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Abstract

Given some binary matrix M , suppose we are presented with the

collection of its rows and columns in independent arbitrary orderings.

From this information, can we recover the unique original orderings

and matrix? We present an algorithm that identifies whether there is

a unique ordering associated with a set of rows and columns, and out-

puts either the unique correct orderings for the rows and columns or

the full collection of all valid orderings and valid matrices. We show

that there is a constant c > 0 such that the algorithm terminates in

O(n2) time with high probability and in expectation for random n × n

binary matrices with i.i.d. entries (mij)
n
ij=1 such that P(mij = 1) = p

and c log2(n)
n(log log(n))2

≤ p ≤ 1
2 .
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1 Introduction

In this work, we study the problem of reconstructing a binary matrix after

being "shredded". That is, we aim to explain when and how a matrix (in our

case, drawn from a random model) can be uniquely reconstructed from just

the information contained in the rows and columns without knowing how

they are ordered. To give the setup more precisely, let M = (mij)
n
i,j=1 be a

n×n binary matrix with the rows and columns given labels in [n] = {1, ..., n}

and let C(M) = {γ1, ..., γn},R(M) = {ρ1, ..., ρn} be the multisets of all the

columns and rows of M with some arbitrary ordering that is not necessarily

the ones which they belong in. We call these two collections the shredded

columns and shredded rows respectively. We say that M is uniquely re-

constructible (or just reconstructible) if there are two unique permutations

σ = (σ1, ..., σn) and τ = (τ1, ..., τn) of [n] such that


ρσ1

...

ρσn

 =
[
γτ1 · · · γτn

]
. (1)

In particular, if a unique solution exists then both of the resulting matrices

are equal to M (there is always at least one solution equal to M , that being

the correct, original ordering). If there are at least two pairs of permutations

that satisfy (1), then the matrix M is not reconstructible and the collection

of all pairs of permutations that satisfy the identities are the potential re-

constructions of the original matrix. For example, the matrix that has every

entry set to 0 is not uniquely reconstructible and has (n!)2 solutions to (1),

even though each of the solutions corresponds to the same matrix. Every

matrix that has two equal rows (or columns) is not reconstructible. Suppose

2



that rows ρi and ρj are equal, (σ, τ) are a pair of permutations that satisfy

(1), and λ is the transposition (ij). Then, the pair (λ ◦ σ, τ) also satisfies (1)

and so the matrix is not reconstructible.

Analogously, we can view M as a square binary picture. The problem is

that of rebuilding the picture given the strips that come out after we send

one copy of M through a paper shredder upright and one copy sideways. If

two strips are identical, we do not know which spots to place the two strips,

and we conclude that the picture is not reconstructible. However, for the

algorithm, this notion of reconstructibility is not of much importance as all

potential reconstructions are outputted.

In this work, we consider a matrix M that has i.i.d. entries mij with

P(mi,j = 1) = p and P(mi,j = 0) = 1 − p for some p that we view as a

function of n. Since the 1’s and 0’s are essentially just labels in our model,

there is a natural symmetry around p = 1
2
, and thus we assume throughout

that p ≤ 1
2

for our analysis.

When p ≥ (1+ϵ) log(n)
n

for some ϵ > 0 the matrix M has pairwise distinct

rows and columns with high probability (see Lemma 3). Hence, for p above

that threshold, our definition of re-constructibility where matrices that have

equal rows or columns are not reconstructible is with high probability equiv-

alent to the simplified version where a matrix M is reconstructible if

∀M ′,

[
C(M) = C(M ′) and R(M) = R(M ′) =⇒ M = M ′

]
. (2)

In this paper we present two main results concerning reconstruction in

this model. Their full formal presentations can be found in section 4 and sec-

tion 5. The first result concerns the algorithmic problem of the explicit recon-

struction of M (the original matrix) from the shredded rows and columns. It
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states that there is a constant c > 0 such that, for any p ≥ c log2(n)
n(log log(n))2

, there is

an algorithm that successfully reconstructs M in O(n2) time with high prob-

ability. Furthermore, the expected running time is also O(n2) for the same

values of p. The exact reconstruction algorithm we use is defined in section 3

and analyzed in section 4. Loosely speaking, the algorithm groups together

the columns according to the number of 1’s in them, and then analyzes the

"subvectors" of the rows that consist of only the entries of the row that are

also in columns with k 1’s. This is possible because one can line up the rows

and verify which indices correspond to columns with k 1’s. The number of 1’s

in these sub-vectors is invariant to permutations of the columns, and so in-

formation about row positions can be extracted. The second result is purely

theoretical and states that, when p ≥ 2(1+ϵ) log(n)
n

for any arbitrary ϵ > 0, the

probability that M is reconstructible tends to 1 as n → ∞.

The paper is organized as follows: In section 2 we discuss related work

and some of the motivations behind work in the area of reconstruction prob-

lems. In Section 3 we present the reconstruction algorithm along with our

main result, and in Section 4 we prove the result. In section 5 we prove a re-

sult concerning when matrices can be reconstructed. Section 6 houses proofs

for the lemmas used in the preceding sections. Finally, section 7 contains a

couple of open directions for further research.

2 Related work and motivation

Many existing works on reconstruction problems deal with structures on

graphs. Before discussing these problems it is helpful to make explicit how

our matrix reconstruction problem can also be seen as a graph reconstruction
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one.

Let G be a directed graph. In G an edge (u, v) seen as being directed

from u to v, we call v the out-neighbour of u and u the in-neighbour of

v. Furthermore, we define the 1-in(out)-neighbourhood of a vertex v is all

vertices that are in(out)-neighbours of v. v is called the central vertex of

the neighbourhood. If M is viewed as the adjacency matrix for some ran-

dom directed graph on n vertices (one with loops allowed), the columns

γ1, ..., γn represent the collection of all 1-in-neighbourhoods with only the

central vertex’s label removed and ρ1, ..., ρn represent the collection of all 1-

out-neighbourhoods with only the central vertex’s label removed (removing

the labels is the same as permuting them into some arbitrary labelling). In

this new view, we can reword our problem as follows: given a collection of

random 1-in-neighbourhoods γ1, ..., γn and 1-out-neighbourhoods ρ1, ..., ρn,

determine if there is a unique directed (with loops) graph containing exactly

these 1-in(out)-neighbourhoods and if one exists, reconstruct the original

graph efficiently. Problems closely matching this form have received atten-

tion from combinatorists and probabilists. In this section, we briefly discuss

some of these graph reconstruction models and other related works. There is

also a way of looking at our model that turns it into a reconstruction problem

on bipartite graphs. We mention this idea at the end of this section.

