Phase Transitions and Computational Complexity

Amin Coja-Oghlan

Warwick/Frankfurt

The spectre of NP-hardness

NP-complete problems

- Literally hundreds of fundamental problems are NP-hard:
- Boolean Satisfiability
- Graph Colouring
- Travelling Salesman [model checking, VLSI, ...], [timetabling/allocation, ...], [scheduling problems, ...],
- $\mathrm{P} \neq \mathrm{NP}$ conjecture: no efficient algoithm in the worst case.
- \rightsquigarrow "Average Case analysis of algorithms"

Phase transitions in discrete structures

- Colouring random graphs or hypergraphs
- Independent sets in random graphs
- Random k-SAT

Phase transitions in discrete structures

- Colouring random graphs or hypergraphs
- Independent sets in random graphs
- Random k-SAT
- Conjectured phase transitions... [experiments, physics]
-appear to affect the combinatorial and computational nature.

Outline

- Random k-SAT: "classical" stuff.
- The physics perspective (non-rigorous).
- Physics-inspired rigorous stuff.
- Open problems.

The k-SAT problem

- Fix $k \geq 3$ and let $x_{1}, x_{2}, \ldots, x_{n}$ be Boolean variables.
- Given an expression of the form

$$
\underbrace{\left(x_{1} \vee \bar{x}_{17} \vee \cdots \vee x_{29}\right)}_{k \text {-clause }} \wedge \underbrace{\left(\bar{x}_{11} \vee x_{2} \vee \cdots \vee \bar{x}_{1}\right)}_{k \text {-clause }} \wedge \cdots
$$

- ... find a Boolean assignment that makes the entire formula true.

The k-SAT problem

- Fix $k \geq 3$ and let $x_{1}, x_{2}, \ldots, x_{n}$ be Boolean variables.
- Given an expression of the form

$$
\underbrace{\left(x_{1} \vee \bar{x}_{17} \vee \cdots \vee x_{29}\right)}_{k \text {-clause }} \wedge \underbrace{\left(\bar{x}_{11} \vee x_{2} \vee \cdots \vee \bar{x}_{1}\right)}_{k \text {-clause }} \wedge \cdots
$$

- ... find a Boolean assignment that makes the entire formula true.

The naive algorithm

- Check all 2^{n} possible assignments!
- (Prohibitive even for $n=100$.)
- Yet no better worst-case algorithm is known.

Random k-SAT

The random k-SAT model

- Fix $k \geq 3$ and let x_{1}, \ldots, x_{n} be Boolean variables.
- Generate k-clauses C_{1}, \ldots, C_{m} uniformly and independently.
- Let $\boldsymbol{\Phi}=C_{1} \wedge \cdots \wedge C_{m}$.

Random k-SAT

The random k-SAT model

- Fix $k \geq 3$ and let x_{1}, \ldots, x_{n} be Boolean variables.
- Generate k-clauses C_{1}, \ldots, C_{m} uniformly and independently.
- Let $\boldsymbol{\Phi}=C_{1} \wedge \cdots \wedge C_{m}$.

Kirkpatrick, Selman (experimental)

[Science 1994]

- There occurs a satisfiability phase transition.
- Industrial SAT solvers require exponential time.

Random k-SAT

Theorem
[Achlioptas, Peres: JAMS 2004]
The random formula $\boldsymbol{\Phi}$ is...

- ...satisfiable if $m / n<2^{k} \ln 2-\Theta(k)$.
- ... unsatisfiable if $m / n>2^{k} \ln 2$.

Random k-SAT

Theorem
[Achlioptas, Peres: JAMS 2004]
The random formula $\boldsymbol{\Phi}$ is...

- ...satisfiable if $m / n<2^{k} \ln 2-\Theta(k)$.
- ... unsatisfiable if $m / n>2^{k} \ln 2$.

Proof

Non-constructive ('2nd moment method').

Random k-SAT

Hunting the k-SAT threshold

- The precise k-SAT threshold is unknown for any $k \geq 3$.
- (In fact, it is not known to exist.)

Algorithms for random k-SAT

Question

- The threshold is $r_{k} \sim 2^{k} \ln 2$.
- For what m / n can we find satisfying assignments efficiently?

