
Red-Black Trees
Akshal Aniche

February 20, 2018

This is the augmented transcript of a lecture given by Luc Devroye on
the 13th of February 2018 for a Data Structures and Algorithms class
(COMP 252) at McGill University about red-black trees.

Introduction

Since search trees are an extremely useful data structure, we want to
design a balanced search tree, i.e. one with height O(log n).

A first attempt is to use a complete binary search tree. However,
every time we would want to delete or insert a node, we would have
to reconstruct the entire tree.

Question 1. How can we design a practical balanced search tree?

Such a tree would have a height of O(log n) and updates that
would take O(log n) time, contrary to a complete tree.

The idea is to create a design with built-in "glue", so the tree is
easily moldable.

Red-Black Trees

Definition 2. A red-black tree 1 is a binary search tree that has the 1 Cormen et al. [2001]

following properties: 2 2 Red-black trees were invented by
Bayer [1972].- Leaves have no key. They are called external nodes. (Usually

drawn as black squares).
- A node that is not a leaf has a key and is called an internal node.
- Each node has two additional properties, a rank and a colour

(either red or black).

For graph drawings of red-
black trees, we will use the
following notation:

black internal node

red internal node

external node

- A node is black and has rank r if and only if its parent has rank
r + 1.

- A node is red and has rank r if and only if its parent has rank r.
- All external nodes are black and have rank 0.
- If a node is red, none of its children or its parent can be red.

See tree 1 for an example of a valid red-black tree.



red-black trees 2

3

2

2

u
1

0 0

1

0
1

0 0

1

0 0

2

v
1

1

0 0

1

0 0

1

0 0

Figure 1: An example of a red-black
tree (without explicit keys).

The rank of each node is written
underneath the node.

Remark 3. Usually, we say that the root is black; the colour of the root
doesn’t affect the tree.

Remark 4. A binary tree can give multiple valid red-black trees. For
instance, in the tree 1, the node v can also be coloured red, with rank
2. Then, its children would be black.

Remark 5. Even though all red-black trees are binary search trees, not
every binary search tree is a valid red-black tree. For example, if the
node denoted u was removed from tree 1, then the tree does not yield
a valid red-black tree.

Definition 6. When implementing a red-black tree, we would create
a cell with the following attributes:

-a key
-pointers to the left and right children and to the parent
-the color of the node
-the rank
We can deduce the color of every node if we have the ranks of all

the nodes, and vice versa, so we can avoid either of them.

Proposition 7. A red-black tree with n internal nodes has n+1 external
nodes.

2-3-4 tree view

We can think of ranks of black nodes as levels. We say that external
nodes (rank=0) are at "sea level". Then, we can draw red-black trees
with all the black nodes of the same rank at the same level. Red
nodes are placed between levels.



red-black trees 3

rank=3

rank=2

rank=1

rank=0

Figure 2: 2-3-4 tree view of tree 1

Definition 8. A black node and all its descendants until the next level
of black nodes form a pod.

When red-black trees are represented this way, we can see three
types of pods:

-pods with 2 black nodes in the lower level;
-pods with 3 black nodes in the lower level;
-pods with 4 black nodes in the lower level.

rank=i

rank=i-1

2 pod 3 pod 4 pod

Figure 3: The tree types of pods in a
Red-Black Tree

These three types of pods explain the name "2-3-4 tree".

Theorem 9. Let r be the rank of the root of a red-black tree with n internal
nodes. Then, 2r ≤ n + 1 ≤ 4r, or, equivalently, r ≤ log2(n + 1) ≤ 2r.

n + 1 is the number of external nodes, which is the number of
nodes on the 0th level. Each node on level i had between two and
four descendants on level i − 1. Therefore, since, all the external
nodes are descendants of the root, there are between 2r and 4r exter-
nal nodes.

Exercise 10. Prove Theorem 9 using induction.

Claim 11. For a red-black tree of height h with n internal nodes,

h ≤ 2 rank[root] ≤ 2 log2(n + 1)

This is justified by the fact that between two levels, you can have
at most 2 nodes creating at most one additional layer, and there are
rank[root] levels.



red-black trees 4

Operations
We will define the following operations for general red-black trees:
SEARCH, INSERT, DELETE, SPLIT, and JOIN.