Combinatorial reconstruction problems arise naturally in several pure

and applied settings. The largest inspiration for such exploration comes from

the reconstruction conjecture in combinatorics (see Harary (1974), Harary

and Plantholt (1985), Kelly (1957), and Ulam (1960)): any graph G on

at least three vertices is reconstructible from the multiset of isomorphism

classes of all the vertex-deleted subgraphs of G, often called the deck or G

and labelled D(G) (the vertex deleted subgraphs of G are all the induced
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subgraph obtained through deleting exactly one of the vertices of G). To

be more exact, the conjecture states that for all graphs G and H on at least

three vertices, G is isomorphic to H if and only if D(G) = D(H). The use

of random models has been vital in the study of this conjecture, with one

important result coming from Bollobás (1990) who proved that as n → ∞,

an Erdős-Rényi random graph with c log(n)
n

≤ p ≤ 1 − c log(n)
n

is uniquely re-

constructible from a collection of only three of the vertex deleted subgraphs

for any c > 5
2
. In particular, this means that with high probability, for appro-

priate choices of p, there is a subset {G1, G2, G3} ⊆ D(G) of three subgraphs

such that for any other graph H, if {G1, G2, G3} ⊆ D(H), then H is isomor-

phic to G. Before Bollobás’ result, Müller (1976) had previously explored

the reconstruction of random graphs from the whole deck.

One interesting abstraction of the reconstruction conjecture related to

the random pictures model is the new digraph reconstruction conjecture.

Let G and H be two directed graphs and suppose that there is a bijection

f : V (G) → V (H) such that G \ v is isomorphic to H \ f(v) for all v ∈ V (G).

Further, suppose that the in-degrees and out-degrees of v and f(v) match

for all v ∈ V (G). Then, G and H must be isomorphic. The answer to this

problem remains open. See Ramachandran (1981) and Ramachandran and

Arumugam (2004) for a discussion of the problem and the families of graphs

for which the conjecture has been proven to be true.

Recently, extensive work has gone into studying the shotgun assembly

problem for graphs. Introduced by Mossel and Ross (2019), the problem asks

how large must r be so that a graph, commonly drawn from some random

model, is uniquely determined by its collection of distance r-neighbourhoods

around each vertex v ∈ V (G) (by a distance r-neighbourhood of v we mean

the subgraph Nr(v) that is induced by all vertices of graph distance at most
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r from v). They consider both labelled and unlabelled versions of the prob-

lem. This topic has been studied for a variety of random models includ-

ing Erdős-Rényi graphs, random regular graphs, and simplicial complexes

(for examples, see Adhikari and Chakraborty (2022), Ding, Jiang, and Ma

(2022), Gaudio and Mossel (2022), Huang and Tikhomirov (2022), John-

ston et al. (2023), and Mossel and Sun (2015)). There has also been work

put towards shotgun assembly problems in different contexts such as recon-

structing random vertex colourings from r-neighbourhoods as seen in Ding

and Liu (2022), Mossel and Ross (2019), and Przykucki, Roberts, and Scott

(2022).

In a similar vein, there is the problem of canonically labelling graphs and

random graphs, and its main application in checking graph isomorphisms

(early work in the topic can be seen in Babai (1980), Babai, Erdös, and

Selkow (1980), and Babai and Luks (1983)). An algorithm which canon-

ically labels a graph G, assigns the labels 1, 2, . . . , n to the n vertices of G

such that if G is isomorphic to some graph H, then both should be given

the same labelling by the algorithm. Of particular note are the results on

canonically labelling the Erdős-Rényi graph using only the r-neighbourhoods

of each vertex. Mossel and Ross (2019) showed it is possible to canoni-

cally label a graph G ∼ G(n, pn) when np = ω(log2(n)) with using only

2 neighbourhoods. On the other hand, Gaudio, Rácz, and Sridhar (2022)

showed for np = o(log2(n)/(log log(n))3) there are multiple isomorphic 2-

neighbourhoods with high probability, which inhibits us from creating a

canonical labelling.

Some papers deal with the reconstruction of random jigsaw puzzles (Mos-

sel and Ross (2019)). Here, we are given the collection of vertices in a lattice

with coloured half-edges drawn from some collection of q colours. The prob-
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lem is to determine how large q must be so that with high probability the

puzzle can be constructed into a complete picture from the collection of ver-

tices and their coloured half-edges. Some work concerning this problem can

be found in Balister, Bollobás, and Narayanan (2019), Martinsson (2016,

2019), and Nenadov, Pfister, and Steger (2017).

There is no lack of motivation from other sciences for studying recon-

struction problems, such as the problem of DNA shotgun sequencing. In

shotgun assembly, the long DNA strands are “shotgunned” into smaller pieces

that are sequenced. From here, a reconstruction algorithm is used to infer

what the original long strand was. For a probabilistic analysis of the unique

re-constructibility of DNA sequences from shotgunned strands see Arratia and

Reinert (1996), Dyer, Frieze, and Suen (1994), and Motahari, Bresler, and

Tse (2013). Note that the models here are what one of the shotgun assembly

problems from Mossel and Sun (2015) is based on, with the special case of

the path on n vertices being studied. The shotgun assembly has also begun to

appear in neural network theory. Soudry et al. (2015) consider the problem

of reconstructing large neural networks from smaller sub-networks.

The topic of this paper, reconstructing random matrices, has been stud-

ied before from another point of view. In Narayanan and Yap (2023), the

complete multiset of all (n − k)2 k × k sub-matrices of an n × n matrix is

given as the information to reconstruct with. This multiset is called the k-

deck of the matrix. They proved what they call "two-point concentration",

which loosely states that the probability that the matrix is reconstructible

from the k-deck converges to 1 as n → ∞ for k > (2 log2(n))
1/2 + 3

4
and

converges to 0 as n → ∞ for k < (2 log2(n))
1/2+ 1

4
. This model has also been

referred to as the reconstruction of random vertex colourings on the n × n

grid graph. Further work has been done under this second name in Demi-
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dovich, Panichkin, and Zhukovskii (2023), where the authors provided simi-

lar "two-point" concentration theorems for the case of general d-dimensional

grids with r colours. They find the critical threshold for reconstructibility in

general to be ∼ (d logr(n))
1/d. Furthermore, in this second paper, they also

consider the reconstruction of r colourings in more general families of ran-

dom graphs from k-decks (for a general graph, the k-deck is the multiset of

all induced k-vertex subgraphs), and even make connections between the re-

construction of random colourings on graphs and reconstruction of random

graphs.

Since the release of the original pre-print copy of this paper work has

been done on the model. Balister, Kronenberg, et al. (2024) have furthered

our theoretical result, proving that 1
n
log(n) is the sharp threshold for our

definition of shredded matrix reconstructibility, i.e., for p ≥ (1+ϵ) log(n)
n

M is

reconstructible with probability tending to 1 as n → ∞ and for p ≤ (1−ϵ) log(n)
n

the probability of reconstructibility is tending to 0 as n → ∞. They also in-

troduce the notion of weak reconstructibility and find that its sharp threshold

is at p = log(n)
2n

. A matrix M is said to be weakly reconstructible if the condi-

tion in (2) is satisfied. Note that this definition allows matrices with identical

rows and columns to be reconstructible. Algorithms for reconstruction are

also provided. In this work, the authors establish these results through a key

connection between the reconstruction of matrices and the reconstruction of

random bipartite graphs on 2n vertices. In particular, the graph they con-

sider is a random subgraph of the complete bipartite graph Kn,n where each

edge is deleted with probability (1 − p). If one labels the vertices on each

side of the Kn,n 1, ..., n, the matrices considered in this paper are equivalent

to adjacency matrices for these bipartite graphs.
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3 The reconstruction algorithm

For a vector x = (x1, x2, . . . , xn) ∈ {0, 1}n, we call |x| =
∑n

i=1 xi the weight or

Hamming weight of x. If S ⊂ [n] is a set of indices, then
∑

i∈S xi is the sub-

weight of x on S. Alternatively, the weight of x can be seen as the number of

1’s which appear in the entire vector, and the sub-weight in S is the number

of 1’s in the vector x restricted to the positions indicated by S. We have two

algorithmic problems to solve:

(i) Find any permutation pair (σ, τ) that satisfies (1).

