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This is the augmented transcript of a lecture given by Luc Devroye
on the 12th of March 2020 for the Honours Data Structures and Algo-
rithms class (COMP 252, McGill University). The subject was amor-
tized analysis.

Principle

The principle of amortized analysis is to consider a collection of op-
erations on a data structure over a given time period. Looking at the
cost of an isolated operation on a data structure may be misleading
when its average cost in a sequence of operations may be small. This
method of analysis was first developed by Sleator and Tarjan in 1985.

Definitions and Notation

• t - time

• Dt - the data structure at time t

• Φ(·) - the potential of the data structure, which must always
be greater than or equal to 0. We associate 0 with the notion of
“good”, “stable”, “empty”, or “desired”.

Figure 1: Potential of a data structure as
a function of time.

Let us define the amortized time of an operation that takes the struc-
ture Dt to Dt+1 as follows:

Amortized Time := Actual Time + Φ(Dt+1)−Φ(Dt)︸ ︷︷ ︸
∆Φ

, (1)

where the last two terms represent the “change in potential” of the
data structure.

Naturally, we can extend this to the amortized time of operations
that take D0 to Dt. The intermediate values of the potential function
vanish because they form a telescoping sum.

Amortized Time = Actual Time + Φ(Dt)−Φ(D0)

= Actual Time + Φ(Dt)

≥ Actual Time,

(2)

where the second equality holds assuming that Φ(D0) = 0. The
requirement that Φ is nonnegative ensures that we are determining
an upper bound for the actual time, as evidenced in the last line of
equation (2).
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Example 1. Stack with Multipop

Overview: We consider a stack S with the operations of Push(x, S)
and Multipop(k, S). Push is the standard operation, and Multipop

is a condensed operation that performs k consecutive pops. In this
example, we define our potential function Φ to be the size of the
stack at any given time.

Table 1: Operation Costs for Stack with Multipop

Push(x, S) Multipop(k, S)
Actual Time 1 min (k, |S|)

∆Φ 1 −min (k, |S|)
Amortized Time 2 0

Figure 2: Visualizing the stack.

We take the minimum in the third column because either k elements
are popped or the stack becomes empty. Note that the values in the
fourth row are determined using equation (1) above. Over the course
of t operations starting from an empty stack (i.e., |S| = 0) we see that
the amortized time is less than or equal to 2t.

Example 2. Lazy-Delete

Overview: Lazy-Delete is an alternative to the classical Delete.
The essence of Lazy-Delete is that it postpones the heavy-lifting
associated with deleting a single element. An algorithm outline This example may remind you of our

earlier lecture about red-black trees,
when the Lazy-Delete operation
was first introduced. Lazy-Delete is
applicable to various different data
structures. Here we define it in general
and perform a specific analysis of its
performance on a red-black tree.

would be the most illustrative refresher of how it works.

Lazy-Delete(x):

1. Mark x as deleted (x is now a ghost element).

2. If the number of ghost elements is greater than or equal to 50%
of the structure’s size, then reconstruct the data structure from
scratch (without the ghost elements).

We define Φ accordingly:

• Φ(Dt) = 2× (number of ghost elements in the data structure at time t)

which yields Φ(D0) = 0 obviously. The coefficient of 2 may seem
arbitrary at this point. To see why we chose 2, consider what would
change in the fourth column of Table 2 below if we let the coefficient
be 1 instead. Remember that we have freedom in defining Φ as long
as it satisfies nonnegativity.
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Red-Black Tree: Let n be the number of nodes in a red-black tree.
Recall from the lecture on red-black trees that the reconstruction of
the tree without ghost nodes takes linear time.

Reconstruction: This can be done by first performing an inorder
traversal to retrieve all of the unmarked nodes (takes O(n) time).
Then, using this sorted list, select elements in a binary search-style
pattern to build a complete binary tree, with all black nodes except
for the bottom layer which should be red. This is also clearly O(n),
so the whole operation is O(n). We will assume that reconstruction
costs precisely n.

