Restriction Access, Population Recovery & Partial Identification

> Avi Wigderson IAS, Princeton

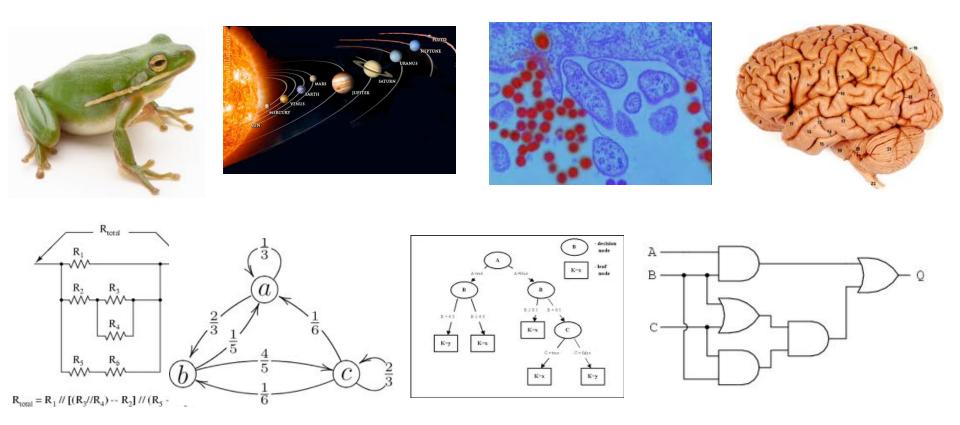
> > Joint with

Zeev Dvir Anup Rao Amir Yehudayoff

Restriction Access,

A new model of "Grey-box" access

Systems, Models, Observations



From Input-Output $(I_1,O_1), (I_2,O_2), (I_3,O_3), \dots$? Typically more!

Black-box access Successes & Limits

- Learning: PAC, membership, statistical...queries Decision trees, DNFs?
- Cryptography: semantic, CPA, CCA, ... security Cold boot, microwave,... attacks?
- Optimization: Membership, separation,... oracles
 - Strongly polynomial algorithms?
- Pseudorandomness: Hardness vs. Randomness
 - Derandomizing specific algorithms?
- Complexity: $\Sigma^2 = NP^{NP}$
 - What problems can we solve if P=NP?

The gray scale of access

f: $\Sigma^n \rightarrow \Sigma^m$ D: "device" computing f (from a family of devices)

