ]2} > /tﬂ/z 9(u) du > 2 281 28

PROOF OF LEMMA V4. We replace Z + 1 be a stochastically bigger random variable. Fix a small
positive u > 0, and in the definition of Z + 1, replace each U;/” by 1 if U}? > 1 — u and by
1 — u otherwise. Call the new bigger random variable B. Let T} < T, < T3 < - -- be the indices
¢ for which Uil/ # >1 —u. Then, a moment’s thought shows that
B=Ti+1—-u) (T, —T)+ (1 —u)*(Ts —Tp) + -+ .

This is interesting, as the sequence T}, —T;,7 > 0, with Ty = 0, is i.i.d. geometrically distributed.
In fact, the parameter (success probability) of these geometric random variables is p = P{U'/? <
1—u}=(1-u)’ If s >0, and G =T, is geometric (p), then

E{e} =) e’(1-p)p
j=1

o0

= pe' (e (1 - )
pe’ e s

T — T pp— (ifef(1—p) < 1)
(1 —u)Per

Sioe— oy CCUTOTw<l.

Note that 1 — (1 — u)? < max(1,8)u. Define 8’ = max(1,3). So, for B'ue® < 1, we have

sG e—ﬁu—{-s
B < e

Take u = (1 — ¢ *)/(p'e®) for ¢ > 1, and obtain
E a e—,(iu—i—s
s <——< 5.
{e } _ 1 _Iglues — (Ce)
By Chernoff’s bounding method, for s > 0, and u as above,
P{B > t} S E{esB}efst _ HE{esG(lfu)i}efst S H(Ce)s(lfu)iefst
=0 i=0

so that

logP{B >t} < —st+ Z (5(1 — u)*log(ce))

i=0
— gty slog(ce) — gt B'se’ log(ce)
U 1—c
2 ! 8
—st + Pse
1—e#



when we take ¢ = e. The last bound is in the form p(s) — st of part A of the lemma. Part B

is obtained by picking s = 1 and noting that 2e?/(e — 1) < 8.61. Part C is obtained by picking

s = log(t/48') so that when ¢t > 12/,

(1/2)st

1= 48
t

st
1

logP{B >t} < —st + < —st+ (3/4)st =

Part D follows if we set s = log(t/(26'(1 + log(t + 1)))). O
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