(ii) Find all permutation pairs (σ, τ) that satisfy (1).

Our algorithm solves (ii) and hence also (i). It can be broken down into

two main parts: First, we partition each row ρi into sub-strings and compute

the vector of the associated sub-weights for all i ∈ [n]. Then, using a trie

(see below for the definition of a trie), we can efficiently identify each ρi

with a position by matching these sub-weight vectors. If we can identify

each ρi with a unique position, then the algorithm is complete. We show this

happens with high probability.

In the case where this does not occur, we move on to part two of the

algorithm, where we iterate through all possible permutations of the rows

and check if the matrix is correct by checking if it contains all of the columns

in C(M) with the correct multiplicities. Using the information gained from

part one, we can reduce our search space from all n! permutations of the

rows to a collection that has expected size O(1).

A prefix trie (or simply just a trie) is a k-ary search tree data structure

used to store vectors or strings from some finite alphabet (Fredkin (1960),

Briandais (1959)). A sequence x1, . . . , xℓ of symbols drawn from {1, . . . , k}

10



defines a path of length ℓ from the root down, where the xi’s indicate which

child is taken in the i-step. The trie for n strings of length ℓ is the data

structure that stores the union of the n paths. In time O(ℓ), one can for

example determine whether a given string of length ℓ matches one of the n

strings that are stored in the trie. For a more detailed explanation of tries,

one may consult Knuth (1997), Knuth (1998), or Morin (2013).

11

1

1

21

1

23

3

2

32

2

3

Figure 1: An example of a trie with alphabet {1, 2, 3}.

The algorithm described in the rest of this section only utilizes informa-

tion from columns with weight in the set [⌊np⌋, ⌊np⌋ + ⌊√np⌋]. Restricting

ourselves only to weights in this set does not result in too much information

being lost. Since each entry is independently 1 with probability p, |γj| is a

binomial(n, p) random variable, implying that it is concentrated around its

mean. In particular, using a standard Chernoff bound for binomials we get

that

P
(
|γj| ≥ np+ (np)1/2+ϵ

)
≤ e−

1
3
(np)ϵ → 0

as n → ∞ when np → ∞ (in the cases we consider np → ∞ always).

Furthermore, the median of binomial random variables is in {⌊np⌋, ⌈np⌉}.

Combining these two facts, we can see that approximately 1
2

of the columns

weight the range [⌊np⌋, ⌊np⌋+ ⌊√np⌋] in the limit.
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3.1 Part One

Given the collection of unordered columns γ1, ..., γn, we create a Hamming

weight partition of the columns P = (P0, . . . ,Pn), where Pi = {1 ≤ j ≤ n :

|γj| = i}. Now for each j ∈ [n], and for each integer k ∈ [⌊np⌋, ⌊np⌋+⌊√np⌋],

we compute

sj,k =
∑
i∈Pk

γij, where γi =


γi,1
...

γi,n

 .

For a row to be able to be put in position j, its sub-weight on Pk must

be equal to sj,k for all k ∈ [⌊np⌋, ⌊np⌋ + ⌊√np⌋]. Using the values sj,k we

store every potential position j ∈ [n] in the leaves of a trie using the vectors

Sj = (sj,⌊np⌋ . . . , sj,⌊np⌋+⌊√np⌋) as input, which we call the sub-weight vectors

associated with position j. In our trie, we associate each input with a path.

Therefore, it is possible that several paths coincide and that Sj is not unique,

i.e., |{Sj : 1 ≤ j ≤ n}| < n.

From the collection of rows ρ1, ..., ρn, we can compute the weight of each

column in the original matrix M even without knowing the order, since

the weight of a column is invariant under permutation of the rows. This

allows us to determine which column positions have which weights. Let

I = (I0, I1, . . . , In), where

Ij = {i ∈ [n] : The column in position i has weight j}.

Now, for all j ∈ [n], and for each integer k ∈ [⌊np⌋, ⌊np⌋ + ⌊√np⌋], we

compute tj,k, which is the sub-weight of the row ρj on the indices Ik. We
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collect all of them into a vector

Tj =
(
tj,⌊np⌋ . . . , tj,⌊np⌋+⌊√np⌋

)
,

which we call the signature of ρj. Since entries Sj (the sub-weight vector of

position j) and Tj (the signature of ρj) are generated from the same infor-

mation with only potentially incorrect labels on Tj, we know that

{Sj : 1 ≤ j ≤ n} = {Tj : 1 ≤ j ≤ n}.

It follows that if |{Sj : 1 ≤ j ≤ n}| = n, then are able to identify a unique

permutation for each row: For each j ∈ [n], we define σj to be the unique

ℓ ∈ [n] such that Sj = Tℓ. Once the rows have been placed we have recon-

structed the matrix and the permutation τ on the unordered columns can

be determined. We do this by first constructing a trie based on all of the

columns C1, ..., Cn in the reconstructed matrix M (these are the columns in

their original, pre-shredded positions). If the trie has n distinct leaves, then

we can define a permutation τ for γ1, ..., γn in the following way: For each

j ∈ [n], define τj to be the unique ℓ ∈ [n] such that γj = Cℓ. If either of the

two tries do not have distinct leaves we move on to part 2.

3.2 Part Two

There are two possible cases where we end up requiring part two to complete

the algorithm. First, we require part two when there is at least one leaf in the

trie containing row sub-weight vectors which coincide with multiple rows,

i.e. |{Sj : 1 ≤ j ≤ n}| = L < n. The second case where we require part two

is when at least two columns coincide with a single leaf in the trie containing
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the column vectors, i.e. Cj = Ck for j ̸= k.

For each vector Si ∈ {Sj : 1 ≤ j ≤ n}, let xi be the multiplicity of

that vector, i.e. the number of rows ρj where Sj = Si. Then, since ρj can

only be assigned to a position k such that Sj = Tk, there are x1!x2! . . . xL!

possible permutations of ρ1, ..., ρn that must be checked. For each possible

permutation σ, we construct a matrix,

M ′ =


ρσ1

...

ρσn

 .

