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Abstract

We study the connectivity properties of random Bluetooth graphs that model certain “ad
hoc” wireless networks. The graphs are obtained as “irrigation subgraphs” of the well-known
random geometric graph model. There are two parameters that control the model: the radius r
that determines the “visible neighbors” of each vertex and the number of edges c that each vertex
is allowed to send to these. The randomness comes from the underlying distribution of vertices
in space and from the choices of each vertex. We prove that no connectivity can take place
with high probability for a range of parameters r, c and completely characterize the connectivity
threshold (in c) for values of r close the critical value for connectivity in the underlying random
geometric graph.

1 Introduction

It is sometimes necessary to sparsify a network: given a connected graph, one wants to extract a
sparser yet connected subgraph. In general, the protocol should be distributed, in that it should not
involve any global optimization or coordination for obvious scaling reasons. The problem arises for
instance in the formation of Bluetooth ad-hoc or sensor networks [24], but also in settings related
to information dissemination (broadcast or rumour spreading) [4, 8].

In this paper, we consider the following simple and distributed algorithm for graph sparsifica-
tion. Let Gn = (V,E) be a finite undirected graph on |V | = n vertices and edge set E. A random
irrigation subgraph Sn = (V, Ê) of Gn is obtained as follows: Let 2 ≤ cn < n be a positive integer.
For every vertex v ∈ V , we pick randomly and independently, without replacement, cn edges from
E, each adjacent to v. These edges form the set of edges Ê ⊂ E of the graph Sn (if the degree of v
in Gn is less than cn, all edges adjacent to v belong to Ê). The main question is how large cn needs
to be so that the graph Sn is connected, with high probability. Naturally, the answer depends on
what the underlying graph Gn is.

When Gn = Kn is the complete graph then for constant cn = c ≥ 2, Fenner and Frieze [11]
proved that Sn is c-connected (for both vertex- and edge-connectedness) with high probability.
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†The fourth author acknowledges support by the Spanish Ministry of Science and Technology grant MTM2009-

09063 and by the PASCAL Network of Excellence under EC grant no. 506778.
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This model is also known as the random c-out graph. In a subsequent paper, Fenner and Frieze
[12] considered the probability of existence of a Hamiltonian cycle. They showed that there exists
c ≤ 23 such that a Hamiltonian cycle exists with probability tending to 1 as n tends to infinity. In
a recent article Bohman and Frieze [1] proved that c = 3 suffices.

Apart from the complete graph, the most extensively studied case, and arguably the most
important for applications, is when Gn = Gn(rn) is a random geometric graph defined as follows:
Let X1, . . . , Xn be independent, uniformly distributed random points in the unit cube [0, 1]d. The
set of vertices of the graph Gn(rn) is V = {1, . . . , n} while two vertices i and j are connected by an
edge if and only if the Euclidean distance between Xi and Xj does not exceed a positive parameter
rn, i.e., E = {(i, j) : ‖Xi −Xj‖ < rn} where ‖·‖ denotes the Euclidean norm. Many properties of
Gn(rn) are well understood. We refer to the monograph of Penrose [21] for a survey. The graph
Sn = Sn(rn, cn) was introduced in the context of the Bluetooth network [24], and is sometimes
called the Bluetooth or scatternet graph with parameters n, rn, and cn. The model was introduced
and studied in [6, 10, 13, 19, 22].

We are interested in the behavior of the graph Sn(rn, cn) for large values of n. When we say
that a property of the graph holds with high probability (whp), we mean that the probability that
the property does not hold is bounded by a function of n that goes to zero as n→∞. Equivalently
we say that a sequence of random events En occurs with high probability if limn→∞P {En} = 1.
There are two independent sources of randomness in the definition of the random graph Sn(rn, cn).
One comes from the random underlying geometric graph Gn(rn) and the other from the choice of
the cn neighbors of each vertex.

Since we are interested in connectivity of Sn(rn, cn), a minimal requirement is that Gn(rn)
should be connected. It is well known that the connectivity threshold of Gn(rn) is γ∗ d

√
log n/n

where γ∗ = 2 d
√

1/(2dθd), where θd = VolB(0, 1) is the Lebesgue measure of the unit ball in Rd.
See [15, 20] or Theorem 13.2 in [21]. This means that Gn is connected with high probability if rn is
at least γ d

√
log n/n where γ > γ∗ while Gn is disconnected with high probability if rn is less than

γ d
√

log n/n where now γ < γ∗. We always consider values of rn above this level.