> How to model? Many specific ideas. Ours: general, clean

D

 $x_{1}f(x_{1})$

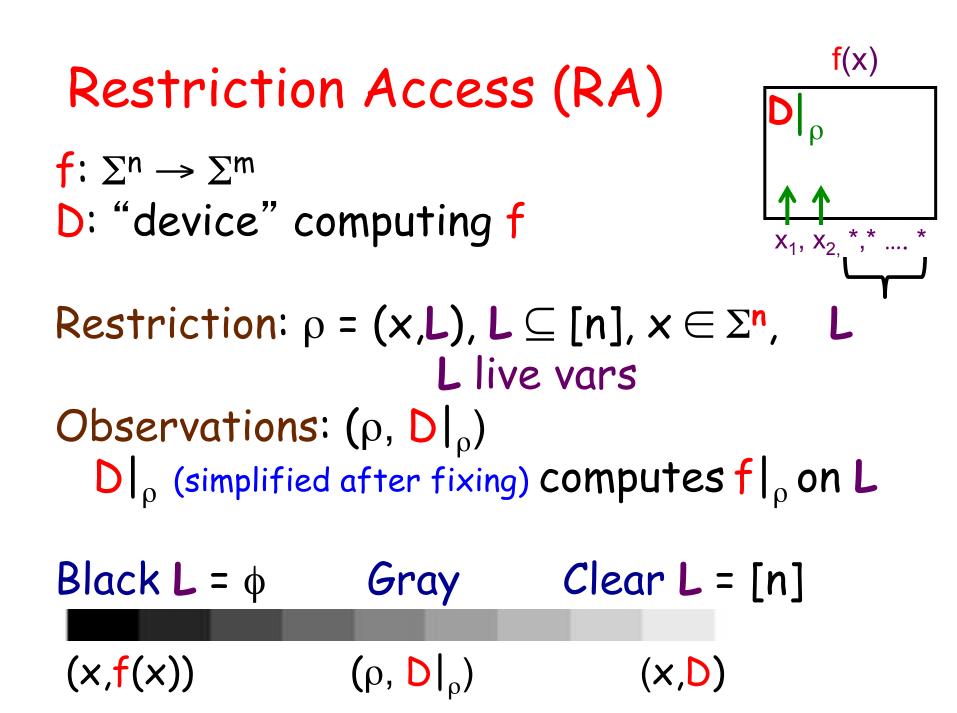
K-x -leaf

- natural starting point

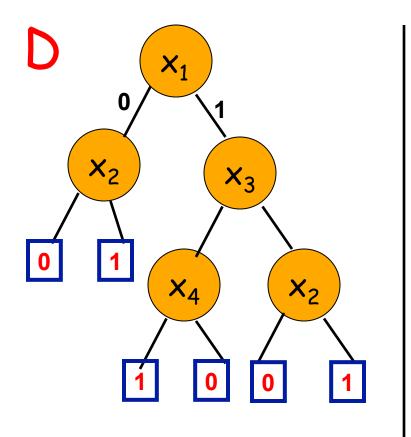
- natural intermediate pt

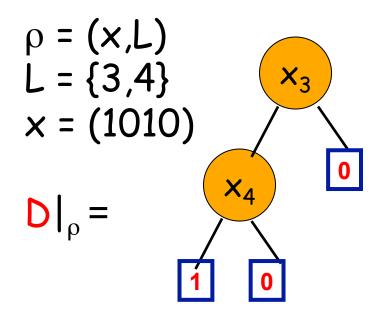
Clear Box

Black Box



Example: Decision Tree





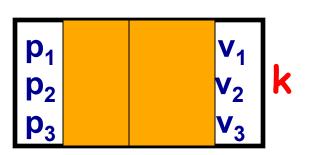
Modeling choices (RA-PAC) Restriction: $\rho = (x,L), \quad L \subseteq [n], x \in \Sigma^n, \quad \text{unknown } D$ x: friendly, adversarial random Input Unknown distribution (as in PAC) L: friendly, adversarial, random Live vars μ -independent dist (as in random restrictions)

RA-PAC Results The contrast to PAC III Probably, Approximately Correct (PAC) learning of D, from restrictions with each variable remains alive with prob µ

Thm 1[DRWY]: A poly(s, μ) alg for RA-PAC learning size-s decision trees, for every μ>0 (reconstruction from pairs of live variables)
Thm 2[DRWY]: A poly(s, μ) alg for RA-PAC learning size-s DNFs, for every μ > .365... (reduction to "Population Recovery Problem")

