EXTREMAL PARAMETERS IN CRITICAL AND SUBCRITICAL GRAPH CLASSES

Michael Drmota

Institut für Diskrete Mathematik und Geometrie
TU Wien
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/

Summary

- Block-Decompostion of Graphs
- Critial and Subcritical Graph Classes
- Additive Parameters in Subcritical Graph Classes
- Extremal Parameters in Subcritical Graph Classes
- Additive and Extremal Parameters in Planar Maps
- The Maximum Degree in Random Planar Graphs

Labelled vs. Unlabelled Graphs

Labelled vs. Unlabelled Graphs

Labelled vs. Unlabelled Graphs

$$
\frac{x^{5}}{5!}
$$

x^{5}

Generating Functions

$g_{n} \ldots$ number of graphs of size n (in a given graph class)

Labelled Graphs

$$
G(x)=\sum_{n \geq 0} g_{n} \frac{x^{n}}{n!}
$$

Unlabelled Graphs

$$
G(x)=\sum_{n \geq 0} g_{n} x^{n}
$$

Generating Functions - Extensions

$g_{n, m} \ldots$ number of graphs of size n with m edges

Vertext-labelled Graphs with unlabelled edges

$$
G(x, y)=\sum_{n, m \geq 0} g_{n, m} \frac{x^{n}}{n!} y^{n}
$$

Unlabelled Graphs

$$
G(x, y)=\sum_{n, m \geq 0} g_{n, m} x^{n} y^{m}
$$

Block-Decomposition

Block-Decomposition

Block-Decomposition

Block-Decomposition

block: 2-connected component

Block-stable graph class \mathcal{G} : all components and all 2-connected components of a graph $G \in \mathcal{G}$ are also contained in \mathcal{G}

Examples: Planar graphs, series-parallel graphs, minor-closed graph classes etc.
$B(x) \ldots$ GF for 2-connected graphs in \mathcal{G}
$C(x) \ldots$ GF for connected graphs in \mathcal{G}
$G(x) \ldots$ GF for all graphs in \mathcal{G}

Generating Functions for Block-Decomposition

Vertex-rooted graphs: one vertext (the root) is distinguished (and usually discounted, that is, it gets no label)

Generating function: (in den labelled case)

$$
G^{\bullet}(x)=G^{\prime}(x)
$$

Generating Functions for Block-Decomposition

$$
C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)}
$$

Generating Functions for Block-Decomposition

$$
G^{\bullet}(x)=\exp (C(x)) C^{\bullet}(x) \Longleftrightarrow G(x)=e^{C(x)}
$$

Labelled Trees

Rooted Trees:

$$
B^{\bullet}(x)=x
$$

$T(x)=x C^{\bullet}(x) \ldots$ generating function of rooted, labelled trees

$$
C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)} \Longrightarrow T(x)=x e^{T(x)}
$$

Remark: $\tilde{T}(x)$... GF for unrooted labelled trees:

$$
\tilde{T}(x)^{\prime}=\frac{1}{x} T(x) \quad \Longrightarrow \quad \tilde{T}(x)=T(x)-\frac{1}{2} T(x)^{2}
$$

Series-Parallel Graphs

Series-parallel extension of a tree or forest

Series-extension:

Parallel-extension:

Series-Parallel Graphs

Generating functions

$b_{n, m} \ldots$ number of 2-connected labelled series-parallel graphs with n vertices and m edges

$$
B(x, y)=\sum_{n, m} b_{n, m} \frac{x^{n}}{n!} y^{m}
$$

$c_{n, m} \ldots$ number of connected labelled series-parallel graphs with n vertices and m edges

$$
C(x, y)=\sum_{n, m} c_{n, m} \frac{x^{n}}{n!} y^{m}
$$

$g_{n, m} \ldots$ number of labelled series-parallel graphs with n vertices and m edges

$$
G(x, y)=\sum_{n, m} g_{n, m} \frac{x^{n}}{n!} y^{m}
$$

Series-Parallel Graphs

Generating functions

$$
\begin{aligned}
G(x, y) & =e^{C(x, y)} \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
D(x, y) & =(1+y) e^{S(x, y)}-1 \\
S(x, y) & =(D(x, y)-S(x, y)) x D(x, y)
\end{aligned}
$$

Labelled Planar Graphs

$$
\begin{aligned}
G(x, y) & =\exp (C(x, y)) \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
\frac{M(x, D)}{2 x^{2} D} & =\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
M(x, y) & =x^{2} y^{2}\left(\frac{1}{1+x y}+\frac{1}{1+y}-1-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right) \\
U & =x y(1+V)^{2} \\
V & =y(1+U)^{2}
\end{aligned}
$$

Critical vs. Subcritical Graphs

Functional equations

Suppose that $A(x)=\Phi(x, A(x))$, where $\Phi(x, a)$ has a power series expansion at (0,0) with non-negative coefficients and $\Phi_{a a}(x, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence of Φ) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, a_{0}\right)
$$

Then there exists analytic function $g(x), h(x)$ such that locally

$$
A(x)=g(x)-h(x) \sqrt{1-\frac{x}{x_{0}}}
$$

Remark. If there is no x_{0}, a_{0} inside the region of convergence of Φ then the singular behaviour of Φ determines the singular behaviour of $A(x)!!!$

Critical vs. Subcritical Graphs

$$
\begin{aligned}
A(x)=x C^{\bullet}(x), \Phi(x, a) & =x e^{B^{\bullet}(x)}, x C^{\bullet}(x)=x e^{B^{\bullet}\left(x C^{\bullet}(x)\right)} \\
& \Longrightarrow A(x)=\Phi(x, A(x))
\end{aligned}
$$

Case 1: the subcritical case. The system

$$
a_{0}=x_{0} e^{B^{\bullet}\left(a_{0}\right)}, \quad 1=x_{0} e^{B^{\bullet}\left(x_{0}\right)} B^{\bullet \prime}\left(a_{0}\right)
$$

has positive solutions x_{0}, a_{0} such that a_{0} is smaller than the radius of convergence η of B^{\bullet}. Equivalenty

$$
\eta B^{\prime \prime}(\eta) \in(1, \infty]
$$

Case 2: the critical case. The other case:

$$
\eta B^{\prime \prime}(\eta)=1
$$

Here the singular behaviour of B^{\bullet} determines the singular behaviour of $C^{\bullet}(x)$.