Algorithms for random k-SAT

Question

- The threshold is $r_{k} \sim 2^{k} \ln 2$.
- For what m / n can we find satisfying assignments efficiently?

Algorithm	Density $m / n<\cdots$	
Pure Literal	$\sim 2 \ln (k) / k$	BFU 1993
Walksat, proven	$0.04 \cdot 2^{k} / k$	ACO, Frieze 2012
Walksat, conjectured	$2^{k} / k$	Monasson, Semerijan 2003
Shortest Clause	$\frac{e^{2}}{8} \cdot 2^{k} / k$	Chvatal, Reed 1992
Unit Clause	$\frac{e}{2} \cdot 2^{k} / k$	Chao, Franco 1990
SC+backtracking	$1.817 \cdot 2^{k} / k$	Frieze, Suen 1996
Fix	$\sim 2^{k} \ln (k) / k$	ACO 2009

Algorithms for random k-SAT

Question

- The threshold is $r_{k} \sim 2^{k} \ln 2$.
- For what m / n can we find satisfying assignments efficiently?

The statistical mechanics perspective

- "Mean-field models of disorered systems" (such as glasses).
- Phase transitions in glasses hypothesized by Kauzmann (1948).

Enter the physicists

Mezard, Parisi, Zecchina

- The (non-rigorous) cavity method.
- "Replica symmetry breaking".
- New algorithms: Belief/Survey Propagation guided decimation.

Enter the physicists

Experiments

[Kroc, Sabharwal, Selman 2009]

For small $k, \mathrm{BP} / \mathrm{SP}$ guided decimation fare extremely well.

4-SAT

The cavity method

A thought experiment

- Generate a random formula $\boldsymbol{\Phi}$. Fix it.

The cavity method

A thought experiment

- Generate a random formula $\boldsymbol{\Phi}$. Fix it.
- Choose a satisfying assignment σ at random.

The cavity method

A thought experiment

- Generate a random formula $\boldsymbol{\Phi}$. Fix it.
- Choose a satisfying assignment σ at random.
- For a bunch of variables y_{1}, \ldots, y_{l}, how can we characterise

$$
\left(\sigma\left(y_{1}\right), \ldots, \sigma\left(y_{l}\right)\right) ?
$$

The cavity method

A thought experiment

- Generate a random formula $\boldsymbol{\Phi}$. Fix it.
- Choose a satisfying assignment σ at random.
- For a bunch of variables y_{1}, \ldots, y_{l}, how can we characterise

$$
\left(\sigma\left(y_{1}\right), \ldots, \sigma\left(y_{l}\right)\right) ?
$$

The factor graph $G(\Phi)$

- Vertices: clauses and variables.
- Edges between clauses and the variables they contain \rightsquigarrow metric.

The cavity method

Replica symmetry/non-reconstruction $\left[m / n<2^{k} \ln (k) / k\right]$

- Correlations are purely local.

The cavity method

Replica symmetry/non-reconstruction
 $$
\left[m / n<2^{k} \ln (k) / k\right]
$$

- Correlations are purely local.
- Fix a variable y.
- Let $\mathcal{B}_{\geq \omega}=\{$ variables at distance $\geq \omega$ from $y\}$.

The cavity method

Replica symmetry/non-reconstruction
 $$
\left[m / n<2^{k} \ln (k) / k\right]
$$

- Correlations are purely local.
- Fix a variable y.
- Let $\mathcal{B}_{\geq \omega}=\{$ variables at distance $\geq \omega$ from $y\}$.
- Then

$$
\mathrm{E}\left\|\sigma(y)-\sigma\left(y \mid \mathcal{B}_{\geq \omega}\right)\right\|_{t v} \rightarrow 0
$$

The cavity method

Replica symmetry/non-reconstruction
 $$
\left[m / n<2^{k} \ln (k) / k\right]
$$

- Correlations are purely local.
- Fix a variable y.
- Let $\mathcal{B}_{\geq \omega}=\{$ variables at distance $\geq \omega$ from $y\}$.
- Then

$$
\mathrm{E}\left\|\sigma(y)-\sigma\left(y \mid \mathcal{B}_{\geq \omega}\right)\right\|_{t v} \rightarrow 0
$$

- Geometrically, $\mathcal{S}(\boldsymbol{\Phi})=\{$ all satisfying assignments $\}$ is a "giant ball".

