
Priority Queues
Arthur Madore-Boisvert, Will Zahary Henderson

March 9, 2022

This is an augmented transcript of two lectures given by Luc Devroye
on the 9th of March 2022 for the Honours Algorithms and Data Struc-
tures class (COMP 252, McGill University). The subject was priority
queues.

Introduction and Definitions

A priority queue is an abstract data type. It consists of a set of ele-
ments (x1, ..., xn) that can be ordered by their respective keys, along
with the following defining operations:

1. insert(k, PQ) adds a new key k to priority queue PQ

2. deletemin(PQ) deletes the minimum key

Additional but less important operations can also be implemented:

decreasekey(x, k, PQ) changes the key of item x to a smaller
value k

delete(x, PQ) deletes element x

Do note that search is not one of the operations here, as it is not
part of the purpose of priority queues.

Implementations

Complexity in Θ notation
insert deletemin

Sorted list n 1
Unsorted list 1 n
Balanced search tree log n log n
Binary heap log n log n
Tournament tree log n log n
Fibonacci heap 1 log n

It is worth noting that Fibonacci heap insertion is constant time in
an amortized sense (see the lecture on amortized analysis), while it is
not guaranteed to always perform in constant time.

priority queues 2

Uses

insert deletemin

P.Q.

Figure 1: An illustration of how
an operating system inserts
and removes processes (teal
circles) from a priority queue;
alternatively, this priority queue
can represent a future event set,
where each key signifies time.

Example 1. In operating systems, priority queues are often used for
job scheduling. The priority queue holds jobs, and the priorities are
determined by the system. Jobs are swapped in and out to get access
to the CPU for a short time quantum.

Example 2. Priority queues can be used to construct an optimal tree,
and more specifically are used for Huffman code, a type of optimal
prefix code utilizing a greedy algorithm that is very efficient in com-
pressing data1.

1 Cormen et al. [1989]

Example 3. In discrete event simulation, a priority queue can be used
as a future event set to model complex real-world systems. One rel-
evant situation could be modelling a bank: customers entering the
bank and lining up to visit the teller, and customers leaving.

Example 4. In a generic manner, one can sort the keys by first
inserting them in an empty priority queue and then performing
deletemin until all keys are deleted.

Binary Heap

1

4

8

9 10

6

7

2

3 5

1

2 3

4 5 6 7

8 9 10

Figure 2: A binary heap. Keys
are written in black within the
node, and elements are writ-
ten in red to the left of their
corresponding node.

0 1 2 3 4 5 6 7 8 9 10

1 4 2 8 6 3 5 9 10 7

Figure 3: The corresponding
array implementation of fig. 2.

Definition 5. A binary heap is a binary tree with the heap property.

Definition 6. The heap property states that ∀x : key[x] < key[y]
where y represents any descendant of x in the heap.

Binary heaps are often implemented as an array where the in-
dex corresponds to its element number. However, they can be well-
visualized as a complete binary tree (as in fig. 2).

For clarity, in the remaining discussion on binary heaps, when
references are made to “height” and “children,” we visualize the
heap in its complete binary tree form, but also provide justification
for index calculations that relate the tree format to the array format.

Remark 7. Suppose the key of some node x in the heap is stored at
some index i in the array. Then the left and right children, assuming
they exist, will be stored at indices 2i and 2i + 1, respectively. Take
note that in order to preserve this relationship, the root is stored at
index 1 in the array.

Remark 8. The height of a binary heap is ⌊log2 n⌋ (same as for a
complete binary tree).

We also propose the following conventions: H[i] refers to the key
in position i in heap H, and heapsize[H] refers to the size of the heap.

priority queues 3

Atomic Operations

Binary heaps have two main familiar atomic operations. Assume
heap H is give that item x has its key altered so it is out of position
(e.g., the node has a key value smaller than the key value of its par-
ent). To fix our heap and ensure the heap property is preserved, we
could either move x up in the tree, or move it down in the tree. For
this purpose, we define the following atomic operations:

1. siftup
2 moves x up the heap 2 In comp 250, we called this “upheap”

2. heapify
3 moves x down the heap 3 In comp 250, we called this “down-

heap”

These algorithms are programmed as follows.

SIFTUP(i, H): /sifting up the element at index i in the heap array/
1 while i ̸= 1
2 if key[parent[i]] ≤ key[i] then halt
3 else
4 swap keys of i and parent[i]
5 i ← parent[i]

x

siftup ↑

heapify ↓

Figure 4: A heap where x just
had its key altered.HEAPIFY(i, H):

1 while i ≤ heapsize[H]
2 j ← argmin(key[i], key[2i], key[2i + 1])

/ if 2i and 2i + 1 are heap items /
3 if j = i then halt
4 else
5 swap keys of j and i
6 i ← j

Other Operations

Using the atomic operations, we can define insert and deletemin

for binary heaps quite simply as follows.

siftup

Figure 5: Inserting a new ele-
ment into a heap.