Critical vs. Subcritical Graphs

- Trees are subcritical
- Series-parallel graphs are subcritical
- Planar graphs are critical

Lemma. If $B^{\bullet}(x)$ is entire or has a squareroot singularity:

$$
B^{\bullet}(x)=g(x)-h(x) \sqrt{1-\frac{x}{\eta}}
$$

then we are in the subcritical case.

Critical vs. Subcritical Graphs

What does "subcritical" mean?
In a subcritical graph class the average size of the 2-connected components is bounded.
\Longrightarrow This leads to a tree like structure.
\Longrightarrow The law of large numbers should apply so that we can expect universal behaviours that are independent of the the precise structure of 2-connected components.

Critical graph classes are notoriously more difficult to analyze and we cannot expect universal laws.

Planar Maps

A planar map is a connected planar graph, possibly with loops and multiple edges, together with an embedding in the plane.
A map is rooted if a vertex v and an edge e incident with v are distinguished, and are called the root-vertex and root-edge, respectively. The face to the right of e is called the root-face and is usually taken as the outer face.

Planar Maps

$M_{n} \ldots$ number of rooted maps with n edges [Tutte]

$$
M_{n}=\frac{2(2 n)!}{(n+2)!n!} 3^{n}
$$

The proof is given with the help of generating functions and the socalled quadratic method.

Asymptotics:

$$
M_{n} \sim c \cdot n^{-5 / 2} 12^{n}
$$

Planar Maps

Generating functions

$M_{n, k} \ldots$ number of maps with n edges and outer-face-valency k

$$
\begin{aligned}
M(z, u)= & \sum_{n, k} M_{n, k} u^{k} z^{n} \\
& M(z, u)=1+z u^{2} M(z, u)^{2}+u z \frac{u M(z, u)-M(z, 1)}{u-1}
\end{aligned}
$$

u ... "catalytic variable"

2-Connected Planar Maps

$B(z) \ldots$ GF of 2-connected rooted planar maps

$$
M(z)=B\left(z M(z)^{2}\right)
$$

and

$$
M(z, u)=B\left(z M(z)^{2}, \frac{u M(z, u)}{M(z)}\right)
$$

Planar maps are also critical.

The equations are slightly different but analytically they are very similar.

Non-Crossing Configurations

Rooted convex n-gon with non-intersecting straight lines as edges (we restrict ourselves to connected graphs)

Non-Crossing Configurations

$$
C(z)=\frac{z}{1-B\left(C(z)^{2} / z\right)}
$$

$B(z) \ldots$ GF for 2-connected non-crossing configurations (dissections):

$$
\begin{gathered}
B(z)=z+\frac{B(z)^{2}}{1-B(z)} \\
B(z)=\frac{1+z-\sqrt{1-6 z+z^{2}}}{4}
\end{gathered}
$$

Non-crossing configurations are subcritical

Unlabelled Graph Classes

Cycle index sums

$$
Z_{\mathcal{G}}\left(s_{1}, s_{2}, \ldots\right):=\sum_{n} \frac{1}{n!} \sum_{\substack{\sigma, g \in \mathfrak{S}_{n} \times \mathcal{G}_{n} \\ \sigma \cdot g=g}} s_{1}^{c_{1}(\sigma)} s_{2}^{c_{2}(\sigma)} \ldots s_{n}^{c_{n}(\sigma)}
$$

where $c_{j}(\sigma)$ denotes the number of cycles of size j in $\sigma \in \mathfrak{S}_{n}$

$$
\begin{gathered}
G(x)=Z_{\mathcal{G}}\left(x, x^{2}, x^{3}, \cdots\right) \\
Z_{\mathcal{G}} \bullet\left(s_{1}, s_{2}, \ldots\right)=\frac{\partial}{\partial s_{1}} Z_{\mathcal{G}}\left(s_{1}, s_{2}, \ldots\right) \\
G^{\bullet}(x)=Z_{\mathcal{G}} \bullet\left(x, x^{2}, x^{3}, \cdots\right)=\frac{\partial}{\partial s_{1}} Z_{\mathcal{G}}\left(x, x^{2}, x^{3}, \cdots\right)
\end{gathered}
$$

Unlabelled Graph Classes

Block decomposition

$$
G(x)=\exp \left(\sum_{i \geq 1} \frac{1}{i} C\left(x^{i}\right)\right)
$$

$$
C^{\bullet}(x)=\exp \left(\sum_{i \geq 1} \frac{1}{i} Z_{B^{\bullet}}\left(x^{i} G^{\bullet}\left(x^{i}\right), x^{2 i} G^{\bullet}\left(x^{2 i}\right), \ldots\right)\right)
$$

- Dichotomy between subcritical and critical can be defined in a natural way.
- Unlabelled trees are subcritical.
- Unlabelled series-parallel graphs are subcritical.