When rn = r is constant, the geometry has very little influence: For instance, Dubhashi,
Johansson, Häggström, Panconesi, and Sozio [9] showed that when rn = r is independent of n,
Sn(r, 2) is connected with high probability. The case when rn is small is a more delicate issue,
since the geometry now plays a crucial role. Crescenzi, Nocentini, Pietracaprina, and Pucci [6]
proved that in dimension d = 2 there exist constants γ1, γ2 such that if rn ≥ γ1

√
log n/n and

cn ≥ γ2 log(1/rn), then Sn(rn, cn) is connected with high probability.

Arguably the most interesting values for rn are those just above the connectivity threshold
for the underlying graph Gn(rn), that is, when rn is proportional to d

√
log n/n. The results of

Crescenzi et al. [6] show that for such values of rn, connectivity of Sn(rn, cn) is guaranteed, with
high probability, when cn is a sufficiently large constant multiple of log n. In this paper we show
that this bound can be improved substantially. For the given choice of rn, there is a critical cn for
connectivity. It is quite easy to show that no connectivity can take place (whp) for constant cn, and
that for cn ≥ λ log n for a sufficiently large λ, the graph is connected whp (because the maximal
cardinality of any ball of radius r is whp O(log n)). The objective of this paper is to nail down the
precise threshold. Our main result is the following theorem.

Theorem 1. There exists a finite constant γ∗∗, depending on d only, such that for all γ ≥ γ∗∗, and
with

rn = γ

(
log n

n

)1/d

,
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we have, for all ε ∈ (0, 2),

lim
n→∞

P {Sn(rn, cn) is connected} =

1 if cn ≥
√

(2+ε) logn
log logn ,

0 if cn ≤
√

(2−ε) logn
log logn .

The proof shows that connectivity occurs at the same threshold for the presence of (c+ 1)-cliques.
It might be a bit surprising that the threshold is virtually independent of γ. The threshold (in cn)
is also independent of the dimension d. This is probably less surprising since cn counts a number of
neighbors and the number of visible vertices in a ball is of order log n, independently of d, for the
range of rn we consider.

The structure of the paper is the following: In Section 2 we prove a lower bound on the
critical value of cn needed to obtain a connected graph whp given a value of rn in the range where
connectivity could be achieved. In Section 3 we show that Sn(rn, cn) is connected whp where rn is
proportional to d

√
log n/n and cn is just above the corresponding value obtained in Section 2 nailing

down the precise threshold in that case. Finally in Section 4 we obtain an upper bound on the
diameter of Sn(rn, cn) for the same values of rn as in Section 3 but with a slightly larger value of cn.
In particular, we show that if cn is a sufficiently large constant times

√
log n then the diameter of

Sn(rn, cn) is O(1/rn) which is the same order of magnitude as for the underlying random geometric
graph.

A final notational remark: To ease the reading for the rest of the paper we omit the subscript
n in the parameters r and c as well as in most of the events and sets we define that depend on n.

2 A lower bound for connectivity on the whole range

The aim of this section is to prove a lower bound on the value of c needed to obtain connectivity
whp for a given value of r. First we need a lemma on the regularity of uniformly distributed points.
Let N(A) =

∑n
i=1 1[Xi∈A] be the number of vertices in a set A ⊂ [0, 1]d. We consider γ∗∗ > γ∗ to

provide a sufficient margin of play. It is an interesting problem to consider smaller values of γ. We
expect that the results also hold for that case. However, the methods that we use don’t allow us to
go closer to the critical radius for connectivity.

Lemma 1 (Ball density Lemma). Let γ∗∗ = 4 d
√

2/θd, where θd is the volume of the unit ball in
Rd. Then for each γ > γ∗∗, there exist constants 0 < α# < β# < ∞ such that the following event,
which we denote by D#, occurs whp:

α#nr
d ≤ N(B(Xi, r)) ≤ β#nr

d, and
2dα#nr

d ≤ N(B(Xi, 2r)) ≤ 2dβ#nr
d, and

2−dα#nr
d ≤ N(B(Xi, r/2)) ≤ 2−dβ#nr

d

for every 1 ≤ i ≤ n.

