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Restriction Access, 
 

A new model of “Grey-box” access 
 



Systems, Models, Observations 

From Input-Output  (I1,O1), (I2,O2), (I3,O3), ….?  
Typically more! 



Black-box access 
Successes & Limits 

Learning: PAC, membership, statistical…queries 
  Decision trees, DNFs? 
Cryptography: semantic, CPA, CCA, … security 
  Cold boot, microwave,… attacks? 
Optimization: Membership, separation,… oracles 
  Strongly polynomial algorithms? 
Pseudorandomness: Hardness vs. Randomness 
  Derandomizing specific algorithms? 
Complexity: Σ2 = NPNP 

  What problems can we solve if P=NP? 
 



The gray scale of access 
f: Σn → Σm  
D: “device” computing f 
(from a family of devices)  
 D x1,f(x1) 

x2,f(x2) 
x3,f(x3) 
…. 

D 

D 

How to model? 
Many specific ideas. 
Ours: general, clean  

Black Box 
 
Gray Box  
– natural starting point 
- natural intermediate pt 
 
Clear Box 
 



Restriction Access (RA) 
f: Σn → Σm  
D: “device” computing f 
 
Restriction: ρ = (x,L), L ⊆ [n], x ∈ Σn,      L 

                              L live vars 
Observations: (ρ, D|ρ) 
   D|ρ  (simplified after fixing) computes f|ρ on L 
 
Black L = φ        Gray        Clear L = [n] 
 
 (x,f(x))              (ρ, D|ρ)                (x,D) 
 

D 
f(x) 

x1, x2, *,* …. * 

|ρ 



Example: Decision Tree 

x1 

x4 

x2 x3 

x2 

0 1 

0 1 

0 1 1 0 

D 
ρ = (x,L) 
L = {3,4} 
x = (1010) 
 
D|ρ = 

x4 

x3 

0 

1 0 



 
  
  

Modeling  choices (RA-PAC) 
Restriction: ρ = (x,L),         L ⊆ [n], x ∈ Σn,     unknown D  

 
Input             x : friendly, adversarial, random  
     
                     Unknown distribution (as in PAC) 
 
Live vars     L : friendly, adversarial, random  
 
                  µ-independent dist (as in random restrictions) 
 
 



RA-PAC  Results 
Probably, Approximately Correct (PAC) 
learning of D, from restrictions with each 
variable remains alive with prob µ 
 
Thm 1[DRWY]: A poly(s, µ) alg for RA-PAC 
learning size-s decision trees, for every µ>0 
    (reconstruction from pairs of live variables) 

Thm 2[DRWY]: A poly(s, µ) alg for RA-PAC 
learning size-s DNFs,  for every µ > .365… 
    (reduction to “Population Recovery Problem”) 
 
 

Positive - 
In contrast 
to PAC !!! 



Population Recovery 
 

(learning a mixture of binomials) 
 



Population Recovery Problem 
k species, n attributes, from Σ,  
Vectors         v1, v2, … vk ∈ Σn 

Distribution  p1, p2, … pk           
µ, ε >0 
 
 
 
Task: Recover all vi, pi (upto ε) from 
samples 
 
 
 

p1 1/2   0000  v1 
p2 1/3   0110  v2 
p3 1/6   1100  v3 

Red: Known 
Blue: Unknown 

n 

k 



Population Recovery Problem 
k species, n attributes, from Σ,    µ, ε >0 
v1, v2, … vk ∈ Σn 

p1, p2, … pk  fraction in population 

Task: Recover all vi, pi (upto ε) from samples 
Samplers:  
(1)    u ← vi    with prob. pi 

µ-Lossy Sampler:  
(2)  u(j) ← ?  with prob. 1-µ  ∀j∈ [n]  
µ-Noisy Sampler:  
(2)  u(j) flipped w.p. 1/2-µ  ∀j∈ [n]  

 
 
 

0110 

?1?0 

1100 

p1 1/2   0000  v1 
p2 1/3   0110  v2 
p3 1/6   1100  v3 



Loss – Paleontology  

 
Height (ft) 
 
   Length (ft) 
 
     Weight (lbs) 
          
          

True Data 

26% 

11% 

13% 

30% 

20% 



Loss – Paleontology  

 
Height (ft) 
 
   Length (ft) 
 
     Weight (lbs) 
          
          

From samples 

Dig #1 

Dig #2 

Dig #3 

Dig #4   ……  each finding common to many species! 
 
How do they do it? 



Noise – Privacy  

True Data 

2%                       0      1      1      0      1      0     0 
1%                       1      1      0      0      0      1     1 

……                     ……     

From samples 
Joe                      0      0      0      0      0      1     1 
Jane                    0      0      0      0      1      1     1 
….Who flipped every correct answer with probability 49% 
 
Deniability? Recovery? 