Population Recovery

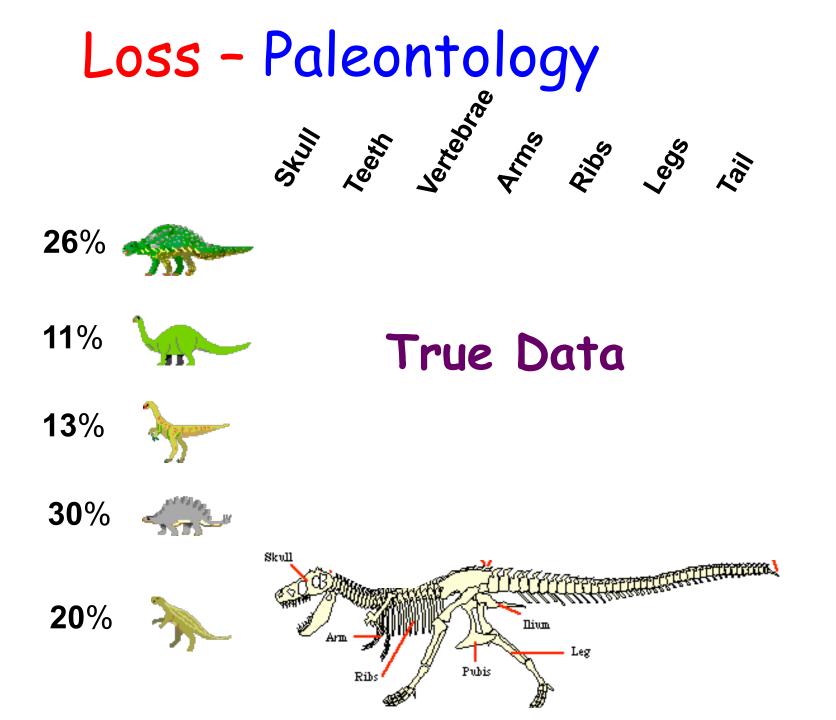
(learning a mixture of binomials)

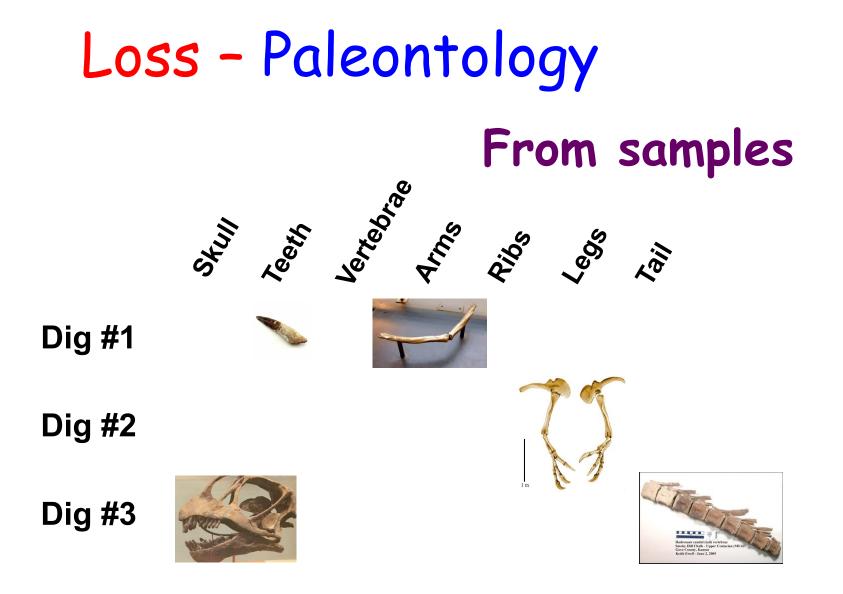


Red: Known Blue: Unknown

Task: Recover all ν_i, p_i (upto ε) from samples

Population Recovery Problem k species, n attributes, from Σ_{i} μ, ε >0 **p**₁ 1/2 0000 **v**₁ $v_1, v_2, \dots v_k \in \Sigma^n$ **p**₂ 1/3 0110 V_2 $p_1, p_2, \dots p_k$ fraction in population <mark>р</mark>3 1/6 1100 V₃ Task: Recover all v_i , p_i (upto ε) from samples Samplers: (1) $\mathbf{u} \leftarrow \mathbf{v}_i$ with prob. \mathbf{p}_i 0110 µ-Lossy Sampler: (2) $u(j) \leftarrow ?$ with prob. $1-\mu \forall j \in [n]$ µ-Noisy Sampler: (2) u(j) flipped w.p. $1/2-\mu \forall j \in [n]$





Dig #4 each finding common to many species!

How do they do it?

