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Abstract. Suppose that binary classification is done by a tree method
in which the leaves of a tree correspond to a partition of d-space. Within
a partition, a majority vote is used. Suppose furthermore that this tree
must be constructed recursively by implementing just two functions, so
that the construction can be carried out in parallel by using “cells”: first
of all, given input data, a cell must decide whether it will become a leaf
or an internal node in the tree. Secondly, if it decides on an internal
node, it must decide how to partition the space linearly. Data are then
split into two parts and sent downstream to two new independent cells.
We discuss the design and properties of such classifiers.

1 Introduction

We explore in this note a new way of dealing with the supervised classification
problem, inspired by greedy approaches and the divide-and-conquer philosophy.
Our point of view is novel, but has a wide reach in a world in which parallel
and distributed computation are important. In the short term, parallelism will
take hold in massive data sets and complex systems and, as such, is one of the
exciting questions that will be asked to the statistics and machine learning fields.

The general context is that of classification trees, which make decisions by
recursively partitioning R

d into regions, sometimes called cells. In the model we
promote, a basic computational unit in classification, a cell, takes as input train-
ing data, and makes a decision whether a majority rule should be locally applied.
In the negative, the data should be split and each part of the partition should
be transmitted to another cell. What is original in our approach is that all cells
must use exactly the same protocol to make their decision—their function is
not altered by external inputs or global parameters. In other words, the decision
to split depends only upon the data presented to the cell, independently of the
overall edifice. Classifiers designed according to this autonomous principle will
be called cellular tree classifiers, or simply cellular classifiers.

Decision tree learning is a method commonly used in data mining (see, e.g.,
[27]). For example, in CART (Classification and Regression Trees, [5]), splits are
made perpendicular to the axes based on the notion of Gini impurity. Splits are
performed until all data are isolated. In a second phase, nodes are recombined
from the bottom-up in a process called pruning. It is this second process that
makes the CART trees non-cellular, as global information is shared to manage
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the recombination process. Quinlan’s C4.5 [26] also prunes. Others split until all
nodes or cells are homogeneous (i.e., have the same class)—the prime example is
Quinlan’s ID3 [25]. This strategy, while compliant with the cellular framework,
leads to non-consistent rules, as we point out in the present paper. In fact, the
choice of a good stopping rule for decision trees is very hard—we were not able
to find any in the literature that guarantee convergence to the Bayes error.

2 Tree Classifiers

In the design of classifiers, we have an unknown distribution of a random pro-
totype pair (X, Y ), where X takes values in R

d and Y takes only finitely many
values, say 0 or 1 for simplicity. Classical pattern recognition deals with pre-
dicting the unknown nature Y of the observation X via a measurable classifier
g : Rd → {0, 1}. We make a mistake if g(X) differs from Y , and the probability
of error for a particular decision rule g is L(g) = P{g(X) �= Y }. The Bayes
classifier

g�(x) =

{
1 if P{Y = 1|X = x} > P{Y = 0|X = x}
0 otherwise

has the smallest probability of error, that is

L� = L(g�) = inf
g:Rd→{0,1}

P{g(X) �= Y }

(see, for instance, Theorem 2.1 in [7]). However, most of the time, the distribution
of (X, Y ) is unknown, so that the optimal decision g� is unknown too. We do
not consult an expert to try to reconstruct g�, but have access to a database
Dn = (X1, Y1), . . . , (Xn, Yn) of i.i.d. copies of (X, Y ), observed in the past. We
assume that Dn and (X, Y ) are independent. In this context, a classification
rule gn(x;Dn) is a Borel measurable function of x and Dn, and it attempts to
estimate Y from x and Dn. For simplicity, we suppress Dn in the notation and
write gn(x) instead of gn(x;Dn).

The probability of error of a given classifier gn is the random variable

L(gn) = P{gn(X) �= Y |Dn},

and the rule is consistent if

lim
n→∞EL(gn) = L�.

