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The spectre of NP-hardness

NP-complete problems [Cook, Karp 1970s]

Literally hundreds of fundamental problems are NP-hard:

Boolean Satisfiability [model checking, VLSI, . . . ],
Graph Colouring [timetabling/allocation, . . . ],
Travelling Salesman [scheduling problems, . . . ],
. . .

P 6=NP conjecture: no efficient algoithm in the worst case.

 “Average Case analysis of algorithms”
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Phase transitions in discrete structures

Colouring random graphs or hypergraphs

Independent sets in random graphs

Random k-SAT

Conjectured phase transitions. . . [experiments, physics]

. . . appear to affect the combinatorial and computational nature.
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Outline

Random k-SAT: “classical” stuff.

The physics perspective (non-rigorous).

Physics-inspired rigorous stuff.

Open problems.

Amin Coja-Oghlan (Warwick) Phase transitions 4 / 34



The k-SAT problem

Fix k ≥ 3 and let x1, x2, . . . , xn be Boolean variables.

Given an expression of the form

(x1 ∨ x̄17 ∨ · · · ∨ x29)︸ ︷︷ ︸
k-clause

∧ (x̄11 ∨ x2 ∨ · · · ∨ x̄1)︸ ︷︷ ︸
k-clause

∧ · · ·

. . . find a Boolean assignment that makes the entire formula true.
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k-clause

∧ (x̄11 ∨ x2 ∨ · · · ∨ x̄1)︸ ︷︷ ︸
k-clause

∧ · · ·

. . . find a Boolean assignment that makes the entire formula true.

The naive algorithm

Check all 2n possible assignments!

(Prohibitive even for n = 100.)

Yet no better worst-case algorithm is known.
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Random k-SAT

The random k-SAT model

Fix k ≥ 3 and let x1, . . . , xn be Boolean variables.

Generate k-clauses C1, . . . ,Cm uniformly and independently.

Let Φ = C1 ∧ · · · ∧ Cm.

Kirkpatrick, Selman (experimental) [Science 1994]

There occurs a satisfiability phase transition.

Industrial SAT solvers require exponential time.
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Random k-SAT

Theorem [Achlioptas, Peres: JAMS 2004]

The random formula Φ is. . .

. . . satisfiable if m/n < 2k ln 2−Θ(k).

. . . unsatisfiable if m/n > 2k ln 2.
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Random k-SAT

Theorem [Achlioptas, Peres: JAMS 2004]

The random formula Φ is. . .

. . . satisfiable if m/n < 2k ln 2−Θ(k).

. . . unsatisfiable if m/n > 2k ln 2.

Proof

Non-constructive (‘2nd moment method’).
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Random k-SAT

Hunting the k-SAT threshold

The precise k-SAT threshold is unknown for any k ≥ 3.

(In fact, it is not known to exist.)
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Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can we find satisfying assignments efficiently?

Algorithm Density m/n < · · ·
Pure Literal ∼ 2 ln(k)/k BFU 1993

Walksat, proven 0.04 · 2k/k ACO, Frieze 2012

Walksat, conjectured 2k/k Monasson, Semerijan 2003

Shortest Clause e2

8 · 2
k/k Chvatal, Reed 1992

Unit Clause e
2 · 2

k/k Chao, Franco 1990

SC+backtracking 1.817 · 2k/k Frieze, Suen 1996

Fix ∼ 2k ln(k)/k ACO 2009
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Algorithms for random k-SAT

Question

The threshold is rk ∼ 2k ln 2.

For what m/n can we find satisfying assignments efficiently?

k

r=m/n
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The statistical mechanics perspective

“Mean-field models of disorered systems” (such as glasses).

Phase transitions in glasses hypothesized by Kauzmann (1948).
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Enter the physicists

Mezard, Parisi, Zecchina [Science 2002]

The (non-rigorous) cavity method.

“Replica symmetry breaking”.

New algorithms: Belief/Survey Propagation guided decimation.
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Enter the physicists

Experiments [Kroc, Sabharwal, Selman 2009]

For small k, BP/SP guided decimation fare extremely well.
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The cavity method

A thought experiment

Generate a random formula Φ. Fix it.