Noise - Privacy									
	Socialism	460minon	Gay Marris	Marijuan.	Male "	Rich	North US		
2%	0	1	1	0	1	0	0		
1%	1	1	0	0	0	1	1		
				ue l					
From samples									
Joe	0			0		_	1		
Jane	0	0	0	0	1	1	1		
Who flippe	d eve	ry co	orrec	:t ans	swer	with	ı proba	bility	49%

Deniability? Recovery?

PRP - applications

Recovering from loss & noise

- Clustering / Learning / Data mining
- Computational biology / Archeology /
- Error correction
- Database privacy

Numerous related papers & books

PRP - Results

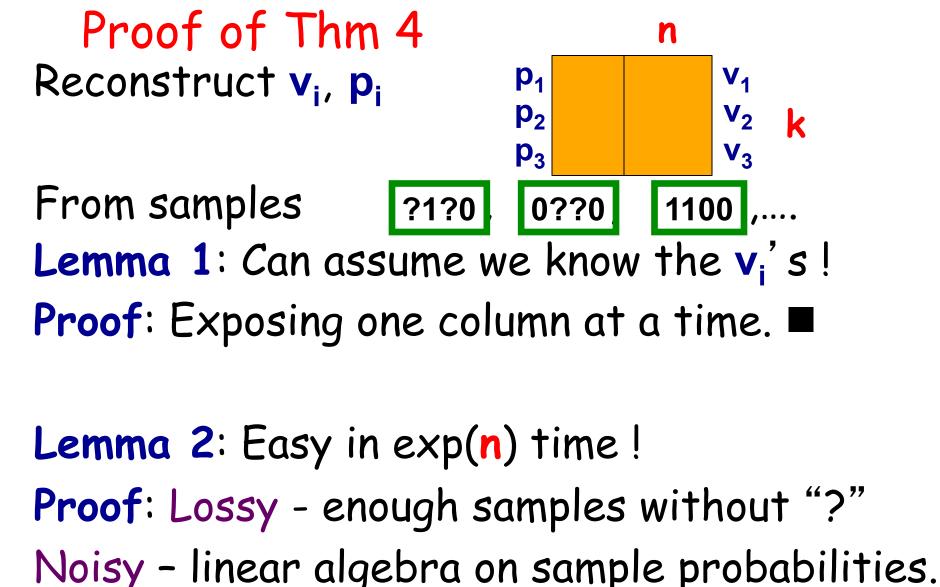
Facts: μ =0 obliterates all information.

- No polytime algorithm for $\mu = o(1)$

Thm 3 [DRWY] A poly(k, n, ε) algorithm, from lossy samples, for every μ > .365...

Thm 4 [WY]: A poly($k^{\log k}$, n, ϵ) algorithm, from lossy and/or noisy samples, for every $\mu > 0$

Kearns, Mansour, Ron, Rubinfeld, Schapire, Sellie exp(k) algorithm for this discrete version Moitra, Valiant exp(k) algorithm for Gaussian version (even when noise is unknown)



Idea: Make n=O(log k) [Dimension Reduction]