It is universally consistent if it is consistent for all possible distributions of
(X, Y ). Many popular classifiers are universally consistent. These include sev-
eral brands of histogram rules, k-nearest neighbor rules, kernel rules, neural
networks, and tree classifiers. There are too many references to be cited here,
but the monographs by [7] and [15] will provide the reader with a comprehensive
introduction to the domain and a literature review.
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Fig. 1. A binary tree (left) and the corresponding partition (right)

Trees have been suggested as tools for classification for more than thirty years.
We mention in particular the early work of Fu [36, 1, 21, 18, 24]. Other references
from the 1970s include [20, 3, 23, 30, 34, 12, 8]. Most influential in the classi-
fication tree literature was the CART proposal by [5]. While CART proposes
partitions by hyperrectangles, linear hyperplanes in general position have also
gained in popularity—the early work on that topic is by [19], and [22]. Additional
references on tree classification include [14, 2, 16, 17, 35, 33, 31, 6, 9, 10, 32, 13].

3 Cellular Trees

In general, classification trees partition R
d into regions, often hyperrectangles

parallel to the axes (an example is depicted in Figure 1). Of interest in this
article are binary trees, where each node has exactly 0 or 2 children. If a node u
represents the set A and its children u1, u2 represent A1, A2, then it is required
that A = A1 ∪ A2 and A1 ∩ A2 = ∅. The root of the tree represents R

d, and
the terminal nodes (or leaves), taken together, form a partition of Rd. If a leaf
represents region A, then the tree classifier takes the simple form

gn(x) =

{
1 if

∑n
i=1 1[Xi∈A,Yi=1] >

∑n
i=1 1[Xi∈A,Yi=0], x ∈ A

0 otherwise.

That is, in every leaf region, a majority vote is taken over all (Xi, Yi)’s with Xi’s
in the same region. Ties are broken, by convention, in favor of class 0.

The tree structure is usually data-dependent, and indeed, it is in the construc-
tion itself where different trees differ. Thus, there are virtually infinitely many
possible strategies to build classification trees. Nevertheless, despite this great
diversity, all tree species end up with two fundamental questions at each node:
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① Should the node be split?
② In the affirmative, what are its children?

These two questions are typically answered using global information on the
tree, such as, for example, a function of the data Dn, the level of the node within
the tree, the size of the data set and, more generally, any parameter connected
with the structure of the tree. This parameter could be, for example, the total
number k of cells in a k-partition tree or the penalty term in the pruning of the
CART algorithm (e.g., [5] and [11]).

Our cellular trees proceed from a different philosophy. In short, a cellular
tree should, at each node, be able to answer questions ① and ② using local
information only, without any help from the other nodes. In other words, each
cell can perform as many operations as it wishes, provided it uses only the data
that are transmitted to it, regardless of the general structure of the tree. Just
imagine that the calculations to be carried out at the nodes are sent to different
computers, eventually asynchronously, and that the system architecture is so
complex that computers do not communicate. Thus, once a computer receives
its data, it has to make its own decisions on ① and ② based on this data subset
only, independently of the others and without knowing anything of the overall
edifice. Once a data set is split, it can be given to another computer for further
splitting, since the remaining data points have no influence.

Formally, a cellular binary classification tree is a machine that partitions the
space recursively in the following manner. With each node we associate a subset
of Rd, starting with R

d for the root node. We consider binary tree classifiers
based on a class C of possible Borel subsets of Rd that can be used for splits. A
typical example of such a class is the family of all hyperplanes, or the class of all
hyperplanes that are perpendicular to one of the axes. Higher order polynomial
splitting surfaces can be imagined as well. The class is parametrized by a vector
σ ∈ R

p. There is a splitting function f(x, σ), x ∈ R
d, σ ∈ R

p, such that R
d is

partitioned into A = {x ∈ R
d : f(x, σ) ≥ 0} and B = {x ∈ R

d : f(x, σ) < 0}.
Formally, a cellular split can be viewed as a family of measurable mappings
(σm)m from (Rd × {0, 1})m to R

p. In this model, m is the size of the data set
transmitted to the cell. Thus, for each possible input size m, we have a map. In
addition, there is a family of measurable mappings (θm)m from (Rd × {0, 1})m
to {0, 1} that indicate decisions: θm = 1 indicates that a split should be applied,
while θm = 0 corresponds to a decision not to split. In that case, the cell acts
as a leaf node in the tree. We note that (θm)m and (σm)m correspond to the
decisions given in ① and ②.

Let the set data set be Dn. If θ(Dn) = 0, the root cell is final, and the space
is not split. Otherwise, Rd is split into

A =
{
x ∈ R

d : f (x, σ(Dn)) ≥ 0
}

and B =
{
x ∈ R

d : f (x, σ(Dn)) < 0
}
.