The cavity method

Replica symmetry breaking
 $$
\left[m / n>2^{k} \ln (k) / k\right]
$$

- There are long-range correlations.

The cavity method

Replica symmetry breaking $\left[m / n>2^{k} \ln (k) / k\right]$

- There are long-range correlations.
- Fix a variable y.
- Let $\mathcal{B}_{\geq \omega}=\{$ variables at distance $\geq \omega$ from $y\}$.

The cavity method

Replica symmetry breaking
 $$
\left[m / n>2^{k} \ln (k) / k\right]
$$

- There are long-range correlations.
- Fix a variable y.
- Let $\mathcal{B}_{\geq \omega}=\{$ variables at distance $\geq \omega$ from $y\}$.
- Then $\sigma(y)$ is determined by $\sigma\left(y \mid \mathcal{B}_{\geq \omega}\right)$ w.p. $1-\varepsilon$.

The cavity method

Replica symmetry breaking $\left[m / n>2^{k} \ln (k) / k\right]$

- There are long-range correlations.
- Fix a variable y.
- Let $\mathcal{B}_{\geq \omega}=\{$ variables at distance $\geq \omega$ from $y\}$.
- Then $\sigma(y)$ is determined by $\sigma\left(y \mid \mathcal{B}_{\geq \omega}\right)$ w.p. $1-\varepsilon$.
- Geometrically, $\mathcal{S}(\boldsymbol{\Phi})=\{$ all satisfying assignments $\}$ "shatters".

The cavity method

Replica symmetry breaking

- There are long-range correlations.
- Fix a variable y.
- Let $\mathcal{B}_{\geq \omega}=\{$ variables at distance $\geq \omega$ from $y\}$.
- Then $\sigma(y)$ is determined by $\sigma\left(y \mid \mathcal{B}_{\geq \omega}\right)$ w.p. $1-\varepsilon$.

Still, so long as

$$
m / n<r_{\text {cond }}=2^{k} \ln 2-\frac{3}{2} \ln 2+o_{k}(1)
$$

for $y_{1}, \ldots, y_{\text {I }}$ mutually far apart we have

$$
\mathrm{E}\left\|\sigma\left(y_{1}, \ldots, y_{l}\right)-\sigma\left(y_{1}\right) \otimes \cdots \otimes \sigma\left(y_{l}\right)\right\|_{t v} \rightarrow 0
$$

The cavity method

Condensation

$$
\left[r_{\text {cond }}<m / n<r_{\text {sat }}\right]
$$

- A few large clusters dominate.
- In particular,

$$
\mathrm{E}\left\|\sigma\left(y_{1}, \ldots, y_{l}\right)-\sigma\left(y_{1}\right) \otimes \cdots \otimes \sigma\left(y_{l}\right)\right\|_{t v} \nrightarrow 0
$$

- Still, there is an abundance of small clusters.

Belief Propagation

- Suppose that

$$
\mathrm{E}\left\|\sigma\left(y_{1}, \ldots, y_{l}\right)-\sigma\left(y_{1}\right) \otimes \cdots \otimes \sigma\left(y_{l}\right)\right\|_{t v} \rightarrow 0
$$

Belief Propagation

- Suppose that

$$
\mathrm{E}\left\|\sigma\left(y_{1}, \ldots, y_{l}\right)-\sigma\left(y_{1}\right) \otimes \cdots \otimes \sigma\left(y_{l}\right)\right\|_{t v} \rightarrow 0
$$

- Locally, the factor graph is a tree.

Belief Propagation

- Suppose that

$$
\mathrm{E}\left\|\sigma\left(y_{1}, \ldots, y_{l}\right)-\sigma\left(y_{1}\right) \otimes \cdots \otimes \sigma\left(y_{l}\right)\right\|_{t v} \rightarrow 0
$$

- Locally, the factor graph is a tree.
- Therefore, for a fixed $\boldsymbol{\Phi}$, there is a recurrence for

$$
\mu(y)=\mathrm{E}_{\sigma \in \mathcal{S}(\Phi)}[\sigma(y)] .
$$

- \rightsquigarrow Belief Propagation equations.