INSERT and DELETE

Definitions 12.
SEARCH is a standard search on a binary search tree.
INSERT is defined as a standard insert for binary search trees,

followed by a FIX (see definition 14).
DELETE can be defined as a standard delete for binary search

trees, followed by a FIX (see definition 14).
We can define a convenient operation, LAZY DELETE. It consists

of marking the element that is supposed to be deleted, but leaving it
in the data structure. Then, when more than 50% of the nodes have
been marked, rebuild the tree.

To rebuild, get all unmarked nodes by inorder traversal in O(n)
time. Then, rebuild a red-black tree from the sorted list in O(n) time.

Note that it is sufficient to make a complete binary tree and make
all the nodes black except for the bottom level which should be red.
Rebuilding the tree takes O(n) time.

Exercise 13. Prove that a sequence of n INSERT/DELETE/SEARCH
operations takes O(n log n) time.

We now turn to the INSERT operation.

r=1

r=0

insertion place

r=1

r=1 inserted node

r=0 r=0

Figure 4: Illustration of standard insert
on Red-Black Trees

From this picture, we can see that given the conditions on a valid
red-black tree, the tree after insertion is invalid if the parent of the
inserted node is also red. We will need to FIX the tree.

Definition 14.
We will use the notation : gp[x] for the grandparent of x; p[x] for

the parent of x; u[x] for the sibling of the parent of x, also called the
uncle of x.



red-black trees 5

Figure 5: Example of case 1

x

Figure 6: Example of case 2

root

x

Roughly half of the time, we end up
with case 3, because a majority of the
nodes in the tree are black by design.

FIX(x):

1 while gp[x] 6= nil && colour[p[x]] == red && colour[u[x]] == red
2 // see Figure 5: Case 1

3 x = gp[x]
4 rank[x] = rank[x] + 1
5 colour[x] = red
6 colour[left[x]] = black
7 colour[right[x]] = black
8 if x == root then
9 halt

10 else if p[x] == root then
11 if colour[sibling[x]] == red then
12 // see Figure 6: Case 2

13 rank[p[x]] = rank[p[x]] + 1
14 colour[x] = black
15 colour[sibling[x]] = black
16 halt
17 else if colour[p[x]] == black
18 // Case 3

19 halt
20 else // colour[p[x]] == red && colour[u[x]] == black
21 // see Figure 7: Case 4

22 ROTATION // see Definition 15

23 halt

Definition 15. ROTATION (Two cases, the other two cases are mirror
symmetries)

r+1

γ
r

β
r

α
r

x

A B

C

δ
r-1

D E

r+1

γ
r

α
r

A β
r

x

B C

δ
r-1

D E

Figure 7: Two cases where we would
need to effectuate a rotation (Case
4). The rank of each node is written
underneath the node. r + 1 indicates the
rank of the parent of the node γ

In both of these situations, we would get the following list if we
traversed the subtree inorder: AαBβCγDδE. We want to change



red-black trees 6

the structure of the tree so that we don’t have two consecutive red
nodes, but we want to preserve the order. For both configurations, we
modify the subtree so that we have the same following tree 8:

r+1

β
r

α
r

A B

γ
r

C δ
r-1

D E

Figure 8: Result of the rotation of the
two previous subtrees.

The parent of the node γ has be-
come the parent of the node β.

Inorder traversal of the subtree rooted at β yields the desired list:
AαBβCγDδE. For the other two cases, the picture is similar.

Observe that from the point of view of the root, of A, B, C, D, E,
and the node of rank r + 1, nothing has changed, because both before
and after the operation, the ranks of adjacent nodes have not been
altered.

ROTATION takes O(1) time. In the FIX operation, the while loop
accounts for O(log n) complexity, because the height of the tree is
O(log n). Note that each FIX requires at most one ROTATION. This
makes the red-black tree very efficient.

JOIN and SPLIT

Definition 16. JOIN takes in two red-black trees T1, T2 such that
∀ t1 ∈ T1, t2 ∈ T2, key[t1] < key[t2] and returns a red-black tree
combining T1 and T2.

