Restriction Access, Population Recovery \& Partial Identification

Avi Wigderson
IAS, Princeton
Joint with

Zeev Dvir
Anup Rao
Amir Yehudayoff

Restriction Access,

A new model of "Grey-box" access

Systems, Models, Observations

From Input-Output $\left(I_{1}, O_{1}\right),\left(I_{2}, O_{2}\right),\left(I_{3}, O_{3}\right), \ldots$?
Typically more!

Black-box access Successes \& Limits

Learning: PAC, membership, statistical...queries Decision trees, DNFs?
Cryptography: semantic, CPA, CCA, ... security Cold boot, microwave,... attacks?
Optimization: Membership, separation,... oracles Strongly polynomial algorithms?
Pseudorandomness: Hardness vs. Randomness
Derandomizing specific algorithms?
Complexity: $\Sigma^{2}=$ NPNP
What problems can we solve if $P=N P$?

The ay scale of access

$f: \Sigma^{n} \rightarrow \Sigma^{m}$
D: "device" computing f
(from a family of devices)
Black Box
Gray Box How to model?
Many specific ideas.
Ours: general, clean

- natural starting point
- natural intermediate pt

Clear Box

Restriction Access (RA)

$f: \Sigma^{n} \rightarrow \Sigma^{m}$
D: "device" computing f

Restriction: $\rho=(x, L), L \subseteq[n], x \in \Sigma^{n}, \quad L$ L live vars
Observations: $\left(\rho,\left.D\right|_{\rho}\right)$
$\left.D\right|_{\rho}$ (simplified after fixing) computes $\left.f\right|_{\rho}$ on L
Black $L=\phi \quad$ Gray \quad Clear $L=[n]$
$(x, f(x))$
$\left(\rho,\left.D\right|_{\rho}\right)$
(x, D)

Example: Decision Tree

Modeling choices (RA-PAC)

Restriction: $\rho=(x, L), \quad L \subseteq[n], x \in \Sigma^{n}, \quad$ unknown D
Input $\quad x$:friendly, adversarial random
Unknown distribution (as in PAC)
Live vars
L : friendly, adversarial, random
μ-independent dist (as in random restrictions)

RA-PAC Results

Probably, Approximately Correct (PAC) learning of D, from restrictions with each variable remains alive with prob μ

Thm 1[DRWY]: A poly (s, μ) alg for RA-PAC learning size-s decision trees, for every $\mu>0$ (reconstruction from pairs of live variables)
Thm 2[DRWY]: A poly (s, μ) alg for RA-PAC learning size-s DNFs, for every μ > .365... (reduction to "Population Recovery Problem")

Population Recovery

(learning a mixture of binomials)

Population Recovery Problem

 k species, n attributes, from Σ,Vectors $\quad v_{1}, v_{2}, \ldots v_{k} \in \Sigma^{n}$
Distribution $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots \mathrm{p}_{\mathrm{k}}$
$\mu, \varepsilon>0$

Red: Known
Blue: Unknown

Task: Recover all v_{i}, p_{i} (upto ε) from samples

Population Recovery Problem

 k species, n attributes, from $\Sigma, \quad \mu, \varepsilon>0$$v_{1}, v_{2}, \ldots v_{k} \in \Sigma^{n}$
$p_{1}, p_{2}, \ldots p_{k}$ fraction in population $\begin{array}{lll}p_{1} & 1 / 2 & 0000 \\ p_{2} & 1 / 3 & 0110 \\ v_{1} \\ p_{3} & 1 / 6 & 1100 \\ v_{3}\end{array}$ Task: Recover all v_{i}, p_{i} (unto ε) from samples Samplers:
(1) $u \leftarrow v_{i}$ with prob. p_{i}
μ-Lossy Sampler:
(2) $u(j) \leftarrow$? with prob. $1-\mu \quad \forall j \in[n]$
?1?0 μ-Noisy Sampler:
(2) $u(j)$ flipped w.p. $1 / 2-\mu \quad \forall j \in[n]$

Loss - Paleontology

26% N
11\%

True Data

13\%

30\%

20\%

Loss - Paleontology

From samples

Dig \#1

Dig \#2

Dig \#3

Dig \#4 each finding common to many species! How do they do it?