PRP - applications 
Recovering from loss & noise 
 
-  Clustering / Learning / Data mining 
-  Computational biology / Archeology / ……  
-  Error correction 
-  Database privacy 
-  …… 
Numerous related papers & books 
 
 
 
 



PRP - Results 
Facts: µ=0 obliterates all information. 
- No polytime algorithm for µ = o(1) 
 
Thm 3 [DRWY] A poly(k, n, ε) algorithm,  
from lossy samples, for every  µ > .365… 
 
Thm 4 [WY]: A poly(klog k, n, ε) algorithm, 
from lossy and/or noisy samples,   
for every µ > 0 
 
 
 
 

Kearns, Mansour, Ron, Rubinfeld, Schapire, Sellie  
exp(k) algorithm for this discrete version 
Moitra, Valiant 
exp(k) algorithm for Gaussian version  
           (even when noise is unknown) 



Proof of Thm 4 
Reconstruct vi,  pi 
 
From samples              ,         ,          ,…. 
Lemma 1: Can assume we know the vi’s ! 
Proof: Exposing one column at a time. n 
 

Lemma 2: Easy in exp(n) time ! 
Proof: Lossy - enough samples without “?” 
Noisy – linear algebra on sample probabilities. 
 
Idea: Make n=O(log k)  [Dimension Reduction] 
 
 
 
 
 

p1 1/2     0000  v1 
p2 1/3     0110  v2 
p3 1/6      1100  v3 
 ?1?0 0??0 1100 

n 

k 



Partial IDs 
 

a new dimension-reduction technique 
 



Dimension Reduction and small IDs 

Lemma: Can approximate pi in exp(|Si|) time ! 
Does one always have small IDs? 
 
 

         1 2 3 4 5 6 7 8 
p1     0 0 0 0 0 1 0 1  v1 
p2     0 1 1 0 1 0 1 0  v2 
p3     0 1 0 0 1 0 1 1  v3 
p4     1 1 1 0 1 0 1 1  v4 
p5     1 1 0 0 0 1 1 1  v5 
p6     1 1 0 0 1 0 0 1  v6 
p7     0 1 0 0 0 1 1 1  v7 
p8     1 1 0 1 1 0 1 1  v8 
p9     1 1 0 0 0 1 1 1  v9 
 
 

IDs 
S1 = {1,2} 
S2 = {8} 
S3 = {1,5,6} 

n = 8 
k = 9 

u – random sample 
 
qi = Pr[u[Si]=vi[Si]] 



Small IDs ? 

NO!  
However,… 

         1 2 3 4 5 6 7 8 
p1     1 0 0 0 0 0 0 0  v1 
p2     0 1 0 0 0 0 0 0  v2 
p3     0 0 1 0 0 0 0 0  v3 
p4     0 0 0 1 0 0 0 0  v4 
p5     0 0 0 0 1 0 0 0  v5 
p6     0 0 0 0 0 1 0 0  v6 
p7     0 0 0 0 0 0 1 0  v7 
p8     0 0 0 0 0 0 0 1  v8 
p9     0 0 0 0 0 0 0 0  v9 

IDs 
S1 = {1} 
S2 = {2} 
S3 = {3} 
… 
 
 
 
 
 
S8 = {8} 
S9 = {1,2,…,8} 

n = 8 
k = 9 



Linear algebra & Partial IDs 

However, we can compute p9 = 1- p1 - p2 -…- p8 
 
 

         1 2 3 4 5 6 7 8 
p1     1 0 0 0 0 0 0 0  v1 
p2     0 1 0 0 0 0 0 0  v2 
p3     0 0 1 0 0 0 0 0  v3 
p4     0 0 0 1 0 0 0 0  v4 
p5     0 0 0 0 1 0 0 0  v5 
p6     0 0 0 0 0 1 0 0  v6 
p7     0 0 0 0 0 0 1 0  v7 
p8     0 0 0 0 0 0 0 1  v8 
p9     0 0 0 0 0 0 0 0  v9 

 IDs 
S1 = {1} 
S2 = {2} 
S3 = {3} 
… 
 
 
 
 
 
S8 = {8} 
S9 = ∅ 

n = 8 
k = 9 

P 



Back substitution and Imposters 

Can use back substitution if no cycles !  
Are there always acyclic small partial IDs? 
 