Using the column trie, we determine whether C(M) = C(M ′), i.e., we

determine whether both matrices contain the same set of columns with the

same multiplicities. If this is the case, then M ′ is a valid reconstruction. Let

τj be an ℓ ∈ [n] such that the column in position j in M ′ is equal to γℓ for all

j ∈ [n] (in particular choose the τj such that τ = (τ1, ..., τn) is a permutation).

Note that at this point, ℓ need not be unique so this could yield many valid

matrices. The pair (σ, τ) permutes the rows and columns to create a valid

reconstruction M ′. Let I1, . . . , Im be the sets of column indices (|Ik| > 1)

such that for every two indices i, j ∈ Ik, the columns Ci, Cj in M ′ are equal.

The columns within each Ik can be permuted and still give a valid τ for

reconstructing.

Therefore, for every valid σ we compute one of the corresponding column

permutations τ and the sets of indices I1, . . . , Im, then output

(σ, τ, SI1 × · · · × SIm),

where SIk is the group of permutations on the elements in the set Ik. The
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set of these triples can generate all of the pairs (σ, τ) and defines a valid

reconstruction. If we wish to retrieve every pair from the triple, we need

only iterate over π ∈ SI1 × · · · × SIk and compute (σ, πτ).

3.3 An Example

Consider the following collection of its rows and columns (assume that C(M) =

{γ1, γ2, γ3, γ4} and R(M) = {ρ1, ρ2, ρ3, ρ4} are ordered left to right and top to

bottom respectively):

C(M) =




1

0

1

1

,

0

1

1

0

,

0

1

0

1

,

1

1

1

0



 , R(M) =



[
1 0 1 0

]
,[

0 1 1 0

]
,[

0 1 1 1

]
,[

1 1 0 1

]


.

We first construct the partition P from the column collection C(M). From

this, for each position j, we compute the sub-weight vectors Sj = (sj,2, sj,3),

C(M) =




1

0

1

1

,

0

1

1

0

,

0

1

0

1

,

1

1

1

0




P =

∅, ∅,



0

1

0

1

,

0

1

1

0




,




1

1

1

0

,

1

0

1

1




, ∅

→



(0, 2),

(2, 1),

(1, 2),

(1, 1)


.

In this case, each of the Sj is distinct, so the trie we construct with them has

exactly n leaves. Each of the leaves contains the indices of the positions with
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sub-weight vectors which take them to said leaf (in bold):

1

2

0

4

1

3

2

1

2

1

2

Next, we compute the signatures for each of the row vectors. We do this

by first computing I, and using the indices to determine the values of each

entry,

R(M) =



[
1 0 1 0

]
,[

0 1 1 0

]
,[

0 1 1 1

]
,[

1 1 0 1

]


I =(∅, ∅, {1, 4} , {2, 3} , ∅) →



(1, 1),

(0, 2),

(1, 2),

(2, 1)


.

Now we use the set of signatures and search through the trie generated by

the sub-weight vectors. Each signature reaches a leaf, which then tells us

which positions that row is allowed to be in. In this example, they are each

mapped to a unique position, telling us that σ = (142)(3) is the permutation

to apply on R(M) to obtain M . Doing so gives us our unique matrix

M =


0 1 1 0

1 1 0 1

0 1 1 1

1 0 1 0

 .
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Since we have no duplicate columns, there is also a unique τ = (13)(24).

The final output would be ((142)(3), (13)(24), {Id}) as there is only one way

to permute the columns to reconstruct the matrix.

For a second example, let us consider a case where we have duplicate

sub-weight vectors and duplicate columns. Below is the result of doing part

one to some matrix M , we can see that the first row in R(M) belongs in the

second position, but the remaining rows’ positions are unknown,

R(M) =



[
1 0 0 0

]
,[

1 1 1 0

]
,[

0 1 1 1

]
,[

0 1 1 1

]


→



(1, 0),

(1, 2),

(1, 2),

(1, 2)


C(M) =




1

0

0

1

,

0

1

1

0

,

1

0

1

1

,

1

0

1

1




→



(1, 2),

(1, 0),

(1, 2),

(1, 2)


.

As three rows have the same signature, we have 6 permutations of the rows

to check,

{(12), (12)(34), (123), (124), (1234), (1243)},

which results in matrices,

M(12) =


1 1 1 0

1 0 0 0

0 1 1 1

0 1 1 1

 M(12)(34) =


1 1 1 0

1 0 0 0

0 1 1 1

0 1 1 1


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M(123) =


0 1 1 1

1 0 0 0

1 1 1 0

0 1 1 1

 M(124) =


0 1 1 1

1 0 0 0

0 1 1 1

1 1 1 0



M(1234) =


0 1 1 1

1 0 0 0

1 1 1 0

0 1 1 1

 M(1243) =


0 1 1 1

1 0 0 0

0 1 1 1

1 1 1 0

 .

Since there are duplicate rows, some of these permutations result in the same

matrix. Regardless, using the column trie below, we can iterate through each

Mσ and see if C(M) = C(Mσ):

1

0

1

1

0

1

1

0

2

1

1

0

1

From this we can see that the only σ that give us valid matrices are from

(123) and (1234), and since there are two identical columns in positions 2

and 3, the corresponding permutation groups are both S{2,3}. The solution

set for this example is

{((123), (142), S{2,3}), ((1234), (142), S{2,3})}.
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3.4 Time Complexity

The time complexity achieved by our algorithm assumes the RAM model

of computation. Computing the weights of the vectors and computing all

the sub-weights takes time O(n2), since we can upper bound both of these

by computing the sum of all entries in the matrix. Creating the trie with

the sub-weight vectors would take time O(n3/2) since the size of the strings

used in the trie is bounded above by
√
np ≤

√
n. Since the height of the

trie is O(
√
n), matching each Ri to a set of positions at a leaf, takes total

time O(n3/2). Next, we create the column trie, which takes O(n2) as we

have n length n vectors to insert. It is interesting to note that determining

which rows belong in which positions is not the most time-intensive step; in

fact, simply determining the weights of the vectors is what gives us our time

complexity.

In part two, for each valid permutation, we first check that C(M)=C(M ′)

by searching for each column in M ′ in the column trie, keeping track of mul-

tiplicities. This takes time O(n2). Once a valid σ is found, we must compute

a single τ , which we can get from reading the columns of M ′ generated by σ

applied on the rows, in O(n) time. Using the column trie, we can create the

sets I1, . . . , Im in O(n2) time.

Let P = x1!x2! . . . xL! be the number of permutations σ that we have to

check. Then part two takes expected time O(n2
E[P ]). In section 4, we show

thatE[P ] → 1 as n → ∞ for p in some range, implying that the expected time

for the algorithm is O(n2). We also show that the probability we require step

two to complete the algorithm tends to 0 as n → ∞ for p in another range,

implying that the completion time is also O(n2) with high probability.
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4 Main result

The time complexity discussion from the previous section culminates in our

main result.

Theorem 1. If p ≥ 16(1+ϵ) log2(n)
n(log log(n))2

for ϵ > 0, then,

P(Algorithm terminates at first step) → 1 as n → ∞.