Subcritical Graph Classes

Universal properties

- Asymptotic enumeration:

Labelled case:

$$
g_{n} \sim g n^{-5 / 2} \rho^{-n} n!
$$

Unlabelled case:

$$
g_{n} \sim g n^{-5 / 2} \rho^{-n}
$$

($g>0, \rho \ldots$ radius of convergence of $G(z)$)
[D.+Fusy+Kang+Kraus+Rue 2011]

Subcritical Graph Classes

Universal properties

- Additive parameters [D.+Fusy+Kang+Kraus+Rue 2011]
$X_{n} \ldots$ number of edges / number of blocks / number of cut-vertices / number of vertices of degree k

Central limit theorem:

$$
\frac{X_{n}-\mu n}{\sqrt{n}} \rightarrow N\left(0, \sigma^{2}\right)
$$

with $\mu>0$ and $\sigma^{2} \geq 0$.

Remark. There is an easy to check "combinatorial condition" that ensures $\sigma^{2}>0$.

Subcritical Graph Classes

Proof Methods:

Refined versions of the functional equation $C^{\bullet}(x)=e^{B^{\bullet}\left(x C^{\bullet}(x)\right)}$, + singularity analysis (always squareroot singularity)
E.g: number of edges:

$$
\begin{gathered}
C^{\bullet}(x, y)=e^{B^{\bullet}\left(x C^{\bullet}(x, y), y\right)} \\
\longrightarrow \quad C^{\bullet}(x, y)=g(x, y)-h(x, y) \sqrt{1-\frac{x}{\rho(y)}} \\
\longrightarrow \quad\left[x^{n}\right] C^{\bullet}(x, y) \sim C(y) \rho(y)^{-n} n^{-3 / 2}
\end{gathered}
$$

+ application of Quasi-Power-Theorem (by Hwang).

Subcritical Graph Classes

Universal properties in the labelled case

- Maximum block size $M_{n}^{(2)}$

$$
\mathbb{E} M_{n}^{(2)}=O(\log n)
$$

If the limit $\lim b_{n+1} /\left(n b_{n}\right)$ exists and is positive then $\mathbb{E} M_{n}^{(2)}$ is of order $\log n$ and the deviation from the mean is a disrete version of the Gumbel distribution.

- Diameter D_{n}

$$
c_{1} \sqrt{n} \leq \mathbb{E} D_{n} \leq c_{2} \sqrt{n \log n}
$$

- Maximum degree Δ_{n}

$$
c_{1} \log n \leq \mathbb{E} \Delta_{n} \leq c_{2} \log n
$$

Maximum Block Size

$B_{k}^{\bullet}(x) \ldots$ GF for 2 -connected graphs of size $\leq k$
$C_{k}^{\bullet}(x) \ldots$ GF for connected graphs of size $\leq k$

$$
C_{k}^{\bullet}(x)=e^{B_{k}^{\bullet}\left(x C_{k}^{\bullet}(x)\right)}
$$

$$
\Longrightarrow \quad\left[x^{n}\right] C_{k}^{\bullet}(x) \sim c_{k} \rho_{k}^{-n} n^{-3 / 2}
$$

with $\rho_{k}=\rho+O\left(\gamma^{k}\right)$ and $c_{k}=c+O\left(\gamma^{k}\right)$ for some $0<\gamma<1$.

$$
\begin{gathered}
\Longrightarrow \mathbb{P}\left[M_{n}^{(2)} \leq k\right] \sim\left(\frac{\rho}{\rho_{k}}\right)^{n} \geq e^{-C n \gamma^{k}} \\
\Longrightarrow \mathbb{E} M_{n}^{(2)}=O(\log n)
\end{gathered}
$$

Diameter

Lower bound. $\underline{D}_{n} \ldots$ maximum number of blocks in a path
Tree structure $\Longrightarrow \mathbb{E} \underline{D_{n}} \sim c_{1} \sqrt{n}$
Upper bound. $\bar{D}_{n} \ldots$ maximum sum of block-heights on a path $\bar{d}_{n}(v) \ldots$ sum of block-heights on path between v and the root $Y_{n, h} \ldots$ profile related to \bar{d}_{n} : number of vertices with $\bar{d}_{n}(v)=h$ $L_{h}(x, u) \ldots$ GF corresponding to the profile $Y_{n, h}$ $B_{=k}^{\bullet}(x) \ldots$ GF of blocks with height $=k$

$$
L_{h}(x, u)=\exp \left(\sum_{k \leq h} B_{=k}^{\bullet}\left(x L_{h-k}(x, u)\right)\right)
$$

$$
\begin{aligned}
M_{h}(x)= & \left.\frac{\partial}{\partial u} L_{h}(x, u)\right|_{u=1} \ldots \text { GF of } \mathbb{E} Y_{n, k}: \\
& M_{h}(x)=e^{\sum_{k \leq h} B_{=k}^{\bullet}\left(x C^{\bullet}(x)\right)} \sum_{k \leq h} B_{=k}^{\bullet}{ }^{\prime}\left(x C^{\bullet}(x)\right) M_{h-k}(x)
\end{aligned}
$$

Diameter

$$
\Longrightarrow \quad M_{h}(x) \sim C(x) \alpha(z)^{h}
$$

where $\alpha(z)=1-c^{\prime} \sqrt{1-x / \rho}+O\left(\left|x-x_{0}\right|\right)$

$$
\mathbb{E} Y_{n, h} \sim c_{1} h e^{-c_{2} h^{2} / n}
$$

First moment method: $\mathbb{P}[X>0] \leq \min \{1, \mathbb{E} X\}$

$$
\begin{aligned}
\mathbb{P}\left[\bar{D}_{n}>h\right] & =\mathbb{P}\left[Y_{n, h}>0\right] \leq \min \left\{1, \mathbb{E} Y_{n, h}\right\} \\
\Longrightarrow \quad \mathbb{E} \bar{D}_{n} & =\sum_{h \geq 0} \mathbb{P}\left[\bar{D}_{n}>h\right]=O(\sqrt{n \log n})
\end{aligned}
$$