Table 2: Operation Costs for Lazy-Delete

Insert Lazy-Delete Reconstruct

Actual Time log2 n 1 n
∆Φ 0 2 −n

Amortized Time log2 n 3 0

A more explicit way to see that ∆Φ = −n for Reconstruct is to view
−n as −(2× n

2 ) and recall that Φ = 2× (number of ghost elements).

Starting with an empty tree (i.e., n = 0), we see that the cost of t
operations (Insert, Lazy-Delete) is less than or equal to:

t log2 t + 3t

where the factors of t arise because we are performing at most t
Inserts or Deletes, and the size of the tree cannot exceed t.

Exercise: A binary tree on n nodes is perfectly balanced if all leaves
are at distance h or h− 1 from the root where h = ⌊log2 n⌋.

1. Given any binary search tree on n nodes, write an O(n) algorithm
for morphing it into a perfectly balanced binary search tree.

2. Show that for every binary tree on n nodes, its height h is greater
than or equal to ⌊log2 n⌋.

Figure 3: A perfectly balanced binary
tree.

3. Given a perfectly balanced binary search tree, show how to add
colors to the nodes without altering the shape so that it becomes a
red-black tree.
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Example 3. Amortized Weight-Balanced Trees G. Varghese first introduced the amor-
tized approach for maintaining weight-
balanced trees (Cormen, Leiserson,
Rivest, and Stein, 2009, p. 473).Overview: A weight-balanced tree is a binary search tree such that for

all nodes x in the tree, with subtrees as shown in Figure 4, we have
that:

• |L| ≤ α|T| and |R| ≤ α|T|

where α ∈ [ 1
2 , 1) is a fixed design constant, T is the subtree rooted

at x, and L & R are the left and right subtrees of x respectively. Such
trees are called α-balanced.

Figure 4: Subtree of an arbitrary node
in a weight-balanced tree.

Properties:

• Search: O(log2 n) worst-case time

• Insert, Delete: O(log2 n) amortized time per operation

Now we define the potential function for this example:

Φ(T) = C ∑x:||L|−|R||≥2 ||L| − |R|| (3)

where C is a constant that we shall select soon, and T is the tree.

Claim:

Height ≤
log2 n
log2

1
α

. (4)

Proof. A node at a distance k from the root has a subtree of size less
than or equal to αkn. Thus αkn ≥ 1 which implies k ≤ log2 n

log2
1
α

after a

little bit of algebraic manipulation.

Claim: Φ = 0 for a 1
2 -balanced tree.

Proof. First notice that for any node x in the tree, |T| = |L|+ |R|+ 1
where T is the subtree rooted at x (see Figure 4). Now for each node
x, we have

|L|, |R| ≤ |T|2 = |L|+|R|
2 + 1

2 (5)

which implies that |L| ≤ |R|+ 1 and |R| ≤ |L|+ 1. Thus there are no
x in our tree satisfying the conditions of the summation in equation
(3), meaning that Φ = 0.

Insert, Delete: The performance of these operations is similar to
their performance on a standard binary search tree (actual time is
O(log2 n)), plus, if necessary, the cost of rebalancing at the highest
unbalanced node. Note also that ∆Φ = O(log2 n) since at most
O(log2 n) nodes change their contribution to Φ by one.
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We will now choose the constant C in equation (3) that will allow
us to find our desired upper bound.

Let x be the highest unbalanced node, and T its subtree. Without
loss of generality, |L| > α|T | and |L| ≥ |R| + 2 because x is an
unbalanced node. We will use the former inequality immediately,
and the latter inequality in a moment.

Figure 5: The node x and its subtree
that needs rebalancing.