Definition 17. SPLIT takes a red-black tree T and a key k, and re-
turns two red-black trees T1 and T2 where all the nodes in T1 are the
nodes in T with key ≤ k and all the nodes in T2 are the nodes in T
with key > k. (See example 22.)



red-black trees 7

x

T1
< T2 T1 T2

JOIN

SPLIT

Figure 9: Illustration of JOIN and SPLIT

This illustrates how JOIN and SPLIT are supposed to work. The
behaviour is similar to list concatenation and sublist. (This also
means that we can implement lists by red-black trees, with the ar-
ray index being the key.)

Now, we will write the JOIN operation. Assume
rank[root[T2]] ≤ rank[root[T1]]. (The other situation is similar.)

α rank=r
β rank=r+1

A

T1

rank=r
root

B

j

j

Figure 10: Step 1 and step 2

β
rank=r+1

j
rank=r+1

α rank=r root rank=r

T1\A

A B

Figure 11: Step 3

JOIN(T1, T2):

1 Find MIN(T2) (leftmost node); denote the node j.
2 Remove j from T2.
3 FIX(T2\j), and denote the resulting tree B, in O(log n) time.
4 Let r be the rank of the root of B
5

6 Find in the right roof of T1 a black node of rank r. O(log n)
7 // The right roof of a tree is the rightmost path from the root.
8 Denote it α. Let β = p[α], A the subtree rooted at α.
9 // see figure 10

10

11 color[j] = red
12 rank[j] = r + 1
13 left[j] = α

14 right[j] = root[B]
15 parent[j] = β

16 Update the relevant pointers in the other nodes.
17 // Updating all these pointers takes time O(1).
18 // see figure 11

19

20 FIX(j) as in an ordinary red-black tree INSERT. (O(log n))
21 // see definition 14



red-black trees 8

Proposition 18. JOIN(T1, T2) takes O(log n) RAM time, where n is the
total number of nodes in T1 and T2 combined.

Remark 19. We can also write JOIN(T1, x, T2), where all the nodes in
T1 are smaller than x and all the nodes in T2 are larger than x. Then,
let j = x, r be the rank of the root of T2 and skip step 1.

Exercise 20. Formulate the algorithm for rank[root[T2]] ≥ rank[root[T1]].

We are now sketching SPLIT. We will show how to construct T1.
The construction of T2 is symmetric.

SPLIT(T, k):

1 SEARCH(k) to find the node with key k.
2 Keep track of the nodes with key smaller than or equal to k,
3 say p1, ..., pi, in decreasing order of key, and their respective
4 left subtree A1, A2, ..., Ai.
5 Let A be the subtree A1 together with p1.
6 // Note that p1 has key k.
7

8 Repeatedly join the subtrees from right to left as such:
9 S2 = JOIN(A, p2, A2)

10 S3 = JOIN(S2, p3, A3)

11 ...
12 Si−1 = JOIN(Si−2, pi−1, Ai−1)

13 Si = JOIN(Si−1, pi, Ai)

14

15 T1 = Si

16 return T1

Exercise 21. Show that this takes O(log n) time overall. Hint: Show
that a JOIN of two consecutive trees can be done in time O(1), plus
the difference in the rank of the roots.



red-black trees 9

Example 22.

p4

p3

p2

k

p1

A4

A3

A2

A1

Figure 12: Step 1 of SPLIT

To construct T1, the tree containing all the nodes of key≤ k, we
must must JOIN the following subtrees.

p4 p3 p2 p1

A4 A3 A2 A1

This is done from right to left. Finally, return T1 for the left split
tree.

Exercise 23. Design an algorithm to construct T2.



red-black trees 10

References

R. Bayer. Symmetric binary B-trees: Data structure and mainte-
nance algorithms. Acta Informatica, 1(4):290–306, Dec 1972. doi:
10.1007/BF00289509.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2nd edition, 2001. ISBN 0-262-03293-7.


	Introduction
	Red-Black Trees
	2-3-4 tree view
	INSERT and DELETE
	JOIN and SPLIT