Conclusion. $\underline{D}_{n} \leq D_{n} \leq \bar{D}_{n}$

$$
\Longrightarrow \quad c_{1} \sqrt{n} \leq \mathbb{E} D_{n} \leq c_{2} \sqrt{n \log n}
$$

Maximum Degree

Lower bound. $\Delta_{n} \ldots$ maximum block degree of cut-vertices

Tree structure $\Longrightarrow \mathbb{E} \underline{\Delta_{n}} \sim c_{1} \log n$
Upper bound. $D_{n}^{(r)}$... root degree
$B^{\bullet}(x, u) \ldots$ GF for root degree for 2-connected graphs
$C^{\bullet}(x, u) \ldots$ GF for root degree for connected graphs:

$$
C^{\bullet}(x, u)=e^{B^{\bullet}\left(x C^{\bullet}(x), u\right)}
$$

$p_{n k} \ldots$ probability that the root vertex has degree k :

$$
p_{n, k}=\frac{\left[x^{n} u^{k}\right] C^{\bullet}(x, u)}{\left[x^{n}\right] C^{\bullet}(x)}
$$

$Z_{n k} \ldots$ number vertices of degree k in connected graphs of size n

$$
\mathbb{E} Z_{n k}=n p_{n, k}
$$

Maximum Degree

First moment method: $\mathbb{P}[X>0] \leq \min \{1, \mathbb{E} X\}$

$$
\begin{aligned}
& \mathbb{P}\left[\Delta_{n}>k\right]=\mathbb{P}\left[Y_{n, k+1}+Y_{n, k+2}+\cdots>0\right] \\
& \leq \mathbb{E} Y_{n, k+1}+\mathbb{E} Y_{n, k+2}+\cdots \\
&=n\left(p_{n, k+1}+p_{n, k+2}+\cdots\right) \\
& {\left[x^{n} u^{k}\right] C^{\bullet}(x, u) } \leq\left[x^{n}\right] u^{-k} e^{B^{\bullet}\left(x C^{\bullet}(x), u\right) \quad(u>1)} \\
& \sim C(u) u^{-k} \rho^{-n} n^{-3 / 2} \quad \\
& \Longrightarrow p_{n, k} \leq C(u) u^{-k} \quad(u>1) \\
& \Longrightarrow \mathbb{P}\left[\Delta_{n}>k\right] \leq \min \left\{1, C n u^{-k}\right\} \\
& \Longrightarrow \mathbb{E} \Delta_{n}=\sum_{k \geq 0} \mathbb{P}\left[\Delta_{n}>k\right]=O(\log n)
\end{aligned}
$$

Planar Maps

Additive Parameters

- $X_{n, k} \ldots$ number of vertices of degree k

$$
\frac{X_{n, k}-\mu_{k} n}{\sqrt{\sigma_{k}^{2} n}} \rightarrow N(0,1)
$$

[D.+ Panagiotou, ANALCO 2012]

Planar Maps

Extremal Parameters

- Maximum block size $M_{n}^{(2)}$

$$
\begin{aligned}
& \qquad \mathbb{E} M_{n}^{(2)} \sim c_{1} n \\
& \text { with } c_{1}=1 / 3 \text { (GIANT 2-CONNECTED COMPONENT), Airy-law } \\
& {[\text { Gao+Wormald 1999, Banderier+Flajolet+Schaeffer+Soria 2001] }}
\end{aligned}
$$

- Diameter D_{n}

$$
n^{\frac{1}{4}-\varepsilon} \leq D_{n} \leq n^{\frac{1}{4}+\varepsilon} \quad \text { w.h.p. }
$$

[Chapuy+Fusy+Gimenez+Noy 2010]

- Maximum degree Δ_{n}

$$
\mathbb{E} \Delta_{n} \sim \log n
$$

+ discrete version of Gumbel law
[Gao+Wormald 2000]

Random Planar Graphs

Additive Parameters

- $Y_{n} \ldots$ number of edges in a graph of size n

$$
\frac{Y_{n}-\mu n}{\sqrt{\sigma^{2} n}} \rightarrow N(0,1)
$$

$\mu=2.213 \ldots, \sigma^{2}=0.4303 \ldots$
[Gimenez+Noy 2009]

- $X_{n, k}$... number of vertices of degree k

$$
\mathbb{E} X_{n, k} \sim \mu_{k} n
$$

[D.+ Gimenez+ Noy 2011; Panagiotou+Steger 2011]

Open Problem. CLT ???

Remark. $\left(\mu_{k}\right)_{k} \ldots$ asymptotic degree distribution

Random Planar Graphs

Extremal Parameters

- Maximum block size $M_{n}^{(2)}$

$$
\mathbb{E} M_{n}^{(2)} \sim c_{1} n
$$

with $c_{1}=0.959 \ldots$ (GIANT 2-CONNECTED COMPONENT), Airy-law [Panagiotou+Steger 2010]

- Diameter D_{n}

$$
n^{\frac{1}{4}-\varepsilon} \leq D_{n} \leq n^{\frac{1}{4}+\varepsilon} \quad \text { w.h.p. }
$$

[Chapuy+Fusy+Gimenez+Noy 2010]

- Maximum degree Δ_{n}

$$
\mathbb{E} \Delta_{n} \sim c \log n
$$

[D.+Gimenez+Noy+Panagiotou+Steger 2012+]

Random Planar Graphs

Degree Distribution (more precise formulation)

Theorem [D.+Giménez+Noy]

Let $p_{n, k}$ be the probability that a random node in a random planar graph \mathcal{R}_{n} has degree k. Then the limit

$$
p_{k}:=\lim _{n \rightarrow \infty} p_{n, k}
$$

exists. The probability generating function

$$
p(w)=\sum_{k \geq 1} p_{k} w^{k}
$$

can be explicitly computed. We also have

$$
p_{k} \sim c^{\prime} k^{-\frac{1}{2}} q^{k}
$$

for some $c^{\prime}>0$ and some $q<1$.