Proof. We use the binomial Chernoff bound: If ξ ∼ Binomial(n, p) and t > 0 then

min
(
P {ξ ≤ tnp} ,P {ξ ≥ tnp}

)
≤ exp

(
t− np− t log

(
t

np

))
= exp

(
f(t)np

)
,

where we write f(x) = x− 1− x log x, for reference see [5, 17].
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The expected cardinality of the set of vertices in a ball B(x, r) is θ(x)nrd, where θ(x) ∈
[θd/2

d, θd] takes care of the border effect and θd is the volume of the unit ball in dimension d.
Therefore the number of vertices N(B(Xi, r)) is stochastically between ζ1 ∼ Binomial(n, θdr

d/2d)
and ζ2 ∼ Binomial(n, θdr

d). Thus, we have for any 1 ≤ i ≤ n

P
{
N(B(Xi, r)) ≤ α#nr

d
}
≤ P

{
ζ1 ≤ α#nr

d
}
≤ exp

(
f

(
2dα#

θd

)
θdnr

d

2d

)
,

P
{
N(B(Xi, r)) ≥ β#nr

d
}
≤ P

{
ζ2 ≥ β#nr

d
}
≤ exp

(
f

(
β#

θd

)
θdnr

d

)
.

We choose α# < θd/2
d so that f(2dα#/θd) = −1/2 and β# > θd so that f(β#/θd) = −1/2. Define

the event Di = {N(B(Xi, r)) ∈ [α#nr
d, β#nr

d]}. We can apply a union bound to obtain

P

{
n⋃
i=1

Dc
i

}
≤

n∑
i=1

P {Dc
i} ≤

n∑
i=1

2 exp

(
−θdnr

d

2 · 2d

)
≤ 2n exp

(
− θdγ

d

2 · 2d
log n

)
→ 0,

if γ > 2 d
√

2/θd. Repeating the argument for balls of radius 2r and r/2 we need γ > γ∗∗ where
γ∗∗ = 4 d

√
2/θd.

The next theorem shows that for any value of r above the connectivity threshold of the ran-
dom geometric graph one cannot hope that Sn is connected unless c is at least of the order of√

log n/ log(nrd). In particular, when r is just above the threshold (i.e., it is proportional to
d
√

log n/n) then c must be at least of the order of
√

log n/ log log n. We say that the vertices at
distance less than r from Xi are the visible neighbors of i (i.e., the neighbors of i in Gn) and that
B(Xi, r) is the visibility ball of i. Note that the following result implies the lower bound of Theorem
1.

Theorem 2. Let ε ∈ (0, 1) and λ ∈ [1,∞] be such that

γ∗∗
(

log n

n

)1/d

< r < 1,
log nrd

log logn
→ λ and c =

⌊√
(1− ε)

(
λ

λ− 1/2

)
log n

log nrd

⌋
.

Then Sn(r, c) is not connected whp. (In the case of λ =∞, we define λ/(λ− 1/2) = 1.)

Note that in the range of r considered, we do have λ ≥ 1.

Proof. Note that we can assume log nrd < (1− ε) log n otherwise c = 0 so every vertex is isolated,
the graph is disconnected and there is nothing to prove. We will use this fact at the end of the
proof. We show that there exists an isolated (c+ 1)-clique whp. The proof is an application of the
second moment method. Let F be the random family of subsets of {1, . . . , n} given by

F =
{
Q ⊂ {1, . . . , n} : |Q| = c+ 1, ‖Xi −Xj‖ < r ∀ i, j ∈ Q

}
.

Denote by I(Q) the indicator of the event that the vertices in Q form an isolated clique in Sn. Then
N =

∑
Q∈F I(Q) is the number of isolated (c + 1)-cliques. First we condition on all the vertices

X1, . . . , Xn. The only randomness we consider are the choices of each vertex among their visible
neighbors. Let D# be the event described in Lemma 1 which holds whp. In the following we work
conditionally on X1, . . . , Xn assuming D# holds. Throughout, we use several auxiliary functions φi
with the property that φi(n) = o(log n) for all i = 1, . . . , 8.
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Define I1(Q) as the indicator for the event that no vertex j ∈ Q chooses to link to a vertex
i /∈ Q, and I2(Q) as the indicator for the event that every i /∈ Q avoids choosing the vertices in
Q as an endpoint of any of its c links. Clearly I(Q) = I1(Q)I2(Q). Furthermore, conditionally
on X1, . . . , Xn, the variables I1(Q) and I2(Q) are independent (because they involve the choices of
disjoint sets of indices). On D#,

E {I1(Q) | X1, . . . , Xn} =
∏
i∈Q

c−1∏
k=0

(
c− k

N(B(Xi, r))− k

)

≥

(
c−1∏
k=0

c− k
β#nrd − k

)c+1

≥
(

c!

(β#nrd)c

)c+1

≥
(

c

eβ#nrd

)c2+c

≥ exp
(

(c2 + c)(log c− log nrd)− φ1(n)
)
.