Survey propagation

- The Survey propagation distribution on $\mathcal{S}(\boldsymbol{\Phi})$:
- Pick a cluster \mathcal{C} uniformly.
- Pick a solution $\sigma^{\prime} \in \mathcal{C}$ uniformly.

Survey propagation

- The Survey propagation distribution on $\mathcal{S}(\boldsymbol{\Phi})$:
- Pick a cluster \mathcal{C} uniformly.
- Pick a solution $\sigma^{\prime} \in \mathcal{C}$ uniformly.
- For this modified measure we have

$$
\mathrm{E}\left\|\sigma^{\prime}\left(y_{1}, \ldots, y_{l}\right)-\sigma^{\prime}\left(y_{1}\right) \otimes \cdots \otimes \sigma^{\prime}\left(y_{l}\right)\right\|_{t v} \rightarrow 0
$$

- \rightsquigarrow Survey Propagation equations.

Survey propagation

- The Survey propagation distribution on $\mathcal{S}(\boldsymbol{\Phi})$:
- Pick a cluster \mathcal{C} uniformly.
- Pick a solution $\sigma^{\prime} \in \mathcal{C}$ uniformly.
- For this modified measure we have

$$
\mathrm{E}\left\|\sigma^{\prime}\left(y_{1}, \ldots, y_{l}\right)-\sigma^{\prime}\left(y_{1}\right) \otimes \cdots \otimes \sigma^{\prime}\left(y_{l}\right)\right\|_{t v} \rightarrow 0
$$

- \rightsquigarrow Survey Propagation equations.
- Yields a prediction on the $k-S A T$ threshold...
- ...in the form of an infinite-dimensional variational problem.

Message passing algorithms

Belief Propagation guided decimation

- For $i=1, \ldots, n$ do
- use BP to approximate $\mu\left(x_{i}\right)$.
- set x_{i} to true with the resulting probability.
- simplify the formula accordingly.

Message passing algorithms

Belief Propagation guided decimation

- For $i=1, \ldots, n$ do
- use BP to approximate $\mu\left(x_{i}\right)$.
- set x_{i} to true with the resulting probability.
- simplify the formula accordingly.

A similar scheme yields Survey Propagation guided decimation.

Proving the physics hypotheses

- Hunting the k-SAT threshold
- Shattering/Condensation
- Message passing algorithms

Hunting the k-SAT threshold

- Best current bounds: 2nd moment method [Achlioptas, Peres 2004]
- Requires symmetry.

Hunting the k-SAT threshold

- Best current bounds: 2nd moment method [Achlioptas, Peres 2004]
- Requires symmetry.
- Survey Propagation equations \rightsquigarrow upper bound [Franz, Leone 2003]
- Generalises to other problems
- Sherrington-Kirkpatrick model
[Panchenko, Talagrand 2004]
[Talagrand 2006]

Hunting the k-SAT threshold

- Best current bounds: 2nd moment method [Achlioptas, Peres 2004]
- Requires symmetry.
- Survey Propagation equations \rightsquigarrow upper bound
[Franz, Leone 2003]
- Generalises to other problems
- Sherrington-Kirkpatrick model
[Panchenko, Talagrand 2004]
[Talagrand 2006]
[ACO, Panagiotou 2012]
The threshold for 2-coloring k-uniform hypergraphs is

$$
r_{2-c o l}=2^{k-1} \ln 2-\frac{\ln 2}{2}-\frac{1}{4}+\tilde{O}\left(2^{-k}\right)
$$

The solution space geometry

Loose/frozen variables

Let Φ be a k-CNF, σ a satisfying assignment, and x a variable.

- x is loose if there is a satisfying assignment τ such that

$$
\sigma(x) \neq \tau(x) \text { and } \operatorname{dist}(\sigma, \tau) \leq \ln (n)
$$

The solution space geometry

Loose/frozen variables

Let Φ be a k-CNF, σ a satisfying assignment, and x a variable.