Partial IDs

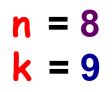
a new dimension-reduction technique

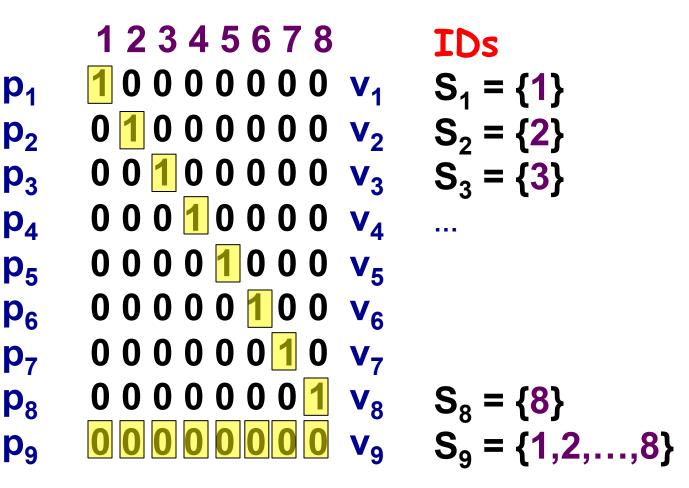
Dimension Reduction and small IDs

n = 8		12345678	IDs
k = 9	p ₁	$00000101v_1$	S ₁ = {1,2}
	p ₂	0110101 <mark>0</mark> v ₂	S ₂ = {8}
	p ₃	0100100_{3}	S ₃ = {1,5,6}
	p ₄	11101011 v ₄	
	p ₅	11000111 v ₅	
	p ₆	11001001 v ₆	
u - nondom comple	p ₇	01000111 v ₇	
u - random sample	p ₈	11011011 v ₈	
$\mathbf{q}_i = \Pr[\mathbf{u}[\mathbf{S}_i] = \mathbf{v}_i[\mathbf{S}_i]]$	p ₉	11000111 v ₉	

Lemma: Can approximate **p**_i in exp(|**S**_i|) time ! Does one always have small IDs?

Small IDs ?





NO! However,...

Linear algebra & Partial IDs

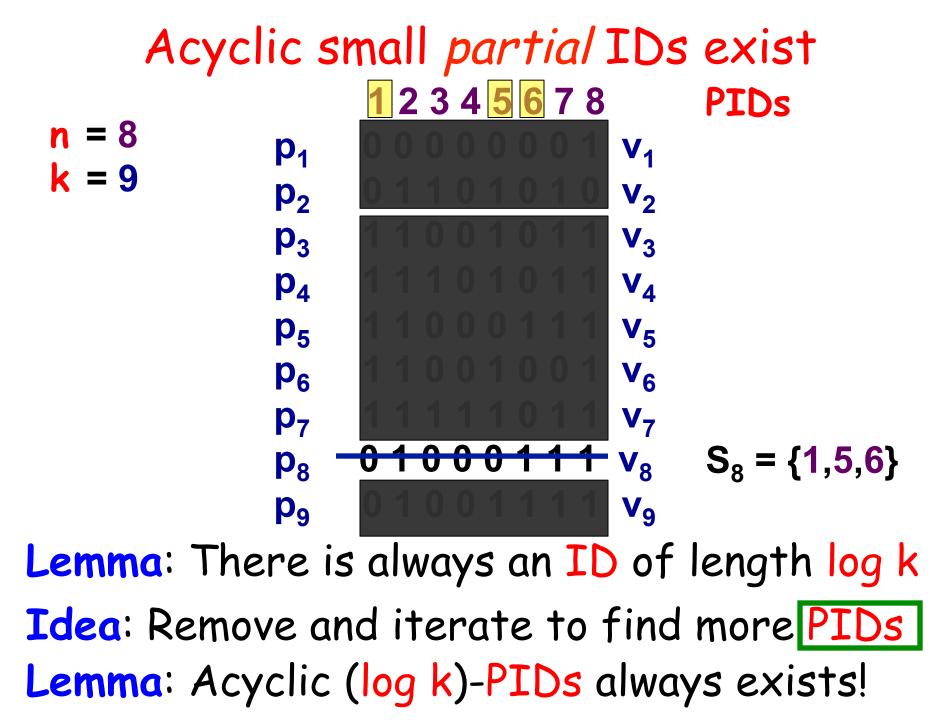
n = 8 k = 9

	12345678	PIDs
p ₁	10000000 v ₁	S ₁ = { 1 }
p ₂	$0100000v_{2}$	$S_2 = \{2\}$
p ₃	0010000	$S_3 = \{3\}$
p ₄	$0001000v_4$	
p ₅	0000 <mark>1</mark> 000 v ₅	
p ₆	$00000100v_{6}$	
p ₇	$00000010v_{7}$	
p ₈	0000001 v ₈	S ₈ = {8}
p ₉	0000000 v ₉	$S_9 = \emptyset$

However, we can compute $p_9 = 1 - p_1 - p_2 - \dots - p_8$

Back substitution and Imposters

Can use back substitution **if** no cycles ! Are there always acyclic small *partial* IDs?