Random Planar Graphs

Maximum Degree (more precise formulation)

Theorem [D.+Giménez+Panagiotou+Noy+Steger]
Set $c=(\log (1 / q))^{-1}=2.529464248 \ldots$, where $q=0.6734506 \ldots$ appear in the asymptotics of $p_{k} \sim c^{\prime} k^{-\frac{1}{2}} q^{k}$.

Then

$$
\left|\Delta_{n}-c \log n\right|=O(\log \log n) \quad \text { w.h.p }
$$

and

$$
\mathbb{E} \Delta_{n} \sim c \log n
$$

Remark. [McDiarmid+Reed (2008)]

$$
c_{1} \log n \leq \Delta_{n} \leq c_{2} \log n \quad \text { w.h.p. }
$$

Maximum Degree

Relation to number of vertices of given degree
$X_{n}^{(k)} \ldots$ number of vertices of degree k in G_{n}.
$X_{n}^{(>k)}=X_{n}^{(k+1)}+X_{n}^{(k+2)}+\cdots \ldots$ number of vertices of degree $>k$.
$\Delta_{n} \ldots$ maximum degree:

$$
\Delta_{n}>k \Longleftrightarrow X_{n}^{(>k)}>0
$$

First moment method:

$$
\begin{aligned}
\mathbb{P}\left\{\Delta_{n}>k\right\} & =\mathbb{P}\left\{X_{n}^{(>k)}>0\right\} \\
& \leq \min \left\{1, \mathbb{E} X_{n}^{(>k)}\right\}
\end{aligned}
$$

Maximum Degree

First moments

$p_{n, k} \ldots$ probability that a random vertex in G_{n} has degree k

$$
\begin{gathered}
\mathbb{E} X_{n}^{(k)}=n p_{n, k} \\
\Longrightarrow \mathbb{E} X_{n}^{(>k)}=\mathbb{E}\left(\sum_{\ell>k} X_{n}^{(\ell)}\right)=n \sum_{\ell>k} p_{n, \ell}
\end{gathered}
$$

Precise asymptotics or upper bounds for $p_{n, k}$ are needed that are uniform in n and k.

Maximum Degree

Remark 1 In order to get upper bound it is sufficient to know

$$
p_{n, k}=O\left(q^{k}\right) \quad \text { uniformly for all } n, k \geq 0
$$

for some q.

Proof Strategy

1. Establish generating functions for $p_{n, k}$
2. Analytic structure of generating functions
3. Upper bound with First Moment Method
4. Lower bound with Boltzmann Sampling

Random Planar Graphs

Counting Generating Functions

$$
\begin{aligned}
G(x, y) & =\exp (C(x, y)) \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
\frac{M(x, D)}{2 x^{2} D} & =\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
M(x, y) & =x^{2} y^{2}\left(\frac{1}{1+x y}+\frac{1}{1+y}-1-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right) \\
U & =x y(1+V)^{2} \\
V & =y(1+U)^{2}
\end{aligned}
$$

Random Planar Graphs

Asymptotic enumeration of planar graphs

$$
\begin{aligned}
b_{n} & =b \cdot \rho_{1}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right), \\
c_{n} & =c \cdot \rho_{2}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right), \\
g_{n} & =g \cdot \rho_{2}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
\rho_{1} & =0.03819 \ldots \\
\rho_{2} & =0.03672841 \ldots, \\
b & =0.3704247487 \ldots \cdot 10^{-5} \\
c & =0.4104361100 \ldots \cdot 10^{-5} \\
g & =0.4260938569 \ldots \cdot 10^{-5}
\end{aligned}
$$

Random Planar Graphs

Generating functions for the degree distribution of planar graphs
$C^{\bullet}=\frac{\partial C}{\partial x} \ldots$ GF, where one vertex is marked
$w \ldots$ additional variable that counts the degree of the marked vertex

Generating functions:

$$
\begin{array}{ll}
G^{\bullet}(x, y, w) & \text { all rooted planar graphs } \\
C^{\bullet}(x, y, w) & \text { connected rooted planar graphs } \\
B^{\bullet}(x, y, w) & \text { 2-connected rooted planar graphs } \\
T^{\bullet}(x, y, w) & \text { 3-connected rooted planar graphs }
\end{array}
$$

Random Planar Graphs

$$
\left.\begin{array}{rl}
G^{\bullet}(x, y, w) & =\exp (C(x, y, 1)) C^{\bullet}(x, y, w) \\
C^{\bullet}(x, y, w) & =\exp \left(B^{\bullet}\left(x C^{\bullet}(x, y, 1), y, w\right)\right) \\
w \frac{\partial B^{\bullet}(x, y, w)}{\partial w} & =x y w \exp \left(S(x, y, w)+\frac{1}{x^{2} D(x, y, w)} T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right. \\
D(x, y, w) & =(1+y w) \exp \left(S(x, y, w)+\frac{1}{x^{2} D(x, y, w)} \times\right. \\
& \left.\times T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right)-1 \\
S(x, y, w) & =x D(x, y, 1)(D(x, y, w)-S(x, y, w)), \\
T^{\bullet}(x, y, w) & =\frac{x^{2} y^{2} w^{2}}{2}\left(\frac{1}{1+w y}+\frac{1}{1+x y}-1-\right. \\
\left.-\frac{(u+1)^{2}(-w 1}{2}(u, v, w)+(u-w+1) \sqrt{w_{2}(u, v, w)}\right)
\end{array}\right),
$$