The data Dn are partitioned into two groups–the first group contains all (Xi, Yi),
i = 1, . . . , n, for which Xi ∈ A, and the second group all others. The groups are
sent to child cells, and the process is repeated. When x ∈ R

d needs to be clas-
sified, we first determine the unique leaf set A(x) to which x belongs, and then
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take votes among the {Yi : Xi ∈ A(x), i = 1, . . . , n}. Classification proceeds by
a majority vote, with the majority deciding the estimate gn(x). In case of a tie,
we set gn(x) = 0.

A cellular binary tree classifier is said to be randomized if each node in the
tree has an independent copy of a uniform [0, 1] random variable associated with
it, and θ and σ are mappings that have one extra real-valued component in
the input. For example, we could flip an unbiased coin at each node to decide
whether θm = 0 or θm = 1.

4 A Consistent Cellular Tree Classifier

At first sight, it appears that there are no universally consistent cellular tree
classifiers. Consider for example complete binary trees with k full levels, i.e.,
there are 2k leaf regions. We can have consistency when k is allowed to depend
upon n. An example is the median tree (see Section 20.3 in [7]). When d = 1,
split by finding the median element among the Xi’s, so that the child sets have
cardinality given by 	(n− 1)/2
 and �(n− 1)/2�, where 	.
 and �.� are the floor
and ceiling functions. The median itself does stay behind and is not sent down to
the subtrees, with an appropriate convention for breaking cell boundaries as well
as empty cells. Keep doing this for k rounds—in d dimensions, one can either
rotate through the coordinates for median splitting, or randomize by selecting
uniformly at random a coordinate to split orthogonally.

This rule is known to be consistent as soon as the marginal distributions of X
are nonatomic, provided k → ∞ and k2k/n → 0. However, this is not a cellular
tree classifier. While we can indeed specify σm, it is impossible to define θm
because θm cannot be a function of the global value of n. In other words, if we
were to apply median splitting and decide to split for a fixed k, then the leaf
nodes would all correspond to a fixed proportion of the data points. It is clear
that the decisions in the leaves are off with a fair probability if we have, for
example, Y independent of X and P{Y = 1} = 1/2. Thus, we cannot create a
cellular tree classifier in this manner.

In view of the preceding discussion, it seems paradoxical that there indeed
exist universally consistent cellular tree classifiers. (We note here that we abuse
the word “universal”—we will assume throughout, to keep the discussion at a
manageable level, that the marginal distributions of X are nonatomic. But no
other conditions on the joint distribution of (X, Y ) are imposed.) Our construc-
tion follows the median tree principle and uses randomization. The original work
on the solution appears in [4].

From now on, to keep things simple, it is assumed that the marginal dis-
tributions of X are nonatomic. The cellular splitting method σm described in
this section mimics the median tree classifier discussed above. We first choose
a dimension to cut, uniformly at random from the d dimensions, as rotating
through the dimensions by level number would violate the cellular condition.
The selected dimension is then split at the data median, just as in the classical
median tree. Repeating this for k levels of nodes leads to 2k leaf regions. On any
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path of length k to one of the 2k leaves, we have a deterministic sequence of car-
dinalities n0 = n(root), n1, n2, . . . , nk. We always have ni/2 − 1 ≤ ni+1 ≤ ni/2.
Thus, by induction, one easily shows that, for all i,

n

2i
− 2 ≤ ni ≤ n

2i
.

In particular, each leaf has at least max(n/2k − 2, 0) points and at most n/2k.
The novelty is in the choice of the decision function. This function ignores the
data altogether and uses a randomized decision that is based on the size of the
input. More precisely, consider a nonincreasing function ϕ : N → (0, 1] with
ϕ(0) = ϕ(1) = 1. Cells correspond in a natural way to sets of Rd. So, we can
and will speak of a cell A, where A ⊂ R

d. The number of data points in A is
denoted by N(A):

N(A) =

n∑
i=1

1[Xi∈A].

Then, if U is the uniform [0, 1] random variable associated with the cell A and
the input to the cell is N(A), the stopping rule ① takes the form:

① Put θ = 0 if

U ≤ ϕ (N(A)) .