We can write the first equality in the display above because c < α#nr
d for all n sufficiently large.

Let JQ =
{
j ∈ {1, . . . , n} : ∃ i ∈ Q, ‖Xi −Xj‖ < r

}
then we also have

E {I2(Q) | X1, . . . , Xn} ≥
∏
j∈JQ

c−1∏
k=0

(
1− c+ 1

N(B(Xj , r))− k

)

≥

(
c−1∏
k=0

(
1− c+ 1

α#nrd − k

))|JQ|

≥
(

1− 2c

α#nrd

)c|JQ|
≥ exp

(
2dβ#cnr

d log

(
1− 2c

α#nrd

))
≥ exp

(
−4c22dβ#/α#

)
≥ exp

(
−φ2(n)

)
,

where we use the bound |JQ| < N(B(Xi0 , 2r)) < 2dβ#nr
d (if j ∈ JQ then there exists i ∈ Q such

that ‖Xi0 −Xj‖ ≤ ‖Xi0 −Xi‖+ ‖Xi −Xj‖ < 2r). Also, we used the facts that nrd = Ω(log n) and
c2 = O(log n/ log nrd) = o(log n).

Moreover, on D#, we can lower bound the size of F by choosing i0 and counting the sets
Q = {i0, i1, . . . , ic} such that all the points Xik are inside B(Xi0 , r/2) since this implies that all the
distances between them are less than r. Note that this counts each set c+ 1 times. So, we have

|F| ≥ n

c+ 1

(⌈
2−dα#nr

d
⌉

c

)
≥ n

c+ 1

(
2−dα#nr

d

c

)c
≥ exp

(
−c(log c− log nrd) + log n− φ3(n)

)
.
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Thus, the expected number of isolated (c+ 1)-cliques may be lower bounded as

E {N | X1, . . . , Xn} =
∑
Q∈F

E {I(Q) | X1, . . . , Xn}

=
∑
Q∈F

E {I1(Q) | X1, . . . , Xn} ·E {I2(Q) | X1, . . . , Xn}

≥
∑
Q∈F

exp
(

(c2 + c)(log c− log nrd)− φ1(n)− φ2(n)
)

= |F| · exp
(

(c2 + c)(log c− log nrd)− φ1(n)− φ2(n)
)

≥ exp
(
c2(log c− log nrd) + log n− φ1(n)− φ2(n)− φ3(n)

)
= exp

(
c2(log c− log nrd) + log n− φ4(n)

)
when D# holds. Therefore, when λ <∞,

E {N | X1, . . . , Xn} ≥ exp
(
c2(log c− log nrd) + log n− φ4(n)

)
= exp

(
(1− ε)λ log n

(λ− 1/2) log nrd

(
1

2
log logn− log nrd

)
+ log n− φ5(n)

)
= exp

(
(1− ε)λ
λ− 1/2

(
1

2λ
− 1

)
log n+ log n− φ6(n)

)
= exp

(
−(1− ε) log n+ log n− φ6(n)

)
= exp

(
ε log n− φ6(n)

)
→∞,

since φ6(n) = o(log n). When λ =∞, the proof is analogous, if we substitute λ
λ−1/2 by 1 and 1

2λ by
0 in the previous equation.

To finish the proof we need to upper bound the variance N to ensure that N > 0 with high
probability. Note that if Q ∩ Q′ 6= ∅ and Q 6= Q′, then I(Q)I(Q′) = 0 because Q and Q′ cannot
be isolated cliques at the same time. Now, in the case Q ∩Q′ = ∅ the random variables I1(Q) and
I1(Q′) are independent and we obtain, for any X1, X2, . . . , Xn such that D# holds,

E
{
I(Q)I(Q′) | X1, . . . , Xn

}
≤ E

{
I1(Q)I1(Q′) | X1, . . . Xn

}
≤ E {I1(Q) | X1, . . . Xn} ·E

{
I1(Q′) | X1, . . . Xn

}
≤
∏
i∈Q

c−1∏
k=0

c− k
N(B(Xi, r))− k

·
∏
j∈Q′

c−1∏
k=0

c− k
N(B(Xj , r))− k

≤

(
c−1∏
k=0

c− k
α#nrd − k

)2(c+1)

≤
(

c

α#nrd

)2(c2+c)

≤ exp
(

2(c2 + c)(log c− log(α#nr
d))
)
,
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For the variance we have

Var{N | X1, . . . , Xn}

=
∑

Q,Q′∈F
E
{
I(Q)I(Q′) | X1, . . . , Xn

}
−E {I(Q) | X1, . . . , Xn}E

{
I(Q′) | X1, . . . , Xn

}
.