Observe that |R| = |T| − |L| − 1 and apply the former inequality to
yield:

|R| = |T| − |L| − 1 < (1− α)|T| − 1 =⇒ |L| − |R| > (2α− 1)|T|+ 1

Now from the aforementioned latter inequality, we have that
1Φ(Tree) ≥ C||L| − |R||. As well, Φ(Tree after rebalancing) = 0.
Thus we have:

∆Φ ≤ −C||L| − |R|| < −C(2α− 1)|T| . (6)

Since the cost of rebalancing is |T|, we see that we can make the 1Since the sum used to define Φ is
guaranteed to be nontrivial.amortized time of rebalancing less than or equal to 0 if C = 1

2α−1 ,
where we assume that α > 1

2 .
The results of our analysis are summarized in the following table.

Table 3: Operation Costs for a Weight-Balanced Tree

Search Insert Delete Rebalancing of Subtree T
Actual Time O(log2 n) O(log2 n) O(log2 n) |T|

∆Φ 0 O(log2 n) O(log2 n) −|T|
Amortized Time O(log2 n) O(log2 n) O(log2 n) 0

The remarkable result here is that rebalancing is free.



amortized analysis 6

Example 4. Bitwise Addition

Overview: Given a number n, how much does it cost to count to n
in the bit model? Starting at 0, and adding 1 each time, we obtain the
sequence 0, 1, 10, 11, 100, 101, 110, . . . , (n)2

To see how we might choose Φ, suppose we have the number
10111111 in our sequence. Then:

10111111

+ 1

11000000

(7)

A natural choice for Φ is the number of ones in the binary repre-
sentation, because it is obviously nonnegative and we can see that it
provides a reasonable measure of the amount of “disorder” at any
given step.

If x is a number in our sequence, let k be the number of trailing 1’s
in its binary representation. Then we can see by example that:

x : 10

k︷︸︸︷
1111 (a number in the sequence) (8)

Adding 1 in the standard fashion gives:

x + 1 : 1

k+1︷ ︸︸ ︷
10000 (9)

Since this addition requires modifying at most k + 1 bits, we have:

Actual Time = k + 1

∆Φ = −k + 1

=⇒ Amortized Time = 2

(10)

The amortized cost of one addition is 2. Thus, after performing n
additions, the actual time is less than or equal to 2n.
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Example 5. Fibonacci Heaps The Fibonacci heap was conceived by
Fredman and Tarjan in 1984, and was
first published in a journal in 1987.

Overview: Before delving into the analysis, let us contrast the time
complexity of operations on a standard binary heap and a Fibonacci
heap. Most of these operations should be familiar from our earlier
lecture on priority queues, but there are some novel operations here
that will be defined soon.

Table 4: Comparing a Binary Heap and a Fibonacci Heap

Binary Heap (Actual Time) Fibonacci Heap (Amortized Time)
Insert Θ(log2 n) Θ(1)
Delete Θ(log2 n) Θ(log2 n)

Delete-Min Θ(log2 n) Θ(log2 n)
Decrease-Key Θ(log2 n) Θ(1)

Meld Θ(log2 n× log2 m) Θ(1)

Notice the improvements for the Insert, Decrease-Key, and Meld

operations. The n and m in the last row are the sizes of the two heaps
being melded together.

The Data Structure: Relevant terminology and properties of the
Fibonacci heap are listed below. Figure 6 illustrates these properties.

• The Fibonacci heap is a priority queue consisting of a forest (collec-
tion) of heap-ordered trees.2 2Meaning that the key of each node is

greater than or equal to the key of its
parent.• We interact with a given Fibonacci heap H with a pointer to the

root of the tree with the minimum key.

• The degree of a node is the number of its immediate children. Each
node stores its degree.

• Every node has a child pointer and a parent pointer.

• Each group of siblings is organized in a doubly-linked list.

• The root-list is the doubly-linked list of roots of all of the trees in
the forest.

• Each node stores its marked or unmarked status. This is discussed
below.

Remark: The notion of being marked will become important for en-
suring that the max-degree is O(log2 n). We will assume throughout,
and prove later, that max-degree is less than or equal to c log2 n for
some c. A node x is marked if it has lost a child since the last time
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x was made the child of another node. Also, root-list nodes are un-
marked. For the time being, assume all nodes are unmarked. We
will summarize the rules of marking after we have introduced the
relevant operations.

