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Simply generated trees

Trees are rooted and ordered (a.k.a. plane).

w = (wk)k≥0 is a fixed weight sequence.

The weight of a finite tree T is

w(T ) :=
∏
v∈T

wd+(v),

where d+(v) is the outdegree of v .

Trees with such weights are called simply generated trees and were
introduced by Meir and Moon (1978).

We let Tn be the random simply generated tree obtained by
picking a tree with n nodes at random with probability proportional
to its weight.



Galton–Watson trees

Let
∑∞

k=0 wk = 1, so (wk)∞1 is a probability distribution on
{0, 1, 2, . . . } (a probability weight sequence).

Let ξ be a random variable with P(ξ = k) = wk .

Then the random tree Tn = the conditioned Galton–Watson tree
with offspring distribution ξ.

(The random Galton–Watson tree defined by ξ conditioned on
having exactly n vertices.)



Many kinds of random trees occuring in various applications
(random ordered trees, unordered trees, binary trees, . . . ) can be
seen as simply generated random trees and conditioned
Galton–Watson trees.

See e.g. Aldous, Devroye and Drmota.



Equivalent weights

Let a, b > 0 and change wk to

w̃k := abkwk .

Then the distribution of Tn is not changed.

In other words, the new weight sequence (w̃k) defines the same
simply generated random trees Tn as (wk).

We say that weight sequence (wk) and (w̃k) are equivalent.



For many (wk) there exists an equivalent probability weight
sequence; in this case Tn can thus be seen as a conditioned
Galton–Watson tree.

Moreover, in many cases this can be done such that the resulting
probability distribution has mean 1. In such cases it thus suffices
to consider the case of a probability weight sequence with mean
E ξ = 1; then Tn is a conditional critical Galton–Watson tree.

Thus, simply generated trees and (critical) conditioned
Galton–Watson trees are almost the same

– BUT ONLY ALMOST !
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Three types

Three types:

I. Critical Galton–Watson tree.

II. Subcritical Galton–Watson tree; not equivalent to any critical.

III. simply generated tree, not equivalent to any Galton–Watson
tree.



Critical Galton–Watson trees form a nice and natural setting, with
many known results (possibly with extra assumptions).

We extend some of these results to the general case, including
cases II and III.



A theorem

Theorem

Let w = (wk)k≥0 be any weight sequence with w0 > 0 and wk > 0
for some k ≥ 2.

Then Tn
d−→ T̂ as n→∞, where T̂ is an infinite modified

Galton–Watson tree (see below).

The limit (in distribution) in the theorem is for a topology where
convergence means convergence of outdegree for any fixed node; it
thus really means local convergence close to the root.

(It is for this purpose convenient to regard the trees as subtrees of
the infinite Ulam–Harris tree.)

Kennedy (1975), Aldous & Pitman (1998), Kolchin (1984),
Jonsson & Stefánsson (2011), et al + J



Algebraic characterizations of the cases
Let

Φ(z) :=
∞∑
k=0

wkzk

be the generating function of the weight sequence. Let ρ ∈ [0,∞]
be its radius of convergence.

Let (for t such that Φ(t) <∞)

Ψ(t) :=
tΦ′(t)

Φ(t)
=

∑∞
k=0 kwktk∑∞
k=0 wktk

.

Let
ν := Ψ(ρ) := lim

t↗ρ
Ψ(t) ≤ ∞.

In particular, if Φ(ρ) <∞, then

ν =
ρΦ′(ρ)

Φ(ρ)
≤ ∞.



The three cases can be characterised as

I. ν ≥ 1. Then 0 < ρ ≤ ∞.

II. 0 < ν < 1. Then 0 < ρ <∞.

III. ν = ρ = 0.



Thus ν = 0 ⇐⇒ ρ = 0.

If ρ > 0, then the probability weight sequences equivalent to (wk)
are

pk =
tkwk

Φ(t)
, k ≥ 0,

where t > 0 and Φ(t) <∞. The mean is Ψ(t).

ν is the supremum of the means of all probability weight sequences
equivalent to (wk).