If the vertices in Q and Q′ are far enough apart (i.e., when there is no vertex ` such that both
‖Xi −X`‖, ‖Xj −X`‖ < r for some i ∈ Q and j ∈ Q′) then the choices involved in I(Q) and I(Q′)
are independent. Thus, we need only sum over pairs in

G =
{

(Q,Q′) ∈ F × F : ∃ i0 ∈ Q, j0 ∈ Q′ ‖Xi0 −Xj0‖ < 2r
}
,

since all other terms vanish. Therefore,

Var{N | X1, . . . , Xn}

=
∑

(Q,Q′)∈G

E
{
I(Q)I(Q′) | X1, . . . , Xn

}
−E {I(Q) | X1, . . . , Xn}E

{
I(Q′) | X1, . . . , Xn

}
≤

∑
(Q,Q′)∈G

E
{
I(Q)I(Q′) | X1, . . . , Xn

}
≤ |G| · exp

(
2(c2 + c)(log c− log(α#nr

d))
)
,

≤ exp
(

2c2(log c− log nrd) + (2− ε) log n+ φ7(n)
)
,

= exp
(
ε log n+ φ8(n)

)
,

where we upper bound the size of G by choosing i0 and j0 and counting the sets Q = {i0, i1, . . . , ic}
and Q′ = {j0, j1, . . . , jc} such that all the points Xi for i ∈ Q are inside B(Xi0 , r) (since all of them
have to be at distance r from Xi0) and Xj for j ∈ Q′ are inside B(Xj0 , r). So, on D# we have

|G| ≤ n
⌈
2dβ#nr

d
⌉(⌈β#nr

d
⌉

c

)2

≤ exp
(

log n+ log nrd + o(log n)
)(β#nr

d

c

)2c

≤ exp
(
−2c(log c− log nrd) + (2− ε) log n+ φ7(n)

)
.

The last inequality holds because log nrd < (1−ε) log n by the remark at the beginning of the proof.
Finally, on D#, applying Chebyshev’s inequality we get

P {N = 0 | X1, . . . , Xn} ≤
Var{N | X1, . . . , Xn}
E {N | X1 . . . Xn}2

≤
exp

(
ε log n+ φ8(n)

)
exp

(
2ε log n− φ6(n)

) → 0,

as n→∞. This completes the proof since D# holds whp by Lemma 1.

3 Connectivity near the critical radius

In this section we prove the remaining part of Theorem 1. We consider r = γ
√

log n/n with γ > γ∗∗.
We only need to prove that Sn is connected whp when c is above the threshold since Theorem 2
implies that Sn is disconnected whp when c is below it.
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Theorem 3. Let ε ∈ (0, 2), γ ≥ γ∗∗ and suppose that

r = γ

(
log n

n

)1/d

and c ≥

√
(2 + ε) log n

log log n
,

Then Sn(r, c) is connected whp.

We first give a high-level proof using a combinatorial argument which reduces the problem of
connectivity to the occurrence of four properties that will be shown to hold in a second part.

We tile the unit cube [0, 1]d into cells of side length b1/rc−1. A cell is interconnected and colored
black if all the vertices in it are connected to each other without ever using an edge that leaves the
cell. The other cells are initially colored white. Two cells are connected if they are adjacent (they
share a (d−1)-dimensional face) and there is an edge of Sn that links a vertex in one cell to a vertex
in the other cell. Two cells are ∗-connected if they share at least a corner and there is an edge of
Sn binding one vertex of each cell.

Consider the following events:

(i) All cells in the grid are occupied and connected to all their neighbors. (2d for cells in the
inside, less than 2d for cells on the boundary.)

(ii) The largest ∗-connected component of white cells has cardinality at most q.

(iii) The smallest connected component of Sn is of size at least s.

(iv) Each grid cell contains at most λ log n vertices.

Proposition 4. Suppose that (i)–(iv) above hold. Assuming further that q, s and λ are positive
functions of n such that

q = o

(
1

r1−1/d

)
and

s

λ log n
> qd/(d−1) ,

then, for all sufficiently large n, the graph Sn is connected.

Proof. The proof uses a percolation-style argument on the grid of cells. We define a black connector
as a connected component of black cells that links one side of the cube [0, 1]d to the opposite side.