- x is loose if there is a satisfying assignment τ such that

$$
\sigma(x) \neq \tau(x) \text { and } \operatorname{dist}(\sigma, \tau) \leq \ln (n)
$$

- x is frozen if for any satisfying assignment τ

$$
\sigma(x) \neq \tau(x) \Rightarrow \operatorname{dist}(\sigma, \tau)=\Omega(n)
$$

The solution space geometry

Theorem

[Achlioptas, ACO 2008]

Choose $\sigma \in \mathcal{S}(\boldsymbol{\Phi})$ uniformly at random.
(1) $r<\left(1-o_{k}(1)\right) 2^{k} \ln k / k \Rightarrow$ all but $o_{k}(1) n$ vars are loose w.h.p.
(2) $r>\left(1+o_{k}(1)\right) 2^{k} \ln k / k \Rightarrow$ all but $o_{k}(1) n$ vars are frozen w.h.p.

The solution space geometry

Theorem

[Achlioptas, ACO 2008]
Choose $\sigma \in \mathcal{S}(\boldsymbol{\Phi})$ uniformly at random.
(1) $r<\left(1-o_{k}(1)\right) 2^{k} \ln k / k \Rightarrow$ all but $o_{k}(1) n$ vars are loose w.h.p.
(2) $r>\left(1+o_{k}(1)\right) 2^{k} \ln k / k \Rightarrow$ all but $o_{k}(1) n$ vars are frozen w.h.p.

A geometric perspective

For $r>\left(1+o_{k}(1)\right) 2^{k} \ln k / k \ldots$

- ...there is shattering.
- ... $\mathcal{S}(\boldsymbol{\Phi})$ resembles an error correcting code.

The solution space geometry

Theorem

[Achlioptas, ACO 2008]
Choose $\sigma \in \mathcal{S}(\boldsymbol{\Phi})$ uniformly at random.
(1) $r<\left(1-o_{k}(1)\right) 2^{k} \ln k / k \Rightarrow$ all but $o_{k}(1) n$ vars are loose w.h.p.
(2) $r>\left(1+o_{k}(1)\right) 2^{k} \ln k / k \Rightarrow$ all but $o_{k}(1) n$ vars are frozen w.h.p.

A geometric perspective

For $r>\left(1+o_{k}(1)\right) 2^{k} \ln k / k \ldots$

- ... there is shattering.
- ... $\mathcal{S}(\boldsymbol{\Phi})$ resembles an error correcting code.

Molloy 2012: exact threshold for freezing in random graph colouring.

The solution space geometry

Theorem [ACO, Zdeborova 2012]

There is a condensation transition in random hypergraph 2-coloring at

$$
r_{\text {cond }}=2^{k-1} \ln 2-\ln 2+o_{k}(1)
$$

- Large clusters dominate.
- Belief Propagation breaks.

Message passing algorithms

- The best "combinatorial" algorithm succeeds for $m / n<2^{k} \ln (k) / k$. - Do BP/SP perform better?

Message passing algorithms

- The best "combinatorial" algorithm succeeds for $m / n<2^{k} \ln (k) / k$.
- Do BP/SP perform better?

Theorem
[ACO 2011]
BP guided decimation fails for

$$
m / n>c \cdot 2^{k} / k
$$

for some constant $c>0$ w.h.p.

The phase diagram [ACO, Pachon-Pinzon 2011]

Let $m / n=\varrho \cdot 2^{k} / k, \theta=1-t / n=$ fraction of unassigned vars.

Open problems

- The BP/SP equations.
- Simulated annealing and sampling.
- Local computations.
- Hiding solutions.

The BP/SP equations

- Can we use $\mathrm{BP} / \mathrm{SP}$ to compute marginals?

The BP/SP equations

- Can we use $\mathrm{BP} / \mathrm{SP}$ to compute marginals?
- BP equations \rightsquigarrow we can get the partition function

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}[\ln \text { \#solutions }] .
$$

- (Condensation should be a barrier for BP.)

