
Restriction Access,
Population Recovery &
Partial Identification

Avi Wigderson
IAS, Princeton

Joint with

Zeev Dvir
Anup Rao

Amir Yehudayoff

Restriction Access,

A new model of “Grey-box” access

Systems, Models, Observations

From Input-Output (I1,O1), (I2,O2), (I3,O3), ….?
Typically more!

Black-box access
Successes & Limits

Learning: PAC, membership, statistical…queries
 Decision trees, DNFs?
Cryptography: semantic, CPA, CCA, … security
 Cold boot, microwave,… attacks?
Optimization: Membership, separation,… oracles
 Strongly polynomial algorithms?
Pseudorandomness: Hardness vs. Randomness
 Derandomizing specific algorithms?
Complexity: Σ2 = NPNP

 What problems can we solve if P=NP?

The gray scale of access
f: Σn → Σm
D: “device” computing f
(from a family of devices)
 D x1,f(x1)

x2,f(x2)
x3,f(x3)
….

D

D

How to model?
Many specific ideas.
Ours: general, clean

Black Box

Gray Box
– natural starting point
- natural intermediate pt

Clear Box

Restriction Access (RA)
f: Σn → Σm
D: “device” computing f

Restriction: ρ = (x,L), L ⊆ [n], x ∈ Σn, L

 L live vars
Observations: (ρ, D|ρ)
 D|ρ (simplified after fixing) computes f|ρ on L

Black L = φ Gray Clear L = [n]

 (x,f(x)) (ρ, D|ρ) (x,D)

D
f(x)

x1, x2, *,* …. *

|ρ

Example: Decision Tree

x1

x4

x2 x3

x2

0 1

0 1

0 1 1 0

D
ρ = (x,L)
L = {3,4}
x = (1010)

D|ρ =

x4

x3

0

1 0

Modeling choices (RA-PAC)
Restriction: ρ = (x,L), L ⊆ [n], x ∈ Σn, unknown D

Input x : friendly, adversarial, random

 Unknown distribution (as in PAC)

Live vars L : friendly, adversarial, random

 µ-independent dist (as in random restrictions)

RA-PAC Results
Probably, Approximately Correct (PAC)
learning of D, from restrictions with each
variable remains alive with prob µ

Thm 1[DRWY]: A poly(s, µ) alg for RA-PAC
learning size-s decision trees, for every µ>0
 (reconstruction from pairs of live variables)

Thm 2[DRWY]: A poly(s, µ) alg for RA-PAC
learning size-s DNFs, for every µ > .365…
 (reduction to “Population Recovery Problem”)

Positive -
In contrast
to PAC !!!

Population Recovery

(learning a mixture of binomials)

Population Recovery Problem
k species, n attributes, from Σ,
Vectors v1, v2, … vk ∈ Σn

Distribution p1, p2, … pk
µ, ε >0

Task: Recover all vi, pi (upto ε) from
samples

p1 1/2 0000 v1
p2 1/3 0110 v2
p3 1/6 1100 v3

Red: Known
Blue: Unknown

n

k

Population Recovery Problem
k species, n attributes, from Σ, µ, ε >0
v1, v2, … vk ∈ Σn

p1, p2, … pk fraction in population

Task: Recover all vi, pi (upto ε) from samples
Samplers:
(1)  u ← vi with prob. pi

µ-Lossy Sampler:
(2)  u(j) ← ? with prob. 1-µ ∀j∈ [n]
µ-Noisy Sampler:
(2) u(j) flipped w.p. 1/2-µ ∀j∈ [n]

0110

?1?0

1100

p1 1/2 0000 v1
p2 1/3 0110 v2
p3 1/6 1100 v3

Loss – Paleontology

Height (ft)

 Length (ft)

 Weight (lbs)

True Data

26%

11%

13%

30%

20%

Loss – Paleontology

Height (ft)

 Length (ft)

 Weight (lbs)

From samples

Dig #1

Dig #2

Dig #3

Dig #4 …… each finding common to many species!

How do they do it?

Noise – Privacy

True Data

2% 0 1 1 0 1 0 0
1% 1 1 0 0 0 1 1

…… ……

From samples
Joe 0 0 0 0 0 1 1
Jane 0 0 0 0 1 1 1
….Who flipped every correct answer with probability 49%

Deniability? Recovery?