In this manner, we obtain a possibly infinite randomized binary tree classifier.
Splitting occurs with probability 1 − ϕ(m) on inputs of size m. Note that no
attempt is made to split empty sets or singleton sets. For consistency, we need
to look at the random leaf region to which X belongs. This is roughly equivalent
to studying the distance from that cell to the root of the tree.

In the sequel, the notation un = o(vn) (respectively, un = ω(vn) and un =
O(vn)) means that un/vn → 0 (respectively, vn/un → 0 and un ≤ Cvn for some
constant C) as n → ∞. Many choices ϕ(m) = o(1), but not all, will do for us.
The next lemma makes things more precise.

Lemma 1. Let β ∈ (0, 1). Define

ϕ(m) =

{
1 if m < 3

1/logβ m if m ≥ 3.

Let K(X) denote the random path distance between the cell of X and the root of
the tree. Then

lim
n→∞P {K(X) ≥ kn} =

{
0 if kn = ω(logβ n)

1 if kn = o(logβ n).

Proof. Let us recall that, at level k, each cell of the underlying median tree
contains at least max(n/2k − 2, 0) points and at most n/2k. Since the function
ϕ(.) is nonincreasing, the first result follows from this:



14 G. Biau and L. Devroye

P {K(X) ≥ kn} ≤
kn−1∏
i=0

(
1− ϕ

(	n/2i
))

≤ exp

(
−

kn−1∑
i=0

ϕ
(	n/2i
)

)

≤ exp (−knϕ(n)) .

The second statement follows from

P {K(X) < kn} ≤
kn−1∑
i=0

ϕ
(�n/2i − 2�) ≤ knϕ

(�n/2kn�) ,
valid for all n large enough since n/2kn → ∞ as n → ∞. ��
Lemma 1, combined with the median tree consistency result of [7], suffices to
establish consistency of the randomized cellular tree classifier.

Theorem 1. Let β be a real number in (0, 1). Define

ϕ(m) =

{
1 if m < 3

1/logβ m if m ≥ 3.

Let gn be the associated randomized cellular binary tree classifier. Assume that
the marginal distributions of X are nonatomic. Then the classification rule gn
is consistent:

lim
n→∞EL(gn) = L�.

Proof. By diam(A) we mean the diameter of the cell A, i.e., the maximal distance
between two points of A. We recall a general consistency theorem for partitioning
classifiers whose cell design depends on the Xi’s only (see Theorem 6.1 in [7]).
According to this theorem, such a classifier is consistent if both

1. diam(A(X)) → 0 in probability as n → ∞, and
2. N(A(X)) → ∞ in probability as n → ∞,

where A(X) is the cell of the random partition containing X.
Condition 2. is proved in Lemma 1. Notice that

N (A(X)) ≥ n

2K(X)
− 2

≥ 1[K(X)<log(β+1)/2 n]

(
n

2log
(β+1)/2 n

− 2

)

= ω(1)1[K(X)<log(β+1)/2 n].

Therefore, by Lemma 1, N (A(X)) → ∞ in probability as n → ∞.
To show that diam(A(X)) → 0 in probability, observe that on a path of length

K(X), the number of times the first dimension is cut is binomial (K(X), 1/d).
This tends to infinity in probability. Following the proof of Theorem 20.2 in [7],
the diameter of the cell of X tends to 0 in probability with n. Details are left to
the reader. ��
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Let us finally take care of the randomization. Can one do without randomization?
The hint to the solution of that enigma is in the hypothesis that the data elements
in Dn are i.i.d. The median classifier does not use the ordering in the data. Thus,
one can use the randomness present in the permutation of the observations, e.g.,
the �-th components of the Xi’s can form n! permutations if ties do not occur.
This corresponds to (1 + o(1))n log2 n independent fair coin flips, which are at
our disposal. Each decision to split requires on average at most 2 independent
bits. The selection of a random direction to cut requires no more than 1+ log2 d
independent bits. Since the total tree size is, with probability tending to 1,

O(2log
β+ε n) for any ε > 0, a fact that follows with a bit of work from summing

the expected number of nodes at each level, the total number of bits required to
carry out all computations is

O
(
(3 + log2 d)2

logβ+ε n
)
,

which is orders of magnitude smaller than n provided that β+ε < 1. Thus, there
is sufficient randomness at hand to do the job. How it is actually implemented
is another matter, as there is some inevitable dependence between the data sets
that correspond to cells and the data sets that correspond to their children. We
will not worry about the finer details of this in the present paper.
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