If ν ≥ 1, let τ be the unique number in [0, ρ] such that Ψ(τ) = 1,
i.e.

tΦ′(t) = Φ(t)

.

If 0 ≤ ν < 1, let τ := ρ.

In both cases, τ is the minimum point in [0, ρ], or [0,∞), of
Φ(t)/t.

Let

πk :=
τkwk

Φ(τ)
, k ≥ 0.

(πk) is a probability weight sequence. Its mean is µ = Ψ(τ).
Its variance is

σ2 = τΨ′(τ) =
τ2Φ′′(τ)

Φ(τ)
.
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.



The three cases again

I. ν ≥ 1. Then 0 < τ <∞ and τ ≤ ρ ≤ ∞. The weight
sequence (wk) is equivalent to (πk), which is a probability
distribution with mean µ = Ψ(τ) = 1 and probability
generating function

∑∞
k=0 πkzk with radius of convergence

ρ/τ ≥ 1. (Exponential moment iff ρ/τ > 1 iff ν > 1.)

II. 0 < ν < 1. Then 0 < τ = ρ <∞. The weight sequence (wk)
is equivalent to (πk), which is a probability distribution with
mean µ = Ψ(τ) = ν < 1 and probability generating function∑∞

k=0 πkzk with radius of convergence ρ/τ = 1.

III. ν = 0. Then τ = ρ = 0, and (wk) is not equivalent to any
probability distribution.



The infinite limit tree
Let ξ be a random variable with distribution (πk)∞k=0:

P(ξ = k) = πk , k = 0, 1, 2, . . .

Assume that µ := E ξ =
∑

k kπk ≤ 1.

There are normal and special nodes. The root is special.

Normal nodes have offspring (outdegree) as copies of ξ.
Special nodes have offspring as copies of ξ̂, where

P(ξ̂ = k) :=

{
kπk , k = 0, 1, 2, . . . ,

1− µ, k =∞.

When a special node gets a finite number of children, one of its
children is selected uniformly at random and is special.
All other children are normal.

(Based on Kesten (µ = 1) + Jonsson & Stefánsson (µ < 1).)



The spine

The special nodes form a path from the root; we call this path the
spine of T̂ .

There are three cases:



I. µ = 1 (the critical case).

ξ̂ <∞ a.s. Each special node has a special child and the spine is
an infinite path. Each outdegree in T̂ is finite, so the tree is
infinite but locally finite.

The distribution of ξ̂ is the size-biased distribution of ξ, and T̂ is
the size-biased Galton–Watson tree defined by Kesten.

Alternative construction: Start with the spine (an infinite path
from the root). At each node in the spine attach further branches;
the number of branches at each node in the spine is a copy of
ξ̂ − 1 and each branch is a copy of the Galton–Watson tree T with
offspring distributed as ξ; furthermore, at a node where k new
branches are attached, the number of them attached to the left of
the spine is uniformly distributed on {0, . . . , k}.

Since the critical Galton–Watson tree T is a.s. finite, it follows that
T̂ a.s. has exactly one infinite path from the root, viz. the spine.



I. µ = 1 (the critical case).

ξ̂ <∞ a.s. Each special node has a special child and the spine is
an infinite path. Each outdegree in T̂ is finite, so the tree is
infinite but locally finite.

The distribution of ξ̂ is the size-biased distribution of ξ, and T̂ is
the size-biased Galton–Watson tree defined by Kesten.

Alternative construction: Start with the spine (an infinite path
from the root). At each node in the spine attach further branches;
the number of branches at each node in the spine is a copy of
ξ̂ − 1 and each branch is a copy of the Galton–Watson tree T with
offspring distributed as ξ; furthermore, at a node where k new
branches are attached, the number of them attached to the left of
the spine is uniformly distributed on {0, . . . , k}.

Since the critical Galton–Watson tree T is a.s. finite, it follows that
T̂ a.s. has exactly one infinite path from the root, viz. the spine.



II. 0 < µ < 1 (the subcritical case).

A special node has with probability 1− µ no special child. Hence,
the spine is a.s. finite and the number L of nodes in the spine has a
(shifted) geometric distribution Ge(1− µ),

P(L = `) = (1− µ)µ`−1, ` = 1, 2, . . . .