Chains of small Partial IDs

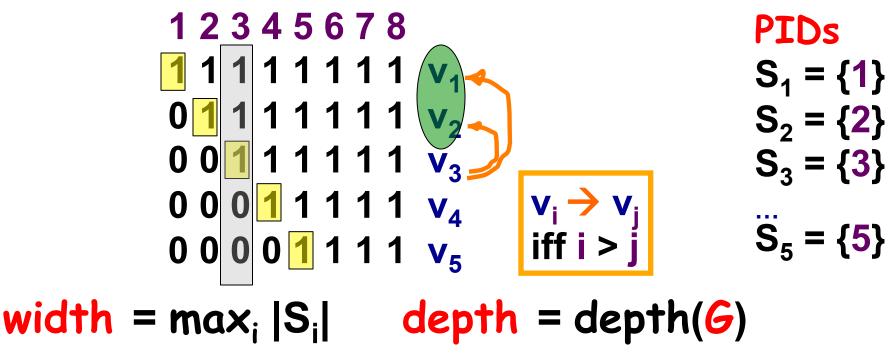
n = 8k = 6

Compute: $q_i = Pr[u_i = 1] = \Sigma_{j \le i} p_i$ from sample u Back substitution: $p_i = q_i - \Sigma_{j < i} p_j$

Problem: Long chains! Error doubles each step, so is exponential in the chain length.

Want: Short chains!

The PID (imposter) graph



Want: PIDs w/small width and depth for all V

Constructing cheap PID graphs

Theorem: For every $V=(v_1, v_2, ..., v_k), v_i \in \Sigma^n$ we can efficiently find PIDs $S=(S_1, S_2, ..., S_k), S_i \subseteq [n]$ of width and depth at most log k

- **Algorithm:** Initialize $S_i = \emptyset$ for all i
- **Invariant**: $|imposters(v_i; S_i)| \le k/2^{|Si|}$
- Repeat: (1) Make S_i maximal
- if not, add minority coordinates to \boldsymbol{S}_{i}
- (2) Make chains monotone:
- $\mathbf{v_j} \rightarrow \mathbf{v_i}$ then $|\mathbf{S_j}| < |\mathbf{S_i}|$ (so G acyclic) if not, set $\mathbf{S_i}$ to $\mathbf{S_j}$ (and apply (1) to $\mathbf{S_i}$)

Analysis of the algorithm

Theorem: For every $V=(v_1, v_2, ..., v_k) \in \Sigma^n$ we can efficiently find PIDs $S=(S_1, S_2, ..., S_k) \subseteq [n]^n$ of width and depth at most log k

Algorithm: Initialize S_i=Ø for all i Invariant: |imposters(v_i;S_i)| ≤ k/2^{|Si|} Repeat: (1) Make S_i maximal (2) Make chains monotone (v_j → v_i then |S_j|<|S_i|)

Analysis: - $|S_i| \le \log k$ throughout for all i

- $\sum_i |\mathbf{S}_i|$ increases each step
- Termination in klog k steps.
- width $\leq \log k$ and so depth $\leq \log k$

Conclusions

- Restriction access: a new, general model of "gray box" access (largely unexplored!)

- A general problem of population recovery
- Efficient reconstruction from loss & noise

- Partial IDs, a new dimension reduction technique for databases.

Open: polynomial time algorithm in k? (currently k^{log k}, PIDs can't beat k^{loglog k})

Open: Handle unknown errors?