Degree Distribution

with polynomials $w_{1}=w_{1}(u, v, w)$ and $w_{2}=w_{2}(u, v, w)$ given by

$$
\begin{aligned}
w_{1}= & -u v w^{2}+w\left(1+4 v+3 u v^{2}+5 v^{2}+u^{2}+2 u+2 v^{3}+3 u^{2} v+7 u v\right) \\
& +(u+1)^{2}\left(u+2 v+1+v^{2}\right), \\
w_{2}= & u^{2} v^{2} w^{2}-2 w u v\left(2 u^{2} v+6 u v+2 v^{3}+3 u v^{2}+5 v^{2}+u^{2}+2 u+4 v+1\right) \\
& +(u+1)^{2}\left(u+2 v+1+v^{2}\right)^{2} .
\end{aligned}
$$

Asymptotics for Random Planar Graphs

Functional equations

Suppose that $A(x, u)=\Phi(x, u, A(x, u))$, where $\Phi(x, u, a)$ has a power series expansion at ($0,0,0$) with non-negative coefficients and $\Phi_{a a}(x, u, a) \neq 0$.

Let $x_{0}>0, a_{0}>0$ (inside the region of convergence) satisfy the system of equations:

$$
a_{0}=\Phi\left(x_{0}, 1, a_{0}\right), \quad 1=\Phi_{a}\left(x_{0}, 1, a_{0}\right) .
$$

Then there exists analytic function $g(x, u), h(x, u)$, and $\rho(u)$ such that locally

$$
A(x, u)=g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}} .
$$

Asymptotics for Random Planar Graphs

Asymptotics for coefficients

$$
\begin{aligned}
A(x)= & g(x)-h(x) \sqrt{1-\frac{x}{\rho}} \quad(+ \text { some technical conditions }) \\
& \Longrightarrow\left[x^{n}\right] A(x)=\frac{h(\rho)}{2 \sqrt{\pi}} \rho^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
A(x, u) & =g(x, u)-h(x, u) \sqrt{1-\frac{x}{\rho(u)}}(+ \text { some technical conditions }) \\
& \Longrightarrow \quad\left[x^{n}\right] A(x, u)=\frac{h(\rho(u), u)}{2 \sqrt{\pi}} \rho(u)^{-n} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

Asymptotics for Random Planar Graphs

Asymptotics for coefficients
and

$$
\begin{aligned}
A(x)= & g(x)+h(x)\left(1-\frac{x}{\rho}\right)^{\alpha} \quad(+ \text { some technical conditions }) \\
& \Longrightarrow \quad\left[x^{n}\right] A(x)=\frac{h(\rho)}{\Gamma(-\alpha)} \rho^{-n} n^{-\alpha-1}\left(1+O\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

Asymptotics for Random Planar Graphs

Singular expansion

$$
\begin{aligned}
A(x)= & \begin{array}{l}
\\
\\
= \\
(x)-h(x) \sqrt{1-\frac{x}{\rho}} \\
\\
\\
\\
+\left(g_{0}+g_{1}(x-\rho)+g_{2}(x-\rho)^{2}+\cdots\right) \\
= \\
a_{0}+a_{1}\left(1-\frac{x}{\rho}\right)^{\frac{1}{2}}+a_{2}\left(1-\frac{x}{\rho}\right)^{\frac{2}{2}}+a_{3}\left(1-\frac{x}{\rho}\right)^{\frac{3}{2}}+\cdots \\
=
\end{array} a_{0}+a_{1} X+a_{2} X^{2}+a_{3} X^{3}+\cdots
\end{aligned}
$$

with

$$
X=\sqrt{1-\frac{x}{\rho}}
$$

Asymptotics for Random Planar Graphs

$$
\begin{aligned}
& U(x, y)=x y(1+V(x, y))^{2} \\
& V(x, y)=y(1+U(x, y))^{2} \\
& \Longrightarrow U(x, y)=x y\left(1+y(1+U(x, y))^{2}\right)^{2} \\
& \Longrightarrow U(x, y)=g(x, y)-h(x, y) \sqrt{1-\frac{y}{\tau(x)}} \\
& \Longrightarrow V(x, y)=g_{2}(x, y)-h_{2}(x, y) \sqrt{1-\frac{y}{\tau(x)}} \\
& M(x, y)=x^{2} y^{2}\left(\frac{1}{1+x y}+\frac{1}{1+y}-1-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right) \\
&!!!! M(x, y)=g_{3}(x, y)+h_{3}(x, y)\left(1-\frac{y}{\tau(x)}\right)^{\frac{3}{2}}
\end{aligned}
$$

due to cancellation of the $\sqrt{1-y / \tau(x)}$-term

Asymptotics for Random Planar Graphs

$$
\begin{gathered}
\frac{M(x, D)}{2 x^{2} D}=\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
!!!\Longrightarrow D(x, y)=g_{4}(x, y)+h_{4}(x, y)\left(1-\frac{x}{R(y)}\right)^{\frac{3}{2}}
\end{gathered}
$$

due to interaction of the singularities!!!

$$
\begin{aligned}
& \frac{\partial B(x, y)}{\partial y}=\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y}, \\
!!!! & B(x, y)=g_{5}(x, y)+h_{5}(x, y)\left(1-\frac{x}{R(y)}\right)^{\frac{5}{2}} \\
\Longrightarrow & b_{n} \sim b \cdot R(1)^{-n} n^{-\frac{7}{2}} n!
\end{aligned}
$$