INSERT(k, H): / k is the value of the key we want to insert /
1 heapsize[H] += 1
2 H[heapsize[H]]← k
3 SIFTUP(heapsize[H])

The time complexity of insert is O(log2 n) as it performs at most
⌊log2 n⌋ comparisons, where n is the new size of the heap.

1

old heapsize

heapify

Figure 6: Deleting the mini-
mum element from a heap.

priority queues 4

DELETEMIN(H):
1 x ← H[1]
2 H[1] ← H[heapsize[H]]
3 heapsize[H] −= 1
4 HEAPIFY(1)
5 return x

The time complexity of deletemin is also O(log2 n) as it per-
forms at most 2⌊log2 n⌋ comparisons, where n is the old size of the
heap. This due to the fact that a binary heap is a balanced binary tree
which has the property to have a maximal height of ⌊log2 n⌋.

Building a Heap

Definition 9. The operation buildheap takes an array H of n un-
sorted keys and turns H into a valid heap in which the key values
respect Definition 6.

BUILDHEAP(H):
1 for i = ⌊heapsize[H]/2⌋ down to 1
2 do HEAPIFY(i)

last
≤ n/2
≤ n/4
≤ n/8

...

nodes

0

≤ 2 · n/2 · 1
≤ 2 · n/4 · 2
≤ 2 · n/8 · 3

...

cost

total: ≤ 4n

Figure 7: A visualization of
buildheap, displaying the
number of nodes at each level
relative to the total number of
nodes n, as well as the total cost
to build each level.

Theorem 10. The buildheap operation performs a total of fewer than 4n
comparisons.

Proof. The number of comparisons performed by buildheap is
bounded by (see fig. 7):

2n ·
∞

∑
i=1

i
2i . (1)

Note the following are also true for power series of this form in gen-
eral.

∞

∑
i≥0

xi =
1

1− x
,

∞

∑
i≥0

i · xi−1 =
1

(1− x)2 . (2)

With this in mind, we have that

∞

∑
i=0

i
2i =

1
2

(1
2)

2
= 2. (3)

priority queues 5

Putting it all together, we have

2n ·
∞

∑
i=1

i
2i = 2n · 2 = 4n. (4)

Thus, buildheap performs at most 4n comparisons.

Exercise 11. We leave it as an exercise to show that the second to last
level in the heap has at most n

2 items. This implies that i levels above
the last level, we have at most n

2i items. This fact was used in eq. 1.

Heapsort

Heapsort takes an unsorted array H with n items and sorts it using a
heap. The algorithm is as follows.

HEAPSORT(H):
1 BUILDHEAP(H) / make H into a binary heap /
2 heapsize[H] ← n
3 for x = n down to 2 do
4 swap key[x] and key[1]
5 heapsize[H] ← −= 1
6 HEAPIFY(1)

The number of comparisons heapsort performs is bounded by
above by

key

parent

left right

key

Figure 8: The cell of a pointer-
based binary heap.

4n︸︷︷︸
buildheap cost

+ 2
n−1

∑
i=1
⌊log2 i⌋︸ ︷︷ ︸

for loop

≤ 4n + 2n log2 n.

Thus, heapsort has Θ(n log2 n) complexity. However, it is worth
noting that the number of comparisons here is suboptimal, and is
much further away from the lower bound than some other sorting
algorithms like merge sort, which comes within O(n) of the lower
bound, which is roughly n · log2(n).

Pointer-Based Binary Heaps

1

2 3

4 5

0

1

Figure 9: The path from
the root node to element 5.
5 = (101)2, so the path is de-
rived from 01, which instructs
us to go to the left child, and
then to the right child.

Although binary heaps are typically implemented as arrays, they
can equivalently be implemented as cells with parent and children
pointers.

The trick to find the path from the root to an element at index x in
a pointer-based binary heap is by considering the binary representa-
tion of x, discarding the leftmost 1 digit, and then walking through
the digits from left to right, considering 0 as meaning “left child” and
1 as meaning “right child.” This is illustrated in fig. 9.

priority queues 6

k-ary Heap

Definition 12. A k-ary heap is a complete k-ary tree with the heap
property.