Hence, with high probability, the algorithm produces a unique reconstruction

in O(n2) time. Furthermore, if p ≥ 36(1+ϵ) log2(n)
n(log log(n))2

for ϵ > 0, the expected running

time of the algorithm is also O(n2), with the expected number of permutations

that require checking in step two converging to 1 as n → ∞

To complete the proof of Theorem 1, we need to bound the probability

that two rows ρi and ρj share the same signature vectors Ti and Tj. To

analyze this we need to obtain some bounds on the size of each group in

the partition |P| = (|P1|, ..., |Pn|). In particular, we want the groups near

the average np to be sufficiently large as these columns are the ones that the

algorithm uses to generate sub-weight vectors and larger sub-strings produce

sub-weights with larger variance. Since each column sum is a binomial(n, p)

random variable, and we have n distinct columns, |P| has a multinomial

distribution with parameters n and b = (bn,p,1, ..., bn,p,n), where

bn,p,k = P(binomial(n, p) = k) =

(
n

k

)
pk(1− p)n−k.

The bounds we desire for |P| are shown in the following lemma.

Lemma 2. Suppose that p = p(n) is some sequence such that np ≥ 16.

There exists a positive constant γ > 0 such that bn,p,⌊np⌋+i ≥ 2γ 1√
np

for all
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i ∈ [0, ⌊√np⌋]. Furthermore,

P

(
|P⌊np⌋+i| ≤ γ

√
n

p

)
≤ e

− 1
6
γ
√

n
p .

Since the algorithm also requires passing to part two when two columns

are equal, we also need the next lemma.

Lemma 3. Let M be an n × n random binary matrix with i.i.d. entries mij

such that P(mij = 1) = p and P(mij = 0) = 1 − p. Then, for any ϵ > 0,

P(M has at least two equal rows or columns) → 0 as n → ∞ if p ≥ (1+ϵ) log(n)
n

.

Proof of Theorem 1. There are two cases in which we proceed to the second

step of the algorithm: first, when there are at least two identical sub-weight

vectors, or second when at least two columns are identical. The probability

of the second criterion is shown by Lemma 3 to converge to 0 as n → ∞

for p of the form described, so it suffices to show that the probability of the

first criteria occurring also converges to 0 as n → ∞. We call this event

A(n, p). Recall from Section 3 that we execute step one of the algorithms

by partitioning the columns according to their weight into collections P =

(P1, ...,Pn), and that Ik denotes the indices corresponding to columns in Pk.

For a particular k, let the sub-strings of ρ1 and ρ2 that only contain entries

with indices in Ik be denoted by X = (X1, ..., X|Pk|) and Y = (Y1, ..., Y|Pk|). In

order to have t1,k = t2,k, we require that
∑|Pk|

i=1 Xi =
∑|Pk|

i=1 Yi. The sums are

equal if and only if

|{i : 1 ≤ i ≤ n, (Xi, Yi) = (0, 1)}| = |{i : 1 ≤ i ≤ n, (Xi, Yi) = (1, 0)}|,

as an outcome of (0, 0) or (1, 1) does not change the gap between the sum

(for shorthand we write #(0, 1) and #(1, 0) to denote the two cardinalities).
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Since each of the (Xi, Yi) are pairs of row entries that both lie within columns

of weight k, and the 1’s are equally likely to be anywhere in each of the

columns, we can see that for any i ∈ 1, ..., |Pk|,

P((Xi, Yi) = (0, 1)) = P((Xi, Yi) = (1, 0)) =
k(n− k)

n(n− 1)
.

Since we assume that k ∈ [⌊np⌋, ⌊np⌋ + ⌊√np⌋] it holds that there is some

α ∈ (0, 1) such that

k(n− k)

n(n− 1)
∼

(np+ α
√
np)(n(1− p)− α

√
np)

n(n− 1)

= p

(
n

n− 1

)(
1 +

α
√
np

)(
1− p− αp

√
np

)
,

and so P((Xi, Yi) = (0, 1)) = P((Xi, Yi) = (1, 0)) = Θ(p) (note that np → ∞

by the assumptions on p). For each m ∈ {1, ..., n}, the conditional probability

P(t1,k = t2,k|{|Pk| = m}) is equal to

⌊m/2⌋∑
i=0

P(#(0, 1) + #(1, 0) = 2i)P
(
{#(0, 1) = #(1, 0) = i}

∣∣{#(0, 1) + #(1, 0) = 2i}
)
.

Since (0, 1) and (1, 0) occur with equal probability, when we condition on

there being 2i of the total, the values #(0, 1) and #(0, 1) follow a binomial(2i, 1/2)

distribution. Define p̃ := 2k(n−k)
n(n−1)

= P((Xi, Yi) = (0, 1) or (1, 0)). From here,

applying Stirling’s approximation we obtain some β > 0 such that

P(t1,k = t2,k|{|Pk| = m}) =
⌊m/2⌋∑
i=0

P(binomial(m, p̃) = 2i)P(binomial(2i, 1/2) = i)
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≤ β

⌊m/2⌋∑
i=0

1√
2i ∨ 1

P(binomial(m, p̃) = 2i)


≤ βE

[
1√

binomial(m, p̃) ∨ 1

]
≤ 3β√

mp̃
.

See Lemma 6 for a proof of the final inequality. Since we care about the case

where m ≥ γ
√

n
p

and take n → ∞ we can safely assume the inequality holds.

Let

S =

{
{(x1, ..., xn) : xi ≥ γ

√
n

p
for all i ∈ [⌊np⌋, ⌊np⌋+ ⌊√np⌋]

}
,

where γ > 0 is the one from Lemma 2. When we condition on the sizes

of |Pk| for all k ∈ {1, ..., n}, the events {t1,k = t2,k} and {t1,j = t2,j} are

independent for all k and j in {1, ..., n}. This is because ti,k (i = 1, 2) is

simply a binomial(|Pk|, p), where each Bernoulli trial is an entry in row i cor-

responding a column in Pk, and so, each trial is independent of the other

rows. This implies that all dependencies between ti,k and ti′,j are linked

to the values of |Pk| and |Pj| for all i, i′ ∈ {1, 2} and j, k ∈ {1, ..., n}, so

conditioning on the sizes results in independence among the before men-

tioned events because. Since increasing m only decreases the upper bound

for P(t1,k = t2,k|{|Pk| = m}),

∑
(x1,...,xn)∈S

P

(
T1 = T2

∣∣∣∣∣
n⋂

k=1

{|Pk| = xk}

)
P

(
n⋂

k=1

{|Pk| = xk}

)
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≤
∑

(x1,...,xn)∈S

 3β√
γp̃
√

n
p


√
np

P

(
n⋂

k=1

{|Pk| = xk}

)

=

 3β√
γp̃
√

n
p


√
np

P

(
(|P1|, ..., |Pn|) ∈ S

)

≤

 3β√
γp̃
√

n
p


√
np

,

where Ti is the signature of ρi as defined in section 3. On the other hand for

Sc, we have that

∑
(x1,...,xn)∈Sc

P

(
T1 = T2

∣∣∣∣∣
n⋂

k=1

{|Pk| = xk}

)
P

(
n⋂

k=1

{|Pk| = xk}

)