PRP - applications
Recovering from loss & noise

-  Clustering / Learning / Data mining
-  Computational biology / Archeology / ……
-  Error correction
-  Database privacy
-  ……
Numerous related papers & books

PRP - Results
Facts: µ=0 obliterates all information.
- No polytime algorithm for µ = o(1)

Thm 3 [DRWY] A poly(k, n, ε) algorithm,
from lossy samples, for every µ > .365…

Thm 4 [WY]: A poly(klog k, n, ε) algorithm,
from lossy and/or noisy samples,
for every µ > 0

Kearns, Mansour, Ron, Rubinfeld, Schapire, Sellie
exp(k) algorithm for this discrete version
Moitra, Valiant
exp(k) algorithm for Gaussian version
 (even when noise is unknown)

Proof of Thm 4
Reconstruct vi, pi

From samples , , ,….
Lemma 1: Can assume we know the vi’s !
Proof: Exposing one column at a time. n

Lemma 2: Easy in exp(n) time !
Proof: Lossy - enough samples without “?”
Noisy – linear algebra on sample probabilities.

Idea: Make n=O(log k) [Dimension Reduction]

p1 1/2 0000 v1
p2 1/3 0110 v2
p3 1/6 1100 v3
 ?1?0 0??0 1100

n

k

Partial IDs

a new dimension-reduction technique

Dimension Reduction and small IDs

Lemma: Can approximate pi in exp(|Si|) time !
Does one always have small IDs?

 1 2 3 4 5 6 7 8
p1 0 0 0 0 0 1 0 1 v1
p2 0 1 1 0 1 0 1 0 v2
p3 0 1 0 0 1 0 1 1 v3
p4 1 1 1 0 1 0 1 1 v4
p5 1 1 0 0 0 1 1 1 v5
p6 1 1 0 0 1 0 0 1 v6
p7 0 1 0 0 0 1 1 1 v7
p8 1 1 0 1 1 0 1 1 v8
p9 1 1 0 0 0 1 1 1 v9

IDs
S1 = {1,2}
S2 = {8}
S3 = {1,5,6}

n = 8
k = 9

u – random sample

qi = Pr[u[Si]=vi[Si]]

Small IDs ?

NO!
However,…

 1 2 3 4 5 6 7 8
p1 1 0 0 0 0 0 0 0 v1
p2 0 1 0 0 0 0 0 0 v2
p3 0 0 1 0 0 0 0 0 v3
p4 0 0 0 1 0 0 0 0 v4
p5 0 0 0 0 1 0 0 0 v5
p6 0 0 0 0 0 1 0 0 v6
p7 0 0 0 0 0 0 1 0 v7
p8 0 0 0 0 0 0 0 1 v8
p9 0 0 0 0 0 0 0 0 v9

IDs
S1 = {1}
S2 = {2}
S3 = {3}
…

S8 = {8}
S9 = {1,2,…,8}

n = 8
k = 9

Linear algebra & Partial IDs

However, we can compute p9 = 1- p1 - p2 -…- p8

 1 2 3 4 5 6 7 8
p1 1 0 0 0 0 0 0 0 v1
p2 0 1 0 0 0 0 0 0 v2
p3 0 0 1 0 0 0 0 0 v3
p4 0 0 0 1 0 0 0 0 v4
p5 0 0 0 0 1 0 0 0 v5
p6 0 0 0 0 0 1 0 0 v6
p7 0 0 0 0 0 0 1 0 v7
p8 0 0 0 0 0 0 0 1 v8
p9 0 0 0 0 0 0 0 0 v9

 IDs
S1 = {1}
S2 = {2}
S3 = {3}
…

S8 = {8}
S9 = ∅

n = 8
k = 9

P

Back substitution and Imposters

Can use back substitution if no cycles !
Are there always acyclic small partial IDs?