1

2 3 4 5

6 7 8 9

Figure 10: A 4-ary heap.

k-ary heaps are functionally very similar to binary heaps, but
operations take a different amount of time depending on the value of
k. Though programmed almost identically, the time complexities are
as follows.

deletemin takes roughly k logk n comparisons

insert uses about logk n comparisons

In a k-ary heap, we create the notion of oldest child, i.e. the leftmost
child of a node, and youngest child, i.e. the rightmost child of a node.
The following define the relationships between a node at index x and
its children and parent nodes:

parent[x] = ⌊ x+k−2
k ⌋

oldestchild[x] = kx− (k− 2)

youngestchild[x] = kx + 1

Remark 13. If the number of items inserted is equal to the number
of items deleted, then one can optimize k by minimizing the sum of
the root of one insert and one deletemin, i.e., 1+k

log k · log n. This is
smallest for k = 4.

Remark 14. The height of a k-ary heap is approximately logk n.

Exercise 15. Derive the exact value of the height of a k-ary heap as a
function of k and n.

Tournament Tree

Definition 16. A tournament tree is a complete binary tree consisting
leaves representing data and internal nodes representing “matches.”
Each internal node contains a pointer σ[i] to the “winner” (smaller
element) of each binary comparison, which also turns out to be the
smallest descendant of the node.

All internal nodes in a tournament tree have two children.

Remark 17. The total number of nodes in a tournament tree is 2n− 1,
as there are n leaves and n− 1 internal nodes.

Operations

1

2 3

4 5

σ[2] = 4

σ[1] = 3

Figure 11: A tournament tree
where the element at key 4 is
smaller than the element at
key 5, and the element at key 3
is smaller than the element at
key 4. The teal nodes represent
the data as they are the leaves,
and the white internal nodes
are pointers to their smallest
descendants.

The tournament tree has one atomic operation called update that
mirrors siftup from binary heaps.

priority queues 7

Definition 18. update updates the tree to adjust to a new key k at a
leaf node i.

UPDATE(i, k):
1 key[i]← k
2 σ[i]← i
3 while i ̸= 1 do:
4 j ← sibling(i) / sibling(i) is i + 1 or i− 1 /
5 if key[σ[j]] < key[σ[i]]
6 then σ[parent[i]]← σ[j]
7 else σ[parent[i]]← σ[i]
8 i ← parent[i]

Using this operation, we can recreate insert, deletemin, and
buildtournament in the context of tournament trees.

INSERT(k, n): / insert new key k in a tree with n leaves /
1 key[2n]← key[n]
2 σ[2n]← 2n
3 σ[2n + 1]← 2n + 1
4 UPDATE(2n + 1, k)

DELETEMIN(k, n) 4 : 4 This is a lazy delete, which means it
does not really delete the element, but
instead just marks it as being deleted.

1 return key[σ[1]]
2 key[σ[1]]← ∞
3 UPDATE(σ[1])

Exercise 19. Write an algorithm deletemin for tournament trees
that is not a lazy delete but still runs in O(log n) time.

BUILDTOURNAMENT(n): / n known /
1 Create an array of size 2n− 1 for σ[·] and key[·]
2 for i = n to 2n− 1 do
3 fill in key[i]
4 σ[i]← i
5 for i = n− 1 down to 1 do / play the tournament /
6 if key[σ[2i]] < key[σ[2i + 1]]
7 then σ[i]← σ[2i]
8 else σ[i]← σ[2i + 1]

Building the tournament takes n − 1 comparisons, as there are
n− 1 matches to be played between n competitors.

Tournament Tree Sort

One can sort an array of items using a tournament tree, creating a
system similar to heapsort. In fact, using the operations above, this is

priority queues 8

a very simple task; all one needs to do to sort an array of n items is
build the tournament tree using buildtournament and then call
deletemin n times.

An algorithm that performs this is seen below.

TTSORT(N): / N is an unsorted array of n items /
1 Create an empty array A of length n
2 BUILDTOURNAMENT(N)

3 for i = 1 up to n do
4 A[i]← DELETEMIN(N)

This takes fewer than n + n log2 n operations as the heap is built
in n− 1 comparisons and there are n calls to deletemin which each
take ≤ log2(2n − 1) comparisons. It is worth noting that although
heapsort and tournament tree sort are both Θ(n log2 n) sorting meth-
ods, tournament tree sort is much closer to the lower bound for sort-
ing than heapsort.

priority queues 9

References

T.H Cormen, C.E. Leiserson, R.L.Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 1989. ISBN 9780262033848.

	Introduction and Definitions
	Implementations
	Uses
	Binary Heap
	k-ary Heap
	Tournament Tree