Asymptotics for Random Planar Graphs

$$
\begin{aligned}
& B^{\prime}(x, y)=g_{6}(x, y)+h_{6}(x, y)\left(1-\frac{x}{R(y)}\right)^{\frac{3}{2}}, \\
& C^{\prime}(x, y)=e^{B^{\prime}\left(x C^{\prime}(x, y), y\right)}, \\
&!!!\quad \Longrightarrow \quad C^{\prime}(x, y)=g_{7}(x, y)+h_{7}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{3}{2}}
\end{aligned}
$$

due to interaction of the singularities!!!

$$
\Longrightarrow \quad C(x, y)=g_{8}(x, y)+h_{8}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{5}{2}}
$$

$$
\Longrightarrow \quad c_{n} \sim c r(1)^{-n} n^{-\frac{7}{2}} n!
$$

Asymptotics for Random Planar Graphs

$$
\begin{gathered}
C(x, y)=g_{8}(x, y)+h_{8}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{5}{2}} \\
\Longrightarrow G(x, y)=e^{C(x, y)}=g_{9}(x, y)+h_{9}(x, y)\left(1-\frac{x}{r(y)}\right)^{\frac{5}{2}} . \\
\Longrightarrow g_{n} \sim g \cdot r(1)^{-n} n^{-\frac{7}{2}} n!
\end{gathered}
$$

Asymptotic Degree Distribution

3-connected planar graphs

$$
\begin{aligned}
T^{\bullet}(x, y, w)= & \frac{x^{2} y^{2} w^{2}}{2}\left(\frac{1}{1+w y}+\frac{1}{1+x y}-1-\right. \\
& \left.-\frac{(U+1)^{2}\left(-w_{1}(U, V, w)+(U-w+1) \sqrt{w_{2}(U, V, w)}\right)}{2 w\left(V w+U^{2}+2 U+1\right)(1+U+V)^{3}}\right)
\end{aligned}
$$

$$
\tilde{u}_{0}(y)=-\frac{1}{3}+\sqrt{\frac{4}{9}+\frac{1}{3 y}}, \quad r(y)=\frac{\tilde{u}_{0}(y)}{y\left(1+y\left(1+\tilde{u}_{0}(y)\right)^{2}\right)^{2}}
$$

$$
\tilde{X}=\sqrt{1-\frac{x}{r(y)}}
$$

$$
\Longrightarrow T^{\bullet}(x, y, w)=\tilde{T}_{0}(y, w)+\tilde{T}_{2}(y, w) \tilde{X}^{2}+\tilde{T}_{3}(y, w) \tilde{X}^{3}+O\left(\tilde{X}^{4}\right)
$$

due to cancellation of the $\sqrt{1-x / r(z)}$-term.

Asymptotic Degree Distribution

Planar networks

$$
\begin{gathered}
\begin{array}{c}
D(x, y, w)=(1+y w) \exp \left(S(x, y, w)+\frac{1}{x^{2} D(x, y, w)} \times\right. \\
\\
\left.\times T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right)-1 \\
\tau(x, y, w)=x D(x, y, 1)(D(x, y, w)-S(x, y, w)) \\
D(R(y), y, 1)=\tau(R(y)) \\
X=\sqrt{1-\frac{x}{R(y)}} \\
\Longrightarrow \quad D(x, y, w)=D_{0}(y, w)+D_{2}(y, w) X^{2}+D_{3}(y, w) X^{3}+O\left(X^{4}\right)
\end{array} \\
\hline
\end{gathered}
$$

Asymptotic Degree Distribution

2-connected planar graphs

$$
\begin{aligned}
& w \frac{\partial B^{\bullet}(x, y, w)}{\partial w}=x y w \exp \left(S(x, y, w)+\frac{1}{x^{2} D(x, y, w)} T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right. \\
& \quad \Longrightarrow \quad B^{\bullet}(x, y, w)=B_{0}(y, w)+B_{2}(y, w) X^{2}+B_{3}(y, w) X^{3}+O\left(X^{4}\right)
\end{aligned}
$$

Remark. All these functions $B_{j}(y, w)$ can be explicitly computed.

If $x=\rho_{B}$ then they are analytic for $w<w_{0}$ and have an algebraic singularity at $w=w_{0}!!!$

Asymptotic Degree Distribution

connected planar graphs

$$
\begin{gathered}
C^{\bullet}(x, 1, w)=\exp \left(B^{\bullet}\left(x C^{\prime}(x), 1, w\right)\right) \\
\Longrightarrow \quad C^{\bullet}(x, y, w)=C_{0}(y, w)+C_{2}(y, w) X^{2}+C_{3}(y, w) X^{3}+O\left(X^{4}\right) \\
X=\sqrt{1-\frac{x}{R(y)}}
\end{gathered}
$$

Asymptotic Degree Distribution

connected planar graphs

$$
\begin{gathered}
p_{n, k}=\frac{\left[x^{n} w^{k}\right] C^{\bullet}(x, 1, w)}{\left[x^{n}\right] C^{\bullet}(x, 1,1)} \\
{\left[x^{n}\right] C^{\bullet}(x, 1,1) \sim c_{1} n^{-5 / 2} \rho_{C}^{-n}} \\
{\left[x^{n} w^{k}\right] C^{\bullet}(x, 1, w) \leq w_{0}^{-k}\left[x^{n}\right] C^{\bullet}\left(x, 1, w_{0}\right)} \\
\sim w_{0}^{-k} c_{2} n^{-5 / 2} \rho_{C}^{-n} \\
\Longrightarrow p_{n, k}=O\left(w_{0}^{-k}\right)=O\left(q^{k}\right) \quad\left(q=1 / w_{0}\right)
\end{gathered}
$$