Noise - Privacy

2\%
1\%
$0 \quad 1$
101

00
11
0
0
0
1
1
...... True Data From samples

Joe Jane

0
0

00
0
0

1
00
0
....Who flipped every correct answer with probability 49\%

Deniability? Recovery?

PRP - applications

Recovering from loss \& noise

- Clustering / Learning / Data mining
- Computational biology / Archeology /
- Error correction
- Database privacy

Numerous related papers \& books

PRP - Results

Facts: $\mu=0$ obliterates all information.

- No polytime algorithm for $\mu=o(1)$

Thm 3 [DRWY] A poly(k, n, ε) algorithm, from lossy samples, for every $\mu>.365$...

Thm 4 [WY]: A poly $\left(k^{\log k}, n, \varepsilon\right)$ algorithm, from lossy and/or noisy samples,
for every $\mu>0$
Kearns, Mansour, Ron, Rubinfeld, Schapire, Sellie $\exp (k)$ algorithm for this discrete version
Moitra, Valiant
$\exp (k)$ algorithm for Gaussian version (even when noise is unknown)

Proof of Thm 4
Reconstruct v_{i}, p_{i}

From samples
?1?0

Lemma 1: Can assume we know the v_{i} 's!
Proof: Exposing one column at a time.

Lemma 2: Easy in $\exp (n)$ time!
Proof: Lossy - enough samples without "?"
Noisy - linear algebra on sample probabilities.

Idea: Make $n=O(\log k)$ [Dimension Reduction]

Partial IDs

a new dimension-reduction technique

Dimension Reduction and small IDs

Lemma: Can approximate $\boldsymbol{p}_{\mathbf{i}}$ in $\exp \left(\left|\mathbf{S}_{\mathbf{i}}\right|\right)$ time ! Does one always have small IDs?

Small IDs?

$$
\begin{aligned}
& n=8 \\
& k=9
\end{aligned}
$$

However,...

Linear algebra \& Partial IDs

$$
\begin{aligned}
& n=8 \\
& k=9
\end{aligned}
$$

However, we can compute $p_{9}=1-p_{1}-p_{2}-\ldots-p_{8}$

Back substitution and Imposters

Can use back substitution if no cycles ! Are there always acyclic small partial IDs?

Acyclic small partial IDs exist

$$
\begin{aligned}
& n=8 \\
& k=9
\end{aligned}
$$

Lemma: There is always an ID of length log k Idea: Remove and iterate to find more PIDs Lemma: Acyclic (log k)-PIDs always exists!
12345678 PIDs

Chains of small Partial IDs

$$
\begin{aligned}
& n=8 \\
& k=6
\end{aligned}
$$

Compute: $q_{i}=\operatorname{Pr}\left[u_{i}=1\right]=\Sigma_{j \leq i} p_{i}$ from sample u Back substitution: $p_{i}=q_{i}-\Sigma_{j<i} p_{j}$
Problem: Long chains! Error doubles each step, so is exponential in the chain length.
Want: Short chains!

The PID (imposter) graph

Given: $\mathbf{V}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{\mathrm{k}}\right) \in \Sigma^{\mathrm{n}} \quad \mathbf{S}=\left(\mathbf{S}_{1}, \mathbf{S}_{2}, \ldots, \mathbf{S}_{\mathrm{k}}\right) \subseteq[\mathrm{n}]^{n}$ Construct $G(V ; S)$ by connecting $v_{j} \rightarrow v_{i}$ iff
v_{i} is an imposter of v_{j} :