The tree T̂ has exactly one node with infinite outdegree, viz. the
top of the spine. T̂ has no infinite path.

Alternative construction: Start with a spine of random length L.
Attach further branches that are independent copies of the
Galton–Watson tree T ; at the top of the spine we attach an
infinite number of branches and at all other nodes in the spine the

number we attach is a copy of ξ∗ − 1 where ξ∗
d
= (ξ̂ | ξ̂ <∞) has

the size-biased distribution P(ξ∗ = k) = kπk/µ.

The spine thus ends with an explosion producing an infinite number
of branches, and this is the only node with an infinite degree.
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III. µ = 0 (ρ = ν = τ = 0. Not Galton–Watson tree.)

A degenerate special case of II.

A normal node has 0 children. A special node has ∞ children, all
normal.

The root is the only special node. The spine has length L = 1.

The tree T̂ is an infinite star. (No randomness.)

Example

wk = k!.

In the limit, Tn has Po(1) branches of length 2; all others have
length 1.
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Node degrees

Theorem

As n→∞,
P(d+
Tn(o) = d)→ dπd , d ≥ 0.

Consequently,

d+
Tn(o)

d−→ ξ̂,

where ξ̂ is a random variable in {0, 1, . . . ,∞}.

Note that the sum
∑∞

0 dπd = µ of the limiting probabilities in
may be less than 1; in that case we do not have convergence to a
proper finite random variable.



If we instead take a random node, we obtain a different limit
distribution, viz. (πk).

Theorem

Let v be a uniformly random node in Tn. Then, as n→∞,

P(d+
Tn(v) = d)→ πd , d ≥ 0.

Consequently,

d+
Tn(v)

d−→ ξ,

When ν > 1, this was proved by Otter (1949).



The maximum degree

Denote the maximum outdegree in the tree Tn by Y(1).



Ia: ν > 1. (0 < τ < ρ ≤ ∞.)

A logarithmic bound due to Meir and Moon (1990):

Y(1) ≤
1

log(ρ/τ)
log n + op(log n);

if further w
1/k
k → 1/ρ as k →∞, then

Y(1)

log n

p−→ 1

log(ρ/τ)
.

In particular, if ρ =∞, then Y(1) = op(log n).

If wk+1/wk → a > 0 as k →∞, then Y(1) = k(n) + Op(1) for
some deterministic sequence k(n). (No limit distribution exists.)

If wk+1/wk → 0, then Y(1) ∈ {k(n), k(n) + 1} so Y(1) is
concentrated on at most two values, and often (but not always) on
a single value.
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Iα: ν ≥ 1 and σ2 <∞.

Y(1) is asymptotically distributed as the maximum of n i.i.d. copies
of ξ; this holds in the strong sense that the total variation distance
tends to 0.

Since E ξ2 <∞, this implies in particular

Y(1) = op(n1/2).



Iβ: ν ≥ 1 and σ2 =∞

Then
Y(1) = op(n),

and this is (more or less) best possible.



II: 0 < ν < 1

If further (wk) satisfies an asymptotic power-law wk ∼ ck−β as
k →∞, then

Y(1) = (1− ν)n + op(n),

while the second largest node degree Y(2) = op(n). (Jonsson &
Stefánsson)

However, if the weight sequence is more irregular, this is no longer
always true; it is possible (at least along a subsequence) that
Y(1) = op(n), which can be seen as incomplete condensation

It is also possible (at least along a subsequence) that Y(2) too is of
order n, meaning condensation to two or more giant nodes.
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k →∞, then

Y(1) = (1− ν)n + op(n),

while the second largest node degree Y(2) = op(n). (Jonsson &
Stefánsson)

However, if the weight sequence is more irregular, this is no longer
always true; it is possible (at least along a subsequence) that
Y(1) = op(n), which can be seen as incomplete condensation

It is also possible (at least along a subsequence) that Y(2) too is of
order n, meaning condensation to two or more giant nodes.



III: ν = ρ = 0

This is similar to case II.

In some regular cases we have Y(1) = n + op(n), and then
necessarily Y(2) = op(n).