≤ P
(
(|P1|, ..., |Pn|) ∈ Sc

)
,

which is a good enough bound because Lemma 2 combined with the union

bound ensures that the right side of the inequality is upper bounded by

(
√
np)e

− 1
6
γ
√

n
p . Putting these two pieces together we get that

P(A(n, p)) ≤ n2
P(T1 = T2) ≤ n2

 3β√
γp̃
√

n
p


√
np

+ n2(
√
np)e

− 1
6
γ
√

n
p . (3)

The right term tends to 0 as n → ∞. For the left term, we note that since
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p̃ = Θ(p), we can group up all the constants into some C > 0 such that

n2

 3β√
γp̃
√

n
p


√
np

≤ n2

(
C

(np)1/4

)√
np

= exp

{
2 log(n) + 2 log(C)

√
np− 1

4

√
np log(np)

}
,

which tends to 0 as n → ∞ whenever p ≥ 16(1+ϵ) log2(n)
n(log log(n))2

for some ϵ > 0.

Now we discuss the time complexity of part two. As mentioned in Section

3, the time complexity of part two is O(n2P ), where P is the number of valid

permutations to check. Hence, it is sufficient to show that E[P ] = O(1) as

part one always takes O(n2) time. The number of permutations we need

to check only depends on the sizes of the sets of rows with the same sub-

weight vectors and not their positions. Thus, we sum over j representing the

number of non-unique sub-weight vectors and then sum over n1, n2, . . . , nj

such that n1 + · · ·+, nj ≤ n, which represent the number of rows that share

the same sub-weight vector. We also have the conditions ni > 1 as otherwise

this would imply that it is a unique sub-weight vector and ni ≥ ni+1 as this

avoids double counting. We get the following upper bounds for E[P ]:

n∑
j=1

∑
n1+n2+···+nj≤n
∀i,ni>1 ni≥ni+1

n1!n2! . . . nj!

(
n

n1, n2, . . . , nj

) j∏
i=1

πi

(where πi = P(ni rows have same sub-weight vector))

≤
n∑

j=1

∑
n1+n2+···+nj≤n
∀i,ni>1 ni≥ni+1

n1!n2! . . . nj!

(
n

n1, n2, . . . , nj

)
P(T1 = T2)

∑j
i=1 ni−1
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≤

(
1 +

n∑
k=2

k!

(
n

k

)
P(T1 = T2)

k−1

)n

.

The last line, after expanding the product, contains terms which upper

bound each term in the previous line upon applying the bound
(

n
n1,n2,...,nj

)
≤(

n
n1

)
. . .
(
n
nj

)
. Reusing the bound from (3) we get that

P(T1 = T2) ≤
(

C

(np)1/4

)√
np

+ (
√
np)e

− 1
6
γ
√

n
p ≤ n−(1+o(1))3

√
1+ϵ,

when p ≥ 36(1+ϵ) log2(n)
n(log log(n))2

. Combining this with the above approximation for

E[P ] we see that

E[P ] ≤

(
1 +

n∑
k=2

k!

(
n

k

)(
1

n(1+o(1)3
√
1+ϵ

)k−1
)n

≤

(
1 +

n∑
k=2

nk

(
1

n(1+o(1))2
√
1+ϵ

)k−1
)n

=

(
1 + n

n−1∑
k=1

(
1

n(1+o(1))2
√
1+ϵ

)k
)n

≤

(
1 + n

(
1

1− n−(1+o(1))2
√
1+ϵ

− 1

))n

≤ exp

{
n2

n(1+o(1))2
√
1+ϵ

}
→ 1,

as n → ∞. Hence E[P ] → 1 as n → ∞ as there is always at least one valid

permutation (the original ordering before shredding).
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5 Unique reconstructibility

A common problem of interest in most reconstruction models is that of

finding which parameters p = p(n) are such that the reconstructibility of

the structure being studied is guaranteed with high probability. Our al-

gorithm gives an upper bound of 16 log2(n)
n(log log(n))2

for the critical value at which

re-constructibility can be ensured, though with the first-moment method ap-

proach we can improve that bound.

Theorem 4. Let M be an n × n random binary matrix with i.i.d. entries

mij with P(mij = 1) = p and P(mij = 0) = 1 − p. Then, for any ϵ > 0,

P(M is reconstructible) → 1 as n → ∞ for p ≥ 2(1+ϵ) log(n)
n

.

The following lemma offers us a second equivalent definition for con-

structibility that is better for completing the computations in the proof of

Theorem 4

Lemma 5. Let M be an n × n binary matrix with shredded column and row

collections given by γ1, ..., γn and ρ1, ..., ρn respectively, and let Mσ,τ denote the

matrix obtained from permuting the rows by σ and the columns by τ , Mσ,τ =

(mσ(i),τ(j))
n
i,j=1 for a particular pair (σ, τ) ∈ S2

n \ {(Id, Id)} (here Id just means

the identity permutation that sends each i ∈ [n] to itself). Then,

{M is not reconstructible} =
⋃

(σ,τ)∈S2
n

(σ,τ) ̸=(Id,Id)

{Mσ,τ = M}.

Proof of Theorem 4. Define,

N =
∑

(σ,τ)∈(Sn\{Id})2
1{Mσ,τ=M}.
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A quick computation shows that E[N ] = (n!− 1)2P(Mσ,τ = M), where (σ, τ)

are independent and both uniform over Sn \ {Id}. Before bounding this

expression, we need some further exploration of the events {Mσ,τ = M}.

We define the permutation graph of a pair σ, τ ∈ Sn to be the directed

graph on [n]2 = {(i, j) : 1 ≤ i, j ≤ n} where each vertex (i, j) has an out-

going edge pointing to (σ(i), τ(j)) = (σi, τj). If σ, τ ∈ Sn have cyclic decom-

positions σ = a1 · · · am and τ = b1 · · · bk, a particular pair of cycles ai and bj

acts on exactly the |ai| × |bj| sub-matrix of M that corresponds to the rows

that ai acts on and the columns that bj acts on (here | · | denotes the length).

In the permutation graph, this |ai|×|bj| sized region corresponds exactly to a

collection of gcd(|ai|, |bj|) disjoint cycles, all of length lcm(|ai|, |bj|). To have

Mσ,τ = M , it is necessary to have equality between all entries in M that exist

within the same cycle in the permutation graph. That is,

{Mσ,τ = M} ⊆
n⋂

i,j=1

{mi,j = mσℓ(i),τℓ(j) for all ℓ ∈ N}. (4)

Since the cycles are disjoint, the events in the intersection are all indepen-

dent. Using (4) along with our original expression for E[N ] we get that

E[N ] ≤ (n!)2E

 ∏
(i,j)∈S

(
plcm(|ai|,|bj |) + (1− p)lcm(|ai|,|bj |)

)gcd(|ai|,|bj |) ,

where S = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ k, (|ai|, |bj|) ̸= (1, 1)}. If we let c1(σ)

and c1(τ) denote the number of singleton cycles in σ and τ , then we can

factor out powers of (1− p) and use the fact that |ai| · |bj| ≥ 2 for (i, j) ∈ S,

E[N ] ≤ (n!)2E

(1− p)n
2−c1(σ)c1(τ)

∏
(i,j)∈S

(
1 +

(
p

1− p

)lcm(|ai|,|bj |)
)gcd(|ai|,|bj |)


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≤ (n!)2E

(1− p)n
2−c1(σ)c1(τ) exp

 ∑
(i,j)∈S

(
p

1− p

)2




≤ (n!)2E
[
e−pn2+pc1(σ)c1(τ)e4(n

2−c1(σ)c1(τ))p2
]
.