 

         1 2 3 4 5 6 7 8 
p1     0 0 1 0 0 1 0 1  v1 
p2     0 1 1 0 1 0 1 0  v2 
p3     0 1 0 0 1 0 1 1  v3 
p4     1 1 1 0 1 0 1 1  v4 
p5     1 1 0 0 0 1 1 1  v5 
p6     1 1 0 0 1 0 0 1  v6 
p7     0 1 0 0 0 1 1 1  v7 
p8     1 1 0 1 1 0 1 1  v8 
p9     1 1 0 0 0 1 1 1  v9 

PIDs 
S1 = {1,2} 
S2 = {8} 
S3 = {1,5,6} 

u – random sample 
qi =  
Pr[u[Si]=vi[Si]] 

q1 = 

q2 = 
q3 = 

q4 - p1 - p2= S4 = {3} 

any 
subset 



Acyclic small partial IDs exist 

Lemma: There is always an ID of length log k 
 

         1 2 3 4 5 6 7 8 
p1     0 0 0 0 0 0 0 1  v1 
p2     0 1 1 0 1 0 1 0  v2 
p3     1 1 0 0 1 0 1 1  v3 
p4     1 1 1 0 1 0 1 1  v4 
p5     1 1 0 0 0 1 1 1  v5 
p6     1 1 0 0 1 0 0 1  v6 
p7     1 1 1 1 1 0 1 1  v7 
p8       0 1 0 0 0 1 1 1  v8 
p9     0 1 0 0 1 1 1 1  v9 
 
 

PIDs 
 
 
 
 
 
 
 
S8 = {1,5,6} 

n = 8 
k = 9 

Idea: Remove and iterate to find more PIDs 
 Lemma: Acyclic (log k)-PIDs always exists! 
 



Chains of small Partial IDs 

Compute:  qi = Pr[ui = 1] = Σj≤i pi  from sample  u 
Back substitution:  pi = qi - Σj<i pj  
Problem: Long chains! Error doubles each step, so is 
exponential in the chain length. 
Want: Short chains! 
 

         1 2 3 4 5 6 7 8 
p1     1 1 1 1 1 1 1 1  v1 
p2     0 1 1 1 1 1 1 1  v2 
p3     0 0 1 1 1 1 1 1  v3 
p4     0 0 0 1 1 1 1 1  v4 
p5     0 0 0 0 1 1 1 1  v5 
p6     0 0 0 0 0 1 1 1  v6 

PIDs 
S1 = {1} 
S2 = {2} 
S3 = {3} 
… 
 
 
S6 = {6} 

n = 8 
k = 6 



The PID (imposter) graph 
Given: V=(v1, v2, … vk) ∈ Σn     S=(S1,S2,…,Sk) ⊆ [n]n 
Construct G(V;S) by connecting  vj à vi   iff  
   vi is an imposter of vj :              vi[Sj] = vj[Sj] 
          1 2 3 4 5 6 7 8 

         1 1 1 1 1 1 1 1  v1 
         0 1 1 1 1 1 1 1  v2 
         0 0 1 1 1 1 1 1  v3 
         0 0 0 1 1 1 1 1  v4 
         0 0 0 0 1 1 1 1  v5 

PIDs 
S1 = {1} 
S2 = {2} 
S3 = {3} 
… 
S5 = {5} 

width = maxi |Si|      depth = depth(G) 
Want: PIDs w/small width and depth for all V 
 

vi à vj 
iff i > j 



Constructing cheap PID graphs 
Theorem:    For every    V=(v1, v2, … vk), vi ∈ Σn  we                
can efficiently find PIDs  S=(S1,S2,…,Sk), Si ⊆ [n] 
of width and depth at most log k 

Algorithm:  Initialize Si=∅  for all i 
 Invariant: |imposters(vi;Si)| ≤ k/2|Si| 

Repeat: (1) Make Si maximal 
if not, add minority coordinates to Si  
(2) Make chains monotone:  
 vj à vi then |Sj|<|Si|  (so G acyclic) 
if not, set Si to Sj  ( and apply (1) to Si )  

         1 2 3 4 
         0 0 1 0  v1 
         0 0 0 0  v2 
         0 0 0 1  v3 
         1 0 0 1  v4 

              1 1 1 0  v5 

              1 0 1 0  v6 



Analysis of the algorithm 
Theorem:    For every         V=(v1, v2, … vk) ∈ Σn                                        
we can efficiently find PIDs  S=(S1,S2,…,Sk) ⊆ [n]n 
of width and depth at most log k 

Algorithm:  Initialize Si=∅  for all i 
                    Invariant: |imposters(vi;Si)| ≤ k/2|Si| 

Repeat: (1) Make Si maximal 
    (2) Make chains monotone (vj à vi then |Sj|<|Si|) 
          Analysis:  - |Si|≤ log k throughout for all i 
            -  ∑i|Si| increases each step 

            -  Termination in klog k steps. 

            -  width ≤log k and so depth ≤log k   



Conclusions 
-  Restriction access: a new, general model of 
“gray box” access (largely unexplored!) 

-  A general problem of population recovery 
 
-  Efficient reconstruction from loss & noise 

-  Partial IDs, a new dimension reduction 
technique for databases. 

Open: polynomial time algorithm in k ? 
(currently klog k, PIDs can’t beat kloglog k ) 
 
Open: Handle unknown errors ? 