Figure 6: A sample Fibonacci heap.

Simple Operations:

• 3Meld(F1,F2): Consists of combining the root-lists (O(1)) and
finding the global minimum (O(1)). 3F1 and F2 are two Fibonacci heaps.

Note that finding the global minimum
is O(1) because we need only compare
the previous minimum to the key in x.

• Insert(x,F ): Create a Fibonacci heap with 1 element and use
Meld, which is clearly O(1).

Potential: In this example, we define our potential function as
follows:

• Φ = α(Size of Root-List) + β(Number of Marked Nodes)

where α and β are scaling factors that we will choose later to give
the desired result. The simple operations above take O(1) amortized
time.

Note: Performing Insert n times creates the Fibonacci heap given
in Figure 7. We may start to worry about how large the root-list can
become. A sizeable root-list could cause problems when we extract
the minimum element and need to find the second-smallest node.
As we shall see below, we build the solution to this problem into the
remaining operations.

Figure 7: A Fibonacci heap that is
entirely the root list.
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Other Operations: Here we discuss the less trivial operations in
Table 4 and their respective sub-operations.

The Decrease-Key operation changes the key of a node x to a lower
value k, moving it to a higher priority in the queue. In the algorithm
outline below, we assume that the input key is less than or equal to
the key of x.

Decrease-Key(x, k, F ):

1. Set the key of x to k.

2. If x /∈ root-list and if the heap ordering between x and parent[x]
has been upset, then add x and its subtree to the root-list.

3. If x was moved to the root-list in step 2, check if x is the new
minimum key and adjust the minimum pointer accordingly.

See Figures 8 and 9 to visualize this process. This operation has O(1)
actual time and O(1) amortized time.

Figure 8: A Fibonacci heap before
calling Decrease-Key on x.

Figure 9: A Fibonacci heap after calling
Decrease-Key on x.

Removing Nodes: When carrying out the Delete-Min operation,
it is straightforward to remove the minimum node and move its
children to the root-list with their subtrees. The question that arises
is how to deal with finding the new minimum. To ensure we have
a reasonable handle on our root-list at all times, we employ a new
operation Clean-Up-Root-List that will be detailed below.

Delete-Min(F ):

1. Report the minimum key node from the root-list, delete the node,
and add its immediate children to the root-list as roots of their
respective subtrees.

2. Perform Clean-Up-Root-List.

Figure 10: The first step of Delete-Min.

The first step has actual time that is O(1) and ∆Φ ≤ αc log2 n.
This is because the size of the root-list is growing by no more than
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the max-degree, which is less than or equal to c log2 n by our earlier
remark.

Delete(x, F ):

1. Remove the node x from the heap and add its immediate children
to the root-list as roots of their respective subtrees.

2. Perform Clean-Up-Root-List.

Figure 11: The first step of Delete.

This can be done using two familiar operations in succession:
Decrease-Key(x,−∞, F ) followed by Delete-Min(F ). Thus the
actual time is O(1) and ∆Φ ≤ c log2 n for some c.

Let B be an array4 of buckets, each initialized to nil. B[i] is a pointer
to a node in the root-list of degree i. 4B should be smaller than the

max-degree in the root-list +
log2 (size of the root-list). We leave
the management of the size of B as a
small exercise.

Figure 12: Illustrating the Clean-Up-
Root-List operation.

Clean-Up-Root-List(F ):
1 Empty root-list into a stack S
2 while |S| > 0
3 x ← Pop(S)
4 δ← degree[x]
5 if B[δ] = nil
6 B[δ]← x
7 else // root-list shrinks by 1
8 if key[x] < key[B[δ]] then exchange keys of x and B[δ]
9 make x a child of B[δ]

10 y← B[δ]
11 degree[y]← δ + 1
12 Push(y,S)
13 B[δ]← nil
14 make a new root-list from the non-nil buckets in B
15 // size of this root-list is less than or equal
16 // to 1 + max-degree = O(log2 n) (by earlier remark)
17 Find new min in O(log2 n) time
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Performing our analysis of this operation, we have:

Actual Time ≤ Size of Root-List Before

∆Φ ≤ αc log2 n− α(Size of Root-List Before)

=⇒ Amortized Time ≤ αc log2 n if we set α = 1.

