Restriction Access,
Population Recovery &
Partial Identification

Avi Wigderson
TAS, Princeton

Joint with
Zeev Dvir

Anup Rao
Amir Yehudayoff

Restriction Access,

A new model of “Grey-box” access

Systems, Models, Observations

From Input-Output (I,,0,), (I,,0,), (I5,05),..?
Typically morel

Black-box access

Successes & Limits

Learning: PAC, membership, statistical..queries
Decision trees, DNFs?

Cryptography: semantic, CPA, CCA, ... security
Cold boot, microwave,... attacks?

Optimization: Membership, separation,... oracles
Strongly polynomial algorithms?

Pseudorandomness: Hardness vs. Randomness
Derandomizing specific algorithms?

Complexity: =2 = NPNP
What problems can we solve if P=NP?

GG o cccos:

fi 3" — zm
D: “device” computing f
(from a family of devices)

D
BIGCk BOX :'A::l’ytzngic::?clz?ideas.
Ours: general, clean
Gray Box D =,
- natural starting point b %
- natural intermediate pt L
D &
Clear Box fg j
5

Restriction Access (RA)

f: zn - Zm
D: “device” computing f

Restriction: p = (x,L), L C [n], x € =",

L live vars
Observations: (p, D)

£(x)

b

Y

1

* *
X1, X2’ ,

L

D‘ (simplified after flxmg) computes fl onlL

Black L = ¢ Gray Clear L = [n]

(x.f(x)) (p. DI,) (x,D)

Example: Decision Tree
D p=(x.L)
S| R
AR |
\ o
o 4 b
uflalolo

Modeling choices (RA-PAC)

Restriction: p = (x,L), L C[n], x€e 2", unknownD

Input X : friendly, random

Unknown distribution (as in PAC)

Live vars L : friendly, adversar'ial,

u-independent dist (as in random restrictions)

Posn'iv; -
In contrast

RA-PAC Results
to PAC lI

Probably, Approximately Correct (PA
learning of D, from restrictions with each
variable remains alive with prob u

Thm 1[DRWY]: A poly(s, u) alg for RA-PAC
learning size-s decision trees, for every u>0
(reconstruction from pairs of live variables)

Thm 2[DRWY]: A poly(s, u) alg for RA-PAC
learning size-s DNFs, for every u>.365...
(reduction to “Population Recovery Problem”)

Population Recovery

(learning a mixture of binomials)

Population Recovery Problem
k species, n attributes, from 2,

Vectors Vi, Vo, .. V) E 2N

Distribution py, p,, ... Pk

u, € >0 n
P1 Vi K Red: Known
P2 V2 Blue: Unknown
P3 V3

Task: Recover all v;, p; (upto ¢) from
samples

Population Recovery Problem
k species, n attributes, from =, u, ¢ >0
Vi, Vo, .. Vi E 2N P4 12 0000 v,
P1, P2, .- Pk fraction in population gz e ‘1’12,3 :',";
Task: Recover all v;, p; (upto ¢) from samples
Samplers:
(1) u<v, withprob.p, 0110
u-Lossy Sampler:
(2) u(j) < ? with prob. 1-u Vje [n]
u-Noisy Sampler:

(2) u(j) flipped w.p. 1/2-n VjE [n]

26%

11%

13%

30%

20%

Loss - Paleontology

From samples

Dig#4 each finding common to many species!

How do they do it?

Noise - Prlvacy

: s & & 2
o&?\@ ~o°§> %é{? %\éb y & §°
© v ¢ § § ¢& &

2% o 1. 1. 0 1 0 O
1% 1 1 0 0 0 1 1
............ Tr.ue Da-'-a

From samples
Joe o o0 o O o 1 1
Jane o 0 0 o 1 1 1

...Who flipped every correct answer with probability 49%

Deniability? Recovery?

PRP - applications

Recovering from loss & noise

- Clustering / Learning / Data mining

- Computational biology / Archeology /
- Error correction

- Database privacy

Numerous related papers & books

PRP - Results

Facts: u=0 obliterates all information.
- No polytime algorithm for u = o(1)

Thm 3 [DRWY] A poly(k, n, €) algorithm,
from lossy samples, for every u>.365..

Thm 4 [WY]: A poly(klegk, n, €) algorithm,
from lossy and/or noisy samples,
for every u >0

Kearns, Mansour, Ron, Rubinfeld, Schapire, Sellie
exp(k) algorithm for this discrete version
Moitra, Valiant
exp(k) algorithm for Gaussian version
(even when noise is unknown)

Proof of Thm 4 n

Reconstruct v;, p; P Vi
P2 V2 k
P3 V3

From samples 0220] [1100].....

Lemma 1: Can assume we know the v; s |
Proof: Exposing one column at a time. B

Lemma 2: Easy in exp(n) time |
Proof: Lossy - enough samples without “?”
Noisy - linear algebra on sample probabilities.