(a) There exists a black connector in the cell grid graph: Note that by a generalization of the
celebrated argument of Kesten [18], either there is a black connector, or there is a white ∗-connected
component of cells that prevents this connection from happening (one of the two events must occur).
In dimension 2, this blocking ∗-connected component of white cells is a path that separates the two
opposite faces of interest; in dimension d, the blockage must be a (d − 1)-dimensional sheet (see
also [3, 14]). In any case, the ∗-connected component of white cells, if it exists, must be of size at
least r1−d in order to block any black connector. Since the largest ∗-connected component of white
cells has size at most q, and q < r1−d for n large enough, a black connector must exists. The black
components of size less than 1/r are now recolored gray. Note that this leaves at least the black
connector component, of size at least 1/r.

(b) Next we show that all remaining black cells are connected. Note that this implies that the
corresponding vertices of Sn belong to the same connected component. This collection of vertices
of Sn is called the black monster. Assume for a contradiction that there exists two connected
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components of black cells that are not connected together, say K and K ′. Then they must be
separated by a ∗-connected component of white cells, and in particular there must exist some white
cells. Now consider K, one of these two components of black cells. Let ∂K1, . . . , ∂K` be the ∗-
connected components of white cells of the (vertex-) boundary of K in the grid. Each one of these
boundaries separates K from one of the components of the complement of K in the grid, see Lemma
2.1 from [7]. Clearly, one and only one of ∂K1, . . . , ∂K`, without loss of generality ∂K1, suffices to
separate K from K ′, see Figure 1.

K

K ′

∂K3

∂K1

∂K4

∂K2

K∗

Figure 1: The two components K and K ′ separated by the ∗-connected piece of the boundary
∂K1. The boundary of K is colored in gray and ∂K1 in dark gray. The boundary of K ′′ is ∂K1.

By definition, removing ∂K1 from the grid creates some connected components of cells, one of
them containing K and other containing K ′. Let K ′′ be the one containing K ′. Without loss of
generality, we may assume that the size of K ′′ is at most b1/rcd /2 (otherwise we may replace K ′

by K). Note also that K ′′ contains at least 1/r cells, for K ′ itself contains that many cells. By
the isoperimetric theorem on the finite grid {1, . . . , b1/rc}d due to Bollobás and Leader [2], the
(vertex-) boundary of K ′′, ∂K ′′ ⊆ ∂K1 (inside the finite grid) consists of at least Ω(r1/d−1) white
cells. In particular, since ∂K1 is ∗-connected, there exists a ∗-connected component of white cells
containing at least a constant times r1/d−1 cells. By assumption, q = o(r1/d−1), and thus, no such
separating white ∗-connected chain can exist for a sufficiently large n.

(c) Each vertex connects to at least one vertex of the black monster: To prove this, consider any
vertex j, outside of the black monster, and write C for the component of Sn it belongs to. If any
vertex of C lies in the black monster, then j is connected to the black monster and we are done. So
we now assume that all vertices of C belong to white or gray grid cells. Adjacent vertices in C lie in
the same cell, or two ∗-adjacent cells. Let K be the ∗-connected component of all grid cells visited
by vertices of C. Enlarge K by adding all grid cells that reach K via a white ∗-connected chain of
cells. The resulting ∗-connected component of white and gray cells is called K∗, see Figure 2.

By assumption, it contains at least s/(λ log n) cells, since it covers the connected component C

9



C
K

K∗

∂K∗

Figure 2: The component C with its corresponding ∗-connected component of occupied cells K.
We enlarge K by adding all the connected white and gray cells to get K∗. The border cells of K∗

are colored in dark gray.

of Sn (by properties (iii) and (iv)). So we have exhibited a fairly large ∗-connected component of
cells that are not black; the only issue is that it might not be fully white, and we wish to isolate a
large white ∗-connected component is order to invoke property (ii) for a contradiction. Call a cell of
K∗ a border cell if one of its 2d neighbors in the grid is black. Clearly, border cells must be white,
because no gray cell can have a black neighbor. Now, K∗ is surrounded either by border cells, or by
pieces of the boundary of the cube. The argument in (b) shows that there is a component of ∂K∗

containing Ω(|K∗|1−1/d) white cells. By property (ii), this is impossible. This finishes the proof.

To show properties (i) through (iv) we further subdivide each cell into (2d)d cubes of side length
` = (2d b1/rc)−1 which we call “minicells”. We need two auxiliary results, one similar to Lemma 1
for the number of vertices in each minicell, and another about the connectivity of adjacent pairs of
minicells.