(11)

Marked Nodes: We now reintroduce the rules of marking.

1. Nodes in the root-list are unmarked.

2. A node that has lost a child (either through Decrease-Key or
Delete) is marked.

3. No node can lose 2 children.

Cascading-Cut: To ensure that the third condition is never vio-
lated, we implement an operation called Cascading-Cut. Whenever
a node is about to lose a second child, we traverse up the tree. At
every marked node along the path, we cut it from its parent and stick
it in the root-list (with its subtree of course), causing the parent to be-
come marked. The process finishes when we encounter an unmarked
node, which then becomes marked. See Figure 13 below for a visual.

Figure 13: Illustrating the Cascading-
Cut operation.

Let k denote the number of marked nodes moved. Then we have:

Actual Time = k
5∆Φ = αk− βk

=⇒ Amortized Time = 0 if we set β = α + 1

(12)

Recall that we chose α to be 1 so we should take β = 2. As a result, 5The root-list increases by k and k nodes
become unmarked. Marking the node
that triggers Cascading-Cut to halt
contributes to the number of marked
nodes, but its contribution is negated
by the starting node (pink in Figure 13)
which becomes unmarked.

this operation is free in amortized time so it is essentially harmless.
Finally, we present the theorem (and proof) underlying the repeated
assumption we made throughout this example.
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Theorem. The maximum degree of a Fibonacci heap of size n is less than or
equal to log2 n

log2 φ ≈ 1.44 log2 n, where φ = 1+
√

5
2 .

The number φ is the limit of the sequence of ratios of the terms in the
famous Fibonacci sequence, hence the name Fibonacci heap.

Lemma. The i-th child of a node x has degree greater than or equal to i− 2.

Proof. Let y denote the i-th child of x. When y was made a child of x,
x already had at least i − 1 children. Recalling the Clean-Up-Root-
List operation, we know that y could only be made the child of x if
they have the same degree. Thus the degree of y is at least i− 1. Since
y can only lose one child before Cascading-Cut relocates it, we must
have that the degree of y is greater than or equal to i− 2.

Figure 14: Visualizing the linking
lemma.Now for the proof of the theorem.

Proof. Let Dk denote the number of descendants of a node of degree
k. We will show by induction on k that Dk ≥ φk.

Cases:

1. k = 0: The node has 1 descendant (itself). D0 = 1 = φ0 so the
inequality is satisfied.

2. k = 1: D1 ≥ 2 ≥ φ1 so the inequality is satisfied.

3. k ≥ 2:

6Dk ≥ Dk−2 + Dk−3 + · · ·+ D0 + 2

≥ φk−2 + φk−3 + · · ·+ φ0 + 2

=
φk−1 − 1

φ− 1
+ 2

(13)

Figure 15: A node and its children,
representing the first line of equation
(13).

Here the first inequality holds by the lemma, the second inequal-
ity holds by the induction hypothesis, and the last equality comes
from the finite geometric sum. The claim is that the final expres-
sion above is greater than or equal to φk.

φk−1 − 1
φ− 1

+ 2 ≥ φk ⇐⇒ φk−1 − 1 + 2φ− 2 ≥ φk+1 − φk

6The constant term “+2” in this line is
attributed to the node itself and its first
child, labelled in Figure 15.

Bringing the φk term to the left-hand side and using the property that
φk+1 = φk + φk−1 we see that this is equivalent to the expression
2φ ≥ 3 which is true because φ ≈ 1.618. Thus the claim is proved,
and the inequality holds for all k. Now the relevant result is an im-
mediate corollary. It is obvious that Dk ≤ n, so we have φk ≤ Dk ≤ n.
Taking the base-2 logarithm, then isolating for k in terms of log2 n
and log2 φ yields the desired inequality.
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