The BP/SP equations

- Can we use $\mathrm{BP} / \mathrm{SP}$ to compute marginals?
- BP equations \rightsquigarrow we can get the partition function

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}[\ln \text { \#solutions }] .
$$

- (Condensation should be a barrier for BP.)
- SP equations \rightsquigarrow we can find the complexity

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}[\ln \# \text { clusters }]
$$

The BP/SP equations

- Can we use $\mathrm{BP} / \mathrm{SP}$ to compute marginals?
- BP equations \rightsquigarrow we can get the partition function

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}[\ln \text { \#solutions }] .
$$

- (Condensation should be a barrier for BP.)
- SP equations \rightsquigarrow we can find the complexity

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}[\ln \text { \#clusters }]
$$

- ... and thus the exact threshold.

The BP/SP equations

- Can we use $\mathrm{BP} / \mathrm{SP}$ to compute marginals?
- BP equations \rightsquigarrow we can get the partition function

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}[\ln \text { \#solutions }] .
$$

- (Condensation should be a barrier for BP.)
- SP equations \rightsquigarrow we can find the complexity

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathrm{E}[\ln \text { \#clusters }]
$$

- ... and thus the exact threshold.

Montanari, Shah 2007: BP works for $m / n<\ln (k) / k$.

Simulated annealing

Question

Is freezing/shattering an algorithmic barrier?

Simulated annealing

Question

Is freezing/shattering an algorithmic barrier?

- Symmetric regime: $\mathcal{S}(\boldsymbol{\Phi})$ is the bottom of a smooth "valley".
- Conjecture: simulated annealing succeeds in polynomial time.
- In fact, simulated annealing should sample.

Simulated annealing

Question

Is freezing/shattering an algorithmic barrier?

- Shattered regime: $\mathcal{S}(\boldsymbol{\Phi})$ is the bottom of a ragged landscape.
- Conjecture: simulated annealing requires exponential time.
- (Very) partial results: Jerrum 1992; ACO, Efthymiou 2011.

Local computations

Question

Is freezing/shattering an algorithmic barrier?

Local algorithms

- $f:\{$ formulas with tree factor graphs $\} \rightarrow[0,1]$.

Local computations

Question

Is freezing/shattering an algorithmic barrier?

Local algorithms

- $f:\{$ formulas with tree factor graphs $\} \rightarrow[0,1]$.
- For $i=1, \ldots, n$ do
- let $p_{i}=f\left(\right.$ depth ω neighborhood of $\left.x_{i}\right)$.
- set x_{i} to true w.p. p_{i}.
- simplify the formula.

Local computations

Question

Is freezing/shattering an algorithmic barrier?

Local algorithms

- $f:\{$ formulas with tree factor graphs $\} \rightarrow[0,1]$.
- For $i=1, \ldots, n$ do
- let $p_{i}=f\left(\right.$ depth ω neighborhood of $\left.x_{i}\right)$.
- set x_{i} to true w.p. p_{i}.
- simplify the formula.

Can such local algorithms succeed beyond $c \cdot 2^{k} / k$?

Hiding solutions

Observation [Achlioptas, ACO 2008]

- Suppose it's difficult to find frozen solutions.

Hiding solutions

Observation

[Achlioptas, ACO 2008]

- Suppose it's difficult to find frozen solutions.
- We can easily generate a pair $(\boldsymbol{\Phi}, \sigma)$ such that
- Φ is uniformly random.
- $\sigma \in \mathcal{S}(\Phi)$.
- σ is frozen.

Hiding solutions

Observation

[Achlioptas, ACO 2008]

- Suppose it's difficult to find frozen solutions.
- We can easily generate a pair $(\boldsymbol{\Phi}, \sigma)$ such that
- Φ is uniformly random.
- $\sigma \in \mathcal{S}(\Phi)$.
- σ is frozen.
- \rightsquigarrow identification scheme based on SAT.

Conclusion

- Physics hypotheses \rightsquigarrow blueprint for a very nice theory.
- Precise thresholds, message passing algorithms, ...
- Open problems:
- a rigorous cavity method,
- understanding message passing algorithms,
- analysing "recurrent" algorithms.
- Are random problems easy or hard?