By bounding the expected value in the final upper bound, one can show that

E[N ] → 0 as n → ∞ for

(2 + ϵ) log(n)

n
≤ p ≤ 17 log2(n)

n(log log(n))2
,

which is sufficient because Theorem 1 covers the case where p ≥ 16(1+ϵ) log2(n)
n(log log(n))2

for any ϵ > 0. Applying Lemma 5 with the union bound we see that

P(M is reconstructible) ≤ E[N ] +P

 ⋃
(σ,τ)∈S2

n\(Id,Id)
σ=Id or τ=Id

{Mσ,τ = M}

 .

However, if one of σ or τ is the identity there must be at least two rows or

columns that are identical in M as the other cannot be the identity. Thus by

Lemma 3

P

 ⋃
(σ,τ)∈S2

n\(Id,Id)
σ=Id or τ=Id

{Mσ,τ = M}

→ 0 as n → ∞ for p ≥ 2(1 + ϵ) log(n)

n
.

Combining this with the above we obtain thatP(M is not reconstructible) →

0 as n → ∞ for p ≥ 2(1+ϵ) log(n)
n

.
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6 Appendix: proofs

Lemma 2. Suppose that p = p(n) is some sequence such that np ≥ 16.

There exists a positive constant γ > 0 such that bn,p,⌊np⌋+i ≥ 2γ 1√
np

for all

i ∈ [0, ⌊√np⌋]. Furthermore,

P

(
|P⌊np⌋+i| ≤ γ

√
n

p

)
≤ e

− 1
6
γ
√

n
p ,

where Pi = {1 ≤ j ≤ n : |γj| = i} and γ1, ..., γn are the shredded columns.

Proof. Since |Pk| =
∑n

i=1 1{column i has weight k}, and each column has weight k

with probability bn,p,k =
(
n
k

)
pk(1−p)n−k, it holds that |Pk| ∼ binomial(n, bn,p,k).

By a Chernoff bound we obtain,

P

(
|Pk| ≤

1

2
nbn,p,k

)
≤ e−

1
12

nbn,p,k .

From here it suffices to show that there is a constant γ > 0 such that
1
2
nbn,p,k ≥ γ

√
n
p

when k = ⌊np⌋ + i, i ∈ [0, ⌊√np⌋]. To do this we show

the following: for any 0 ≤ x ≤ √
np such that np + x is integer-valued,

bn,p,np+x ≥ α√
np

for some α > 0. Repeatedly applying Stirling’s bounds

√
2πn

(n
e

)n
≤ n! ≤ e

√
2πn

(n
e

)n
,

yields

bn,p,np+x ≥ e−2A1A2A3,

where

A1 =
1(

1 + x
np

)np (
1− x

n(1−p)

)n(1−p)
,
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A2 =

(
1− x

n(1−p)

1 + x
np

)x

,

A3 =
1√
2π

√
n

(np+ x)(n(1− p)− x)
.

Using the fact that 1 + y ≤ ey for all y ∈ R, we get

A1 ≥
1

exe−x
= 1.

Next, since p ≥ 16
n

,

A2 ≥
((

1− x

n(1− p)

)(
1− x

np

))x

≥
(
1− x

np(1− p)

)x

≥
(
1− 2

√
np

)√
np

≥ 1

24
=

1

16
.

Finally, using again the fact that 1
2
≥ p ≥ 16/n,

A3 ≥
1√

2πnp(1− p)

1√
(1 + x

np
)(1− x

n(1−p)
)

≥ 1√
2πnp(1 + x

np(1−p)
)

≥ 1√
2πnp(1 + 2√

np
)

≥ 1√
3πnp

.

Putting everything together we get that

bn,p,np+x ≥
(

1

16e2
√
3π

)
1

√
np

.
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Lemma 3. Let M be an n×n random binary matrix with i.i.d. entries mij such

that P(mij = 1) = p and P(mij = 0) = 1− p. Then, for any ϵ > 0,

P(M has at least two equal rows or columns) → 0

as n → ∞ if p ≥ (1+ϵ) log(n)
n

.

Proof. Let r1, ..., rn be the rows of M , Ai,j = {ri = rj}, and let N =
∑

i ̸=j 1Ai,j
.

Then,

E[N ] =

(
n

2

)
P(A1,2) =

(
n

2

)
(p2 + (1− p)2)n

=

(
n

2

)
(1− p)2n

(
1 +

p2

(1− p)2

)n

≤
(
n

2

)
e−2np+4np2 → 0 as n → ∞,

when p ≥ (1 + ϵ) log(n)
n

. Since the columns have the same distribution as the

rows, the result follows by Markov’s inequality.

Lemma 5. Let M be an n × n binary matrix with shredded column and row

collections given by γ1, ..., γn and ρ1, ..., ρn respectively, and let Mσ,τ denote the

matrix obtained from permuting the rows by σ and the columns by τ , Mσ,τ =

(mσ(i),τ(j))
n
i,j=1 for a particular pair (σ, τ) ∈ S2

n \ {(Id, Id)} (here Id just means

the identity permutation that sends each i ∈ [n] to itself). Then,

{M is not reconstructible} =
⋃

(σ,τ)∈S2
n

(σ,τ) ̸=(Id,Id)

{Mσ,τ = M}. (5)

Proof. Suppose that M is not reconstructible. Then, there exists two distinct
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pairs of permutations (σ, τ) and (σ′, τ ′) that satisfy (1). That is, there is some

matrix M ′ (possibly equal to M) such that

M =


ρσ1

...

ρσn

 =
[
γτ1 · · · γτn

]
, and M ′ =


ρσ′

1

...

ρσ′
n

 =
[
γτ ′1 · · · γτ ′n

]
.

Suppose that r1, ..., rn and c1, ..., cn are the rows and columns in their original,

pre-shredding order. Applying σ′◦σ−1 to (r1, ..., rn) and τ ◦(τ ′)−1 to (c1, ..., cn)

must necessarily send M back to itself:

(i) Applying σ−1 to the rows of M yields the matrix associated with the

shredded rows R = [ρ1 · · · ρn]T ;

(ii) Applying σ′ to R gives [ρσ′
1
· · · ρσ′

n
]T = [γτ ′1 · · · γτ ′n ] = M ′ by the above

identity;

(iii) Applying (τ ′)−1 to M ′ brings us to the matrix associated with the shred-

ded columns C = [γ1 · · · γn];

(iv) Finally, applying τ to C brings us back to our original matrix [γτ1 · · · γτn ] =

M .