Remark. Here we use $x \mapsto C^{\bullet}\left(x, w_{0}\right)$

Asymptotic Degree Distribution

First moment method for upper bound

$$
\Longrightarrow \mathbb{P}\left\{\Delta_{n}>k\right\}=O\left(n q^{k}\right)
$$

$$
\Longrightarrow \mathbb{P}\left\{\Delta_{n} \leq c \log n+r\right\} \leq 1-O\left(q^{r}\right)
$$

Boltzmann Sampling

Probability distribution

$C^{\bullet}(x) \ldots$ (exponential) generating function for rooted (connected) planar graphs
$\gamma \ldots$ (random) rooted connected planar graph

Boltzmann distribution

$$
\operatorname{Pr}_{x}[\gamma]=\frac{x^{|\gamma|}}{|\gamma|!C^{\bullet}(x)}
$$

Special case: $x=\rho_{C}$

$$
\operatorname{Pr}[\gamma]=\frac{\rho_{C}^{|\gamma|}}{|\gamma|!C^{\bullet}\left(\rho_{C}\right)}
$$

Boltzmann Sampling

Conditional distribution

$$
\begin{gathered}
\operatorname{Pr}[|\gamma|=n]=\frac{c_{n}^{\bullet} \rho_{C}^{n}}{|\gamma|!C\left(\rho_{C}\right)} \\
\operatorname{Pr}\left[\gamma||\gamma|=n]=\frac{1}{c_{n}^{\bullet}}\right.
\end{gathered}
$$

rd ... root degree

$$
\operatorname{Pr}[r d(\gamma)=k]=\frac{\left[w^{k}\right] C^{\bullet}\left(\rho_{C}, w\right)}{C^{\bullet}\left(\rho_{C}\right)}
$$

Boltzmann Sampling

Root degree distribution

Lemma 1

$$
\operatorname{Pr}[\operatorname{rd}(\gamma) \geq k] \sim c_{3} k^{-5 / 2} w_{0}^{-k}
$$

Proof.

$$
C^{\bullet}\left(\rho_{C}, w\right)=C_{0}(1, w)=g(w)+h(w)\left(1-w / w_{0}\right)^{3 / 2}
$$

Remark. Here we use the function $w \mapsto C^{\bullet}\left(\rho_{C}, w\right)$

Boltzmann Sampling

Largest 2-connected component

Lemma 2

Ib ... size of largest 2-connected component

$$
\mathbb{P}\left\{\operatorname{lb}\left(C_{n}\right)=\left\lfloor\left(1-\rho_{B}\right) B^{\prime \prime}\left(\rho_{B}\right) n+x n^{2 / 3}\right\rfloor\right\}=\Theta\left(n^{-2 / 3}\right)
$$

uniformly for $|x| \leq C$ (for a given constant C).

Boltzmann Sampling

Largest 2-connected component

Lemma 3

Suppose that $\left|m-\left(1-\rho_{B}\right) B^{\prime \prime}\left(\rho_{B}\right) n\right| \leq C n^{2 / 3}$ and $\gamma_{1}, \ldots, \gamma_{m}$ random rooted connected planar graphs (drawn according to the Boltzmann distribution). Then

$$
\operatorname{Pr}\left[\sum_{i=1}^{n}\left|\gamma_{i}\right|=n\right]=\Theta\left(n^{-2 / 3}\right)
$$

Boltzmann Sampling

Completion of the proof

B ... largest 2-connected component of random connected planar graph
$m \ldots$ size of B : $\left|m-\left(1-\rho_{B}\right) B^{\prime \prime}\left(\rho_{B}\right) n\right| \leq C n^{2 / 3}$ w.h.p.
$\gamma_{1}, \ldots, \gamma_{m} \ldots$ connected graph rooted at vertices of B :

$$
\Delta_{n} \geq \max _{1 \leq j \leq m} \mathrm{rd}\left(\gamma_{j}\right)
$$

W.h.p. $\gamma_{1}, \ldots, \gamma_{m}$ can be drawn independently according to the Boltzmann distribution: Lemma $1 \Longrightarrow$

$$
\operatorname{Pr}\left[\max _{1 \leq j \leq m} \operatorname{rd}\left(\gamma_{j}\right)<k\right] \leq\left(1-c_{3} k^{-5 / 2} w_{0}^{-k}\right)^{m}
$$

Boltzmann Sampling

Completion of the proof

$$
\begin{aligned}
& \qquad \operatorname{Pr}\left[\max _{1 \leq j \leq m} \operatorname{rd}\left(\gamma_{j}\right)<k\right] \leq\left(1-c_{3} k^{-5 / 2} w_{0}^{-k}\right)^{m} \\
& k=(1-\delta) \log _{w_{0}} n=c(1-\delta) \log n \\
& \text { where } \delta=C \log \log n / \log n ; \\
& m \geq n / 2 \text { (w.h.p.) }
\end{aligned}
$$

$$
\Longrightarrow \operatorname{Pr}\left[\max _{1 \leq j \leq m} \operatorname{rd}\left(\gamma_{j}\right)<k\right]=O\left(e^{-c_{4}(\log n)^{C-5 / 2}}\right)
$$

$$
\Longrightarrow \quad \mathbb{P}\left\{\Delta_{n} \geq c(1-\delta) \log n\right\} \geq 1-O\left(e^{-c_{4}(\log n)^{C-5 / 2}}\right)
$$

Thank You for Your Attention!