PIDs

$$
S_{1}=\{1\}
$$

$$
S_{2}=\{2\}
$$

$$
S_{3}=\{3\}
$$

$$
\dddot{S}_{5}=\{5\}
$$

width $=\max _{i}\left|\mathbf{S}_{\mathrm{i}}\right| \quad \operatorname{depth}=\operatorname{depth}(G)$
Want: PIDs w/small width and depth for all V

Constructing cheap PID graphs

Theorem: For every $\mathrm{V}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{\mathrm{k}}\right), \mathbf{v}_{\mathrm{i}} \in \Sigma^{\mathrm{n}}$ we can efficiently find PIDs $\mathbf{S}=\left(\mathbf{S}_{1}, \mathbf{S}_{2}, \ldots, \mathbf{S}_{\mathrm{k}}\right), \mathbf{S}_{\mathbf{i}} \subseteq[\mathrm{n}]$ of width and depth at most $\log \mathrm{k}$

Algorithm: Initialize $\mathbf{S}_{\mathbf{i}}=\varnothing$ for all \mathbf{i} Invariant: \mid imposters $\left(\mathbf{v}_{\mathbf{i}} ; \mathbf{S}_{\mathbf{i}}\right) \mid \leq \mathrm{k} / 2^{|\mathbf{s i}|}$ Repeat: (1) Make $\mathbf{S}_{\mathbf{i}}$ maximal if not, add minority coordinates to $\mathbf{S}_{\mathbf{i}}$ (2) Make chains monotone:
$\mathbf{v}_{\mathrm{j}} \rightarrow \mathbf{v}_{\mathrm{i}}$ then $\left|\mathrm{S}_{\mathrm{j}}\right|<\left|\mathrm{S}_{\mathrm{i}}\right|$ (so G acyclic) if not, set $\mathbf{S}_{\mathbf{i}}$ to $\mathbf{S}_{\mathbf{j}}$ (and apply (1) to $\mathbf{S}_{\mathbf{i}}$)

1234

10	0	0	v_{1}
0	0	0	0
0	v_{2}		
0	0	1	1
1	v_{3}		

$1001 \mathrm{v}_{4}$
$1110 \mathrm{v}_{5}$
$1010 \mathrm{v}_{6}$

Analysis of the algorithm

Theorem: For every $\quad \mathrm{V}=\left(\mathbf{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{k}}\right) \in \Sigma^{\mathrm{n}}$ we can efficiently find PIDs $\mathbf{S}=\left(\mathbf{S}_{1}, \mathbf{S}_{2}, \ldots, \mathbf{S}_{\mathrm{k}}\right) \subseteq[n]^{n}$ of width and depth at most $\log \mathrm{k}$
Algorithm: Initialize $\mathbf{S}_{\mathbf{i}}=\varnothing$ for all \mathbf{i}
Invariant: \mid imposters $\left(\mathbf{v}_{\mathbf{i}} ; \mathbf{S}_{\mathbf{i}}\right) \mid \leq \mathrm{k} / 2^{\mid \mathbf{s} i}$
Repeat: (1) Make $\mathbf{S}_{\mathbf{i}}$ maximal
(2) Make chains monotone $\left(v_{j} \rightarrow v_{i}\right.$ then $\left.\left|S_{j}\right|<\left|S_{i}\right|\right)$

Analysis: - $\left|\mathbf{S}_{\mathrm{i}}\right| \leq \log \mathrm{k}$ throughout for all i

- $\quad \sum_{i}\left|\mathbf{S}_{\mathbf{i}}\right|$ increases each step
- Termination in klog k steps.
- width $\leq \log k$ and so depth $\leq \log k$

Conclusions

- Restriction access: a new, general model of
"gray box" access (largely unexplored!)
- A general problem of population recovery
- Efficient reconstruction from loss \& noise
- Partial IDs, a new dimension reduction technique for databases.

Open: polynomial time algorithm in k ? (currently $k^{\log k, ~ P I D s ~ c a n ' t ~ b e a t ~} k^{\log \log k}$)

Open: Handle unknown errors?