Both of these two permutation pairs cannot be the identity because we as-

sume the pairs are distinct, and so the inclusion ⊆ holds in (5).

For the other direction in (5) we suppose we have (σ, τ) ∈ S2
n \ (Id, Id)

such that Mσ,τ = M . Then if we are given an arbitrary shredded ordering

γ1, ..., γn and ρ1, ..., ρn, we can by assumption always apply (σ, τ) to the cor-

rect ordering to obtain a new non-equal ordering that is valid. Hence, M is

not reconstructible.
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Lemma 6. Suppose X ∼ binomial(n, p) and that np ≥ 16. Then,

E

[
1√

X ∨ 1

]
≤ 3

√
np

.

Proof. Splitting the expectation into two pieces and then applying the Chebyshev-

Cantelli inequality gives us the upper bound

E

[
1√

X ∨ 1

]
≤
√

2

np
+P

(
X ≤ np

2

)
≤
√

2

np
+

np(1− p)

np(1− p) + (np
2
)2
.

Utilizing the fact that np ≥ 16 we can see that

np(1− p)

np(1− p) + (np
2
)2

≤ 4

4 + np
≤ 1

√
np

,

which combined with the above gives

E

[
1√

X ∨ 1

]
≤

√
2

√
np

+
1

√
np

≤ 3
√
np

.

Lemma 7. Let σ, τ be independent uniform permutations over Sn \ {Id}, and

let c1(σ), c1(τ) be the number of singleton cycles in both σ and τ respectively.

Then, for any ϵ > 0,

an := (n!)2E
[
e−pn2+pc1(σ)c1(τ)e4(n

2−c1(σ)c1(τ))p2
]
→ 0

as n → ∞ for
(2 + ϵ) log(n)

n
≤ p ≤ 17 log2(n)

n(log log(n))2
. (6)
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Proof. First, we write the expression in the statement of the lemma as

an =
∑

0≤x,y≤n−1

(n!)2e−pn2+pxy+4(n2−xy)p2
P(c1(σ) = x)P(c1(τ) = y).

We split off the terms with xy = 0 and upper-bound by

an ≤2n(n!)2 exp
{
−pn2 + 4n2p2

}
+ C

∑
1≤x,y≤n−1

(n!)2

x!y!
exp

{
−pn2 + pxy + 4(n2 − xy)p2

}
,

for some C > 0 such that P(c1(σ) = x) ≤
√
C 1

x!
. Such a C exists because

P(c1(σ
′) = x) ∼ 1

x!
for σ′ ∈ Sn uniformly drawn (see Arratia and Tavaré

(1992) and Ford (2022) for a discussion of random permutation statistics).

One can see immediately that the first term tends to 0 for p in the described

range, so we are left with the second term. Relabelling x = n−k and y = n−ℓ

we can upper bound the sum by

C
∑

1≤k,ℓ≤n−1

nk+ℓ exp {−p(n(k + ℓ)− kℓ)(1 + o(1))}

≤ C
∑

1≤ℓ≤n−1

(
n sup

0≤k≤n
fℓ(k)

)
,

where fℓ(k) = e−((np−log(n))(k+ℓ)−pkℓ)(1+o(1)) with k now being allowed to take

on real values. To find max0≤k≤n fℓ(k) it suffices to find min0≤k≤n((np −

log(n))(k + ℓ) − pkℓ) := min0≤k≤n gℓ(k). Since gℓ(k) is linear in k it is mono-

tone, and so

min
0≤k≤n

gℓ(k) = min

{
(np− log(n))ℓ, (n2p− n log(n)− ℓ log(n))

}
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≥ min

{
(1 + ϵ) log(n)ℓ, ϵn log(n)

}
.

The above inequality uses the assumptions on p from (6). Combining this

bound with (??) gives

an ≤ C
∑

1≤ℓ≤n−1

n−ϵℓ(1+o(1)) + C
∑

1≤ℓ≤n−1

n−nϵ(1+o(1))−1 = o(1).

7 Future research

As this is the first work exploring this model, there are several future avenues

of research.

Suppose that our matrix M , instead of being drawn from a distribution

where each entry is 1 with probability p, is drawn from a distribution that

is uniform over all matrices with column and row weights equal to d. For

which values of d is a reconstruction of M possible?

Suppose that, instead of being given all of R(M) and C(M) to use as

information for reconstruction, we are only given sub-multisets of the two,

where the number of vectors given is a binomial(n, q) random variable. For

what range of q and p is it possible to reconstruct M? This particular question

was also posed in Balister, Kronenberg, et al. (2024).

Another natural extension is to consider the case where our entries are

no longer binary, but are rather drawn from the set {1, ..., k} for some k ≥ 3

with some distribution (p1, ..., pk). Can one find distinct regions of the unit

k-simplex for which matrix reconstruction is possible? This is similar to the

questions about the reconstruction of k-colourings addressed in Demidovich,
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Panichkin, and Zhukovskii (2023). An additional extension that could be

borrowed from Demidovich, Panichkin, and Zhukovskii (2023) is to study

the case when M is not an n × n matrix, but instead, a higher dimensional

equal-sized array M with nk elements, with k > 2, where every entry is still

independently 1 with probability p and 0 with probability 1 − p. For these

cases, one could investigate the shredded reconstruction problem with many

different forms of given information. For example, if we denote the i-th row

in a k = 2 matrix by (i, ∗). where the wildcard ∗ matches any integer in

{1, . . . , n}, then the problem dealt with in this paper is when all (i, ∗) and

(∗, j) are given. For general k, we can be given between 1 and k − 1 wild-

cards in arbitrary positions. When k = 3, for example, we could be given

row-like chains like (i, j, ∗), or slabs like (∗, j, ∗), or combinations of both.
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labeling of Erdős–Rényi random graphs. arXiv: 2211.16454 [math.PR].

Harary, Frank (1974). “A survey of the reconstruction conjecture”. In: Graphs

and combinatorics (Proc. Capital Conf., George Washington Univ., Washing-

ton, D.C., 1973). Vol. 406. Lecture Notes in Math. Springer, Berlin, pp 18–

28.

Harary, Frank and Michael Plantholt (1985). “The graph reconstruction num-

ber”. In: J. Graph Theory 9.4, pp. 451–454. ISSN: 0364-9024,1097-0118.

39

https://arxiv.org/abs/2308.01671
https://arxiv.org/abs/2208.09876
https://arxiv.org/abs/2205.01327
https://doi.org/10.1089/cmb.1994.1.105
https://doi.org/10.19086/da.38090
https://doi.org/10.1214/22-ecp445
https://doi.org/10.1214/22-ecp445
https://doi.org/10.1214/22-ecp445
https://arxiv.org/abs/2211.16454


DOI: 10.1002/jgt.3190090403. URL: https://doi.org/10.1002/jgt.

3190090403.

Huang, Han and Konstantin Tikhomirov (2022). Shotgun assembly of unla-
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