Idea: Make n=O(log k) [Dimension Reduction]

Partial IDs

a new dimension-reduction technique

Dimension Reduction and small IDs

N=g 12345678
K=o P, 000101 v,
p, 0110101[0 v,
p, 010 0[J0J11 v,
p, (11101011 v,
p: 111000111 v,
Pe (11001001 v,
u - random sample g; 2 :: g 2 2 2’ 1 :II x:
q; = Pr{u[S;]=vi[S]] Pg 11000111 Vg

IDs

S, ={1,2}
S, = {8}

S3 = {155!6}

Lemma: Can approximate p;in exp(|S;|) time !
Does one always have small IDs?

xS
i 1
O 0o

NO|
However,...

12345678

1

0
0

Small IDs ?

0000000

1

0

000000

1

000

0000
00000

00000

1

0000

1

0

1

000000

00000001

00
00

10

0

0

0

0

0

0

00

IDs

S, ={1}
S, ={2}
S; = {3}

Sg = {8}

S, ={1,2,...

Linear algebra & Partial IDs

12345678 PIDs
10000000 v, s, ={1}
p, 0(1000000 v, sS,={2}
p; 00100000 v, S,={3}
p, 00010000 v,

p;, 00001000 v;

Ppe 00000100 vq

p, 00000010 v,

pg 00000001 v S;={8}
pp 00000000 vy S,=¢

x S
non
© ©
iy

However, we can compute py=1-p,-p,-...

Back substitution cm

12345678 PIDs

q,= P, (00100101 3 s, ={1,2}
q,= P2 0110101[0 S, = {8}
q.= p; (0110010111 v; S;={1,5,6}
ds-pPy-p= P4 11101011 v, S, =1{3}
ps 11000111 v, Q
u - random sample ps 110001001 v,
q; = p, 010000111 v,
PriulSiI=vilSill p, 11011011 v,
Py 11000111 vy

Can use back substitution if no cycles !
Are there always acyclic small partial IDs?

Acyclic small partial IDs exist
1234|5678 PIDs

8
9

xS

p8 BIBBBIIIVS SB={155!6}

Lemma: There is always an ID of length log k

Idea: Remove and iterate to find more|PIDs
Lemma: Acyclic (log k)-PIDs always exists!

Chains of small Partial IDs
12345678 PIDs

E=g p;, 11111111 v, S, ={1}
p, 01111111 v, S,={2}
p; 00111111 v, S,=(3}
p, 000011111 v, .
ps 000071111 v;4
pg 000007111 vy S, ={6}

Compute: q;=Pr[u;=1]=2Zp; from sample u
Problem: Long chains! Error doubles each step, so is
exponential in the chain length.

Want: Short chains!

The PID (imposter) graph
Given: V=(v,, v,, ... v,) EZ" §=(§,S,,...,S,) C [n]"
Construct 6(V;S) by connecting v;> v, iff

v; is an imposter of v;: vi[S;1=v,[S|]
12345678 PIDs
11111111@ S, = {1}
01111111 S, = {2)
00111111 v, S, = {3}
00011111 v, |vi>v,
00001111 v, |iffi>] S5 = {5}

width =max; |S;| depth =depth(6)
Want: PIDs w/small width and depth for all V

Constructing cheap PID graphs

Theorem: For every V=(v,,Vv,, ...Vv,),Vv,;EX" we
can efficiently find PIDs $=(S,,S,,...,S,), S; C [n]
of width and depth at most log k

Algorithm: Initialize S=J foralli
Invariant: |imposters(v;;S;)| < k/2ISil

Repeat: (1) Make S; maximal é g % g)
if not, add minority coordinates to S, 7 0[a[0 v1
(2) Make chains monotone: 000 1 Vz

v; 2 v; then 1S;[<1S;| (so G acyclic) 1001 v,
if not, set §;to §; (and apply (1) to §;) 1110 v,

Analysis of the algorithm

Theorem: For every V=(V,, V,, ... V,) EX"
we can efficiently find PIDs S$=(S,,S,,...,S,) C [n]"
of width and depth at most log k

Algorithm: Initialize S=J foralli
Invariant: |imposters(v;;S;)| < k/218
Repeat: (1) Make S; maximal
(2) Make chains monotone (v; > v; then |S;|<|S;])

Analysis: - |[S;|=<log k throughout for all i

- >.I8;| increases each step
- Termination in klog k steps.
- width <log k and so depth <log k

Conclusions

- Restriction access: a new, general model of
“gray box” access (largely unexplored!)

- A general problem of population recovery
- Efficient reconstruction from loss & noise

- Partial IDs, a new dimension reduction
technique for databases.

Open: polynomial time algorithm in k ?
(currently kleak, PIDs can't beat kloglogk)

Open: Handle unknown errors ?