 1 2 3 4 5 6 7 8
p1 0 0 1 0 0 1 0 1 v1
p2 0 1 1 0 1 0 1 0 v2
p3 0 1 0 0 1 0 1 1 v3
p4 1 1 1 0 1 0 1 1 v4
p5 1 1 0 0 0 1 1 1 v5
p6 1 1 0 0 1 0 0 1 v6
p7 0 1 0 0 0 1 1 1 v7
p8 1 1 0 1 1 0 1 1 v8
p9 1 1 0 0 0 1 1 1 v9

PIDs
S1 = {1,2}
S2 = {8}
S3 = {1,5,6}

u – random sample
qi =
Pr[u[Si]=vi[Si]]

q1 =

q2 =
q3 =

q4 - p1 - p2= S4 = {3}

any
subset

Acyclic small partial IDs exist

Lemma: There is always an ID of length log k

 1 2 3 4 5 6 7 8
p1 0 0 0 0 0 0 0 1 v1
p2 0 1 1 0 1 0 1 0 v2
p3 1 1 0 0 1 0 1 1 v3
p4 1 1 1 0 1 0 1 1 v4
p5 1 1 0 0 0 1 1 1 v5
p6 1 1 0 0 1 0 0 1 v6
p7 1 1 1 1 1 0 1 1 v7
p8 0 1 0 0 0 1 1 1 v8
p9 0 1 0 0 1 1 1 1 v9

PIDs

S8 = {1,5,6}

n = 8
k = 9

Idea: Remove and iterate to find more PIDs
 Lemma: Acyclic (log k)-PIDs always exists!

Chains of small Partial IDs

Compute: qi = Pr[ui = 1] = Σj≤i pi from sample u
Back substitution: pi = qi - Σj<i pj
Problem: Long chains! Error doubles each step, so is
exponential in the chain length.
Want: Short chains!

 1 2 3 4 5 6 7 8
p1 1 1 1 1 1 1 1 1 v1
p2 0 1 1 1 1 1 1 1 v2
p3 0 0 1 1 1 1 1 1 v3
p4 0 0 0 1 1 1 1 1 v4
p5 0 0 0 0 1 1 1 1 v5
p6 0 0 0 0 0 1 1 1 v6

PIDs
S1 = {1}
S2 = {2}
S3 = {3}
…

S6 = {6}

n = 8
k = 6

The PID (imposter) graph
Given: V=(v1, v2, … vk) ∈ Σn S=(S1,S2,…,Sk) ⊆ [n]n
Construct G(V;S) by connecting vj à vi iff
 vi is an imposter of vj : vi[Sj] = vj[Sj]
 1 2 3 4 5 6 7 8

 1 1 1 1 1 1 1 1 v1
 0 1 1 1 1 1 1 1 v2
 0 0 1 1 1 1 1 1 v3
 0 0 0 1 1 1 1 1 v4
 0 0 0 0 1 1 1 1 v5

PIDs
S1 = {1}
S2 = {2}
S3 = {3}
…
S5 = {5}

width = maxi |Si| depth = depth(G)
Want: PIDs w/small width and depth for all V

vi à vj
iff i > j

Constructing cheap PID graphs
Theorem: For every V=(v1, v2, … vk), vi ∈ Σn we
can efficiently find PIDs S=(S1,S2,…,Sk), Si ⊆ [n]
of width and depth at most log k

Algorithm: Initialize Si=∅ for all i
 Invariant: |imposters(vi;Si)| ≤ k/2|Si|

Repeat: (1) Make Si maximal
if not, add minority coordinates to Si
(2) Make chains monotone:
 vj à vi then |Sj|<|Si| (so G acyclic)
if not, set Si to Sj (and apply (1) to Si)

 1 2 3 4
 0 0 1 0 v1
 0 0 0 0 v2
 0 0 0 1 v3
 1 0 0 1 v4

 1 1 1 0 v5

 1 0 1 0 v6

Analysis of the algorithm
Theorem: For every V=(v1, v2, … vk) ∈ Σn
we can efficiently find PIDs S=(S1,S2,…,Sk) ⊆ [n]n
of width and depth at most log k

Algorithm: Initialize Si=∅ for all i
 Invariant: |imposters(vi;Si)| ≤ k/2|Si|

Repeat: (1) Make Si maximal
 (2) Make chains monotone (vj à vi then |Sj|<|Si|)
 Analysis: - |Si|≤ log k throughout for all i
 - ∑i|Si| increases each step

 - Termination in klog k steps.

 - width ≤log k and so depth ≤log k

Conclusions
-  Restriction access: a new, general model of
“gray box” access (largely unexplored!)

-  A general problem of population recovery

-  Efficient reconstruction from loss & noise

-  Partial IDs, a new dimension reduction
technique for databases.

Open: polynomial time algorithm in k ?
(currently klog k, PIDs can’t beat kloglog k)

Open: Handle unknown errors ?