Lemma 2 (Cube density Lemma). Grid the cube [0, 1]d using cubes of side length ` = (2d b1/rc)−1.
Let γ∗∗ = 2d d

√
2. Then for each γ > γ∗∗, there exist constants 0 < α� < β� < ∞ such that the

following event, which we denote by D�, occurs whp:

α�n`
d < N(C) < β�n`

d for every cube C.

Proof. Given a fixed cube C, the number of vertices N(C) is distributed as Binomial(n, `d). Thus,
writing f(x) = x− 1− x log x, we have

P
{
N(C) ≤ α�n`d

}
≤ exp

(
f(α�)n`d

)
,

P
{
N(C) ≥ β�n`d

}
≤ exp

(
f(β�)n`d

)
.

10



Choose α� and β� to be the solutions of f(x) = −1/2 smaller and greater than 1 respectively.
Define the event D(C) = {N(C) ∈ [α�n`

d, β�n`
d]}. We can apply a union bound over all the cells

to obtain

P

{⋃
C

D(C)c

}
≤
∑
C

P {D(C)c} ≤
∑
C

2e−n`
d/2 ≤ `−d2e−n`d/2 → 0,

because `−d = O(r−d) = O(n/ log n) and n`d ≥ n(r/2d)d ≥ 2 log n so that e−n`
d/2 = O(1/n).

Lemma 3 (Cube connectivity). With high probability, all minicells are occupied and connected to
their 2d adjacent neighbors.

Proof. From Lemma 2, when the event D� holds all cardinalities of the minicells are at least α�n`
d

(and at most β�n`
d) whp. We condition on any point set with this distributional property, leaving

only the choices of the c neighbors as a random event. Consider two neighboring minicells C and
C ′ in any direction. By the choice of ` we have ‖x− y‖ < r for any x ∈ C and y ∈ C ′.

When D# holds each ball B(Xi, r) has cardinality at most β#nr
d. By independence, the

probability that all vertices in C ′ miss those in C with their c choices is not more than

∏
i∈C′

(
1− α�n`

d

β#nrd

)c
≤
(

1− α�
(2d)dβ#

)cα�n`
d

≤ exp

(
−α2
�cn`

d

(2d)dβ#

)
.

Since there is a total of `−d = O(r−d) = o(n) minicells, the union bound shows that the probability
that two neighboring minicells do not connect tends to zero.

We now show (i) through (iv) in four lemmas, leaving the hardest one, (iii), for last. We show
all these properties with λ a sufficiently large constant depending upon γ, q = 2(log n)2/3, and
s = exp

(
(log n)1/3

)
, leaving wide margins. Properties (i) and (iv) will follow easily from their

minicell related statements above.

Lemma 4 (Part (iv)). Each grid cell contains at most λ log n vertices with high probability, where
λ = β�(2γ)d.

Proof. By Lemma 2 we have that every minicell of side length ` has less than β�n`
d vertices whp.

This implies immediately that every cell contains at most (2d)dβ�n`
d < β�(2γ)d log n vertices.

Lemma 5 (Part (i)). With high probability, all cells in the grid are occupied and connected to their
2d adjacent neighbors.

Proof. It suffices to consider two adjacent minicells in the boundary of the cells.

Lemma 6 (Part (ii)). The largest ∗-connected component of white cells has cardinality at most
q = 2(log n)2/3 whp.

Proof. We start by bounding the number of ∗-connected components of cells of a fixed size k. Fix
an integer ∆ ≥ 2, and let T∆ be the infinite ∆-ary rooted tree (every vertex has ∆ children). Let
Nk(T∆) be the number of subtrees of T∆ containing the root and having exacly k vertices. It is
well-known (see [23], Theorem 5.3.10) that Nk(T∆) = 1

k

(
∆k
k−1

)
≤ (e∆)k−1.

The number of cells ∗-adjacent to any fixed cell is at most 3d, thus the number of ∗-connected
components of size k containing a specified cell is at most (e3d)k−1. To see this it suffices to consider
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a spanning tree of the component and to note that for any graph G with maximum degree ∆, the
number of subtrees with k vertices containing a fixed vertex v is not larger than the corresponding
number in T∆. Overall, the number of ∗-connected components of size k is at most n(e3d)k since
there are at most O(r−d) = o(n) starting cells.

Assume that we can then show that the probability that a cell is white is at most p. In that
case, the probability that there is a ∗-connected component of size k or larger is not more than

(1) n(e3d)kpk,

by the union bound and because the colors of the cells are independent, given the location of the
vertices. If we can show that

p ≤ exp
(
−(log n)1/3

)
then k = 2(log n)2/3 suffices to make the probability bound (1) tend to zero.