Choose a satisfying assignment σ at random.

For a bunch of variables y1, . . . , yl , how can we characterise

(σ(y1), . . . , σ(yl))?

The factor graph G (Φ)

Vertices: clauses and variables.

Edges between clauses and the variables they contain  metric.
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The cavity method

Replica symmetry/non-reconstruction [m/n < 2k ln(k)/k]

Correlations are purely local.

Fix a variable y .

Let B≥ω = {variables at distance ≥ ω from y}.
Then

E ‖σ(y)− σ(y |B≥ω)‖tv → 0.

Geometrically, S(Φ) = {all satisfying assignments} is a “giant ball”.
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The cavity method

Replica symmetry breaking [m/n > 2k ln(k)/k]

There are long-range correlations.

Fix a variable y .

Let B≥ω = {variables at distance ≥ ω from y}.
Then σ(y) is determined by σ(y |B≥ω) w.p. 1− ε.

Geometrically, S(Φ) = {all satisfying assignments} “shatters”.
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The cavity method

Replica symmetry breaking [m/n > 2k ln(k)/k]

There are long-range correlations.

Fix a variable y .

Let B≥ω = {variables at distance ≥ ω from y}.
Then σ(y) is determined by σ(y |B≥ω) w.p. 1− ε.

Still, so long as

m/n < rcond = 2k ln 2− 3

2
ln 2 + ok(1),

for y1, . . . , yl mutually far apart we have

E ‖σ(y1, . . . , yl)− σ(y1)⊗ · · · ⊗ σ(yl)‖tv → 0.
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The cavity method

Condensation [rcond < m/n < rsat ]

A few large clusters dominate.

In particular,

E ‖σ(y1, . . . , yl)− σ(y1)⊗ · · · ⊗ σ(yl)‖tv 6→ 0.

Still, there is an abundance of small clusters.
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Belief Propagation

Suppose that

E ‖σ(y1, . . . , yl)− σ(y1)⊗ · · · ⊗ σ(yl)‖tv → 0.

Locally, the factor graph is a tree.

Therefore, for a fixed Φ, there is a recurrence for

µ(y) = Eσ∈S(Φ) [σ(y)] .

 Belief Propagation equations.
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Survey propagation

The Survey propagation distribution on S(Φ):

Pick a cluster C uniformly.
Pick a solution σ′ ∈ C uniformly.

For this modified measure we have

E
∥∥σ′(y1, . . . , yl)− σ′(y1)⊗ · · · ⊗ σ′(yl)

∥∥
tv
→ 0.

 Survey Propagation equations.

Yields a prediction on the k-SAT threshold. . .

. . . in the form of an infinite-dimensional variational problem.
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Message passing algorithms

Belief Propagation guided decimation

For i = 1, . . . , n do

use BP to approximate µ(xi ).

set xi to true with the resulting probability.

simplify the formula accordingly.

A similar scheme yields Survey Propagation guided decimation.
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Proving the physics hypotheses

Hunting the k-SAT threshold

Shattering/Condensation

Message passing algorithms
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Hunting the k-SAT threshold

Best current bounds: 2nd moment method [Achlioptas, Peres 2004]

Requires symmetry.

Survey Propagation equations  upper bound [Franz, Leone 2003]

Generalises to other problems [Panchenko, Talagrand 2004]

Sherrington-Kirkpatrick model [Talagrand 2006]

Theorem [ACO, Panagiotou 2012]

The threshold for 2-coloring k-uniform hypergraphs is

r2−col = 2k−1 ln 2− ln 2

2
− 1

4
+ Õ(2−k).

Amin Coja-Oghlan (Warwick) Phase transitions 23 / 34



Hunting the k-SAT threshold

Best current bounds: 2nd moment method [Achlioptas, Peres 2004]

Requires symmetry.