But there are exceptions in other cases with an irregular weight
sequence.



Balls-in-boxes
The balls-in-boxes model is a model for random allocation of m
(unlabelled) balls in n (labelled) boxes. The set of possible
allocations is thus

Bm,n :=
{

(y1, . . . , yn) : yi ≥ 0,
n∑

i=1

yi = m
}
,

where yi counts the number of balls in box i .

The weight of an allocation y = (y1, . . . , yn) is

w(y) :=
n∏

i=1

wyi .

Given m and n, choose a random allocation Bm,n with probability
proportional to its weight.

We can replace the weight sequence by an equivalent weight
sequence for the balls-in-boxes model just as we did for the
random trees above.



Example: probability weights

If (wk) is a probability weight sequence, let ξ1, ξ2, . . . be i.i.d.
random variables with the distribution (wk).

Then, Bm,n has the same distribution as
(ξ1, . . . , ξn) conditioned on

∑n
i=1 ξi = m.

(This construction of a random allocation Bm,n is used by Kolchin
(1984) and called the general scheme of allocation.)



Random allocations and trees

If T is a tree with |T | = n, then its degree sequence (in depth-first
order, say) is an allocation in Bn−1,n, with the same weight as the
tree. Moreover, a converse holds by the following well-known
lemma.

Lemma

If (d1, . . . , dn) ∈ Bn−1,n, then exactly one of the n cyclic shifts of
(d1, . . . , dn) is the degree sequence of a tree T with |T | = n.



Other examples of random allocations:

Different types of random forests with a given number of
components, with each component regarded as a box, and each
vertex as a ball.

The classical Maxwell–Bolzmann, Bose–Einstein and Fermi–Dirac
statistics in statistical mechanics.



Asymptotics for balls-in-boxes

Suppose that n→∞ and m = m(n) with m/n→ λ with
0 ≤ λ < sup{i : wi > 0} ≤ ∞.

I. If λ ≤ ν, let τ be the unique number in [0, ρ] such that
Ψ(τ) = λ.

II. If λ > ν, let τ := ρ.

In both cases, 0 ≤ τ <∞ and 0 < Φ(τ) <∞.

Remark. For trees, m = n − 1 and thus λ = 1.
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Let

πk :=
wkτ

k

Φ(τ)
, k ≥ 0.

Then (πk)k≥0 is a probability distribution, with expectation

µ = Ψ(τ) = min(λ, ν)

and variance σ2 = τΨ′(τ) ≤ ∞.



Theorem

Let Nk(Bm,n) be the number of boxes with exactly k balls in the
allocation Bm,n.

For every k ≥ 0,
Nk(Bm,n)/n

p−→ πk .

If we regard the weight sequence w as fixed and vary λ (i.e., vary
m(n)), we see that if 0 < ν <∞, there is a phase transition at
λ = ν.
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Condensation

There are roughly nπk boxes with k balls in a random allocation
Bm,n. Summing this approximation over all k we would get n
boxes (as we should) with a total number of balls
n
∑∞

k=0 kπk = nµ = n min(λ, ν).

However, the total number of balls is m ≈ nλ, so in the case
λ > ν, there are about n(λ− µ) = n(λ− ν) balls are missing.
Where are they?

The explanation is that the sums
∑∞

k=0 kNk(Bm,n)/n = m are not
uniformly summable, and we cannot take the limit inside the
summation sign. The “missing balls” appear in one or several
boxes with very many balls, but these “giant” boxes are not seen
in the limit for fixed k .

In physical terminology, this can be regarded as condensation of
part of the mass (= balls).



The simplest case is that there is a single giant box with
≈ (λ− ν)n balls. This happens in the important case of a
power-law weight sequence: wk ∼ ck−β as k →∞ for some c > 0
(Jonsson & Stefánsson).

However, there are also other possibilities when the weight
sequence is less regular.

Recall that for simply generated random trees, which correspond to
balls-in-boxes with λ = 1, there is a related form of condensation
when ν < λ = 1; in this case the condensation appears as a node
of infinite degree in the random limit tree T̂ of type II or III.