Survey Propagation equations  upper bound [Franz, Leone 2003]

Generalises to other problems [Panchenko, Talagrand 2004]

Sherrington-Kirkpatrick model [Talagrand 2006]

Theorem [ACO, Panagiotou 2012]

The threshold for 2-coloring k-uniform hypergraphs is

r2−col = 2k−1 ln 2− ln 2

2
− 1

4
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+ Õ(2−k).

Amin Coja-Oghlan (Warwick) Phase transitions 23 / 34



The solution space geometry

Loose/frozen variables

Let Φ be a k-CNF, σ a satisfying assignment, and x a variable.

x is loose if there is a satisfying assignment τ such that

σ(x) 6= τ(x) and dist(σ, τ) ≤ ln(n).

x is frozen if for any satisfying assignment τ

σ(x) 6= τ(x)⇒ dist(σ, τ) = Ω(n).
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The solution space geometry

Theorem [Achlioptas, ACO 2008]

Choose σ ∈ S(Φ) uniformly at random.

1 r < (1− ok(1))2k ln k/k ⇒ all but ok(1)n vars are loose w.h.p.

2 r > (1 + ok(1))2k ln k/k ⇒ all but ok(1)n vars are frozen w.h.p.

A geometric perspective

For r > (1 + ok(1))2k ln k/k. . .

. . . there is shattering.

. . .S(Φ) resembles an error correcting code.

Molloy 2012: exact threshold for freezing in random graph colouring.
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The solution space geometry

Theorem [ACO, Zdeborova 2012]

There is a condensation transition in random hypergraph 2-coloring at

rcond = 2k−1 ln 2− ln 2 + ok(1).

Large clusters dominate.

Belief Propagation breaks.
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Message passing algorithms

The best “combinatorial” algorithm succeeds for m/n < 2k ln(k)/k.

Do BP/SP perform better?

Theorem [ACO 2011]

BP guided decimation fails for

m/n > c · 2k/k

for some constant c > 0 w.h.p.
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The phase diagram [ACO, Pachon-Pinzon 2011]

Let m/n = % · 2k/k, θ = 1− t/n =fraction of unassigned vars.

Symmetric phase

dRSB

Condensation

Unit Clauses

ρ

kθ
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Open problems

The BP/SP equations.

Simulated annealing and sampling.

Local computations.

Hiding solutions.
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The BP/SP equations

Can we use BP/SP to compute marginals?

BP equations  we can get the partition function

lim
n→∞

1

n
E [ln #solutions] .

(Condensation should be a barrier for BP.)

SP equations  we can find the complexity

lim
n→∞

1

n
E [ln #clusters]

. . . and thus the exact threshold.

Montanari, Shah 2007: BP works for m/n < ln(k)/k .
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Simulated annealing

Question

Is freezing/shattering an algorithmic barrier?
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Simulated annealing

Question

Is freezing/shattering an algorithmic barrier?

Symmetric regime: S(Φ) is the bottom of a smooth “valley”.

Conjecture: simulated annealing succeeds in polynomial time.

In fact, simulated annealing should sample.
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Simulated annealing

Question

Is freezing/shattering an algorithmic barrier?

Shattered regime: S(Φ) is the bottom of a ragged landscape.

Conjecture: simulated annealing requires exponential time.

(Very) partial results: Jerrum 1992; ACO, Efthymiou 2011.
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Local computations

Question

Is freezing/shattering an algorithmic barrier?

Local algorithms

f : {formulas with tree factor graphs} → [0, 1].

For i = 1, . . . , n do

let pi = f (depth ω neighborhood of xi ).

set xi to true w.p. pi .

simplify the formula.

Can such local algorithms succeed beyond c · 2k/k?
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Hiding solutions

Observation [Achlioptas, ACO 2008]

Suppose it’s difficult to find frozen solutions.

We can easily generate a pair (Φ, σ) such that

Φ is uniformly random.
σ ∈ S(Φ).
σ is frozen.

 identification scheme based on SAT.
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Conclusion

Physics hypotheses  blueprint for a very nice theory.

Precise thresholds, message passing algorithms, . . .

Open problems:

a rigorous cavity method,
understanding message passing algorithms,
analysing “recurrent” algorithms.

Are random problems easy or hard?
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