We now prove that for n large enough, the probability that a specified cell is white is at most
exp

(
−(log n)1/3

)
. By the preceding arguments, this will complete the proof of the lemma. Recall

that a cell is colored white if the graph induced by the vertices lying inside the cell is not connected.

We subdivide the cell into minicells of side length `. We know from Lemma 3 that all adjacent
minicells are connected whp. Then if every minicell was connected inside, the whole cell would
be black. Therefore, if we can bound the probability of the subgraph inside a minicell being
disconnected by p̂ the probability that the cell is white is p < (2d)dp̂ by a union bound.

Consider now a fixed minicell C and take any vertex v inside. Let V ′ be the subset of the c
neighbors of v that fall in C. Consider then all c choices of the vertices in V ′ that fall in C as well,
and that are not in {v} ∪ V ′. Call that second collection V ′′. We show that with high probability,
all the remaining vertices select at least one vertex from {v} ∪ V ′ ∪ V ′′. Each of the remaining
vertices selects in any of its c choices a vertex in {v} ∪ V ′ ∪ V ′′ with probability at least

1 + |V ′|+ |V ′′|
β#nrd

when D# holds. The probability that some vertex does not select any neighbor from {v} ∪ V ′ ∪ V ′′
is at most ∑

w/∈{v}∪V ′∪V ′′

(
1− 1 + |V ′|+ |V ′′|

β#nrd

)c
≤ β�n`d ×

(
1− 1 + |V ′|+ |V ′′|

β#nrd

)c
≤ β�n`d exp

(
− |V

′′|c
β#nrd

)
.

If all vertices select a neighbor inside {v} ∪ V ′ ∪ V ′′, then clearly, all vertices are connected (and
within distance six of each other, pairwise: two vertices of {v} ∪ V ′ ∪ V ′′ are within distance four,
and any two neighbors of these are within distance six), and the cell is black. As a consequence,
the probability of a having a white cell given the event D = D� ∩D# is thus bounded from above
by

P
{
|V ′′| ≤ δ2c2/4 | D

}
+ β�n`

d exp

(
− δ2c3

4β#nrd

)
,

where δ > 0 is a constant to be selected later. Note that, for any δ > 0, the second term in the
upper bound is smaller than exp

(
−(log n)1/3

)
for all n large enough.
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Finally, then, we consider V ′ and V ′′ and condition on the event D. This implies that N(C) ≥
α�n`

d. Now, for V ′′ to be small, one of the following events must occur: either V ′ is small, or V ′

is not small but V ′′ is small. Note that by definition |V ′| is stochastically larger than a

Binomial

(
c,
N(C)− c
β#nrd

)
.

Let δ = α�/2β#(2d)d then for n large enough the above distribution is stochastically larger than
a random variable Z distributed as Binomial(c, δ). We repeat a similar argument and note that
|V ′′| is stochastically larger than a Z-fold sum of independent binomial random variables, each
of parameters c and (N(C) − c − c2)/β#nr

d. Thus, assuming D and for n large enough, |V ′′| is
stochastically larger than a Binomial(Zc, δ).

So gathering the preceding observations, we obtain

P
{
|V ′′| ≤ δ2c2/4 | D

}
≤ P {Z ≤ δc/2}+ P

{
Z ≥ δc/2, Binomial(Zc, δ) ≤ δ2c2/4

}
≤ P {Z ≤ δc/2}+ P

{
Binomial(

⌊
δc2/2

⌋
, δ) ≤ δ2c2/4

}
≤ (2/e)δc/2 + (2/e)δ

2c2/4.

This shows that for n large enough, p ≤ exp
(
−(log n)1/3

)
, as required.

Lemma 7. The smallest connected component of Sn is of size at least s = exp
(
(log n)1/3

)
whp.

Proof. It is in this critical lemma that we will use the full power of the threshold. The proof is in
two steps. For that reason, we grow Sn in stages. Having fixed ε in the definition of

c =

√
(2 + ε) log n

log log n
,

we find an integer constant L (depending upon ε – see further on), and let all vertices select their
c neighbors in rounds. In round one, each vertex selects

ĉ =

√
(2 + ε/2) log n

log log n

neighbors uniformly at random without replacement. Then, in each of the remaining (c − ĉ)/L
rounds, each vertex chooses L further neighbors within its range r, but this time independently and
with replacement, with a possibility of duplication and selection of previously selected neighbors.
This makes the graph less connected (by a trivial coupling argument), and permits us to shorten
the proof. Note that

c− ĉ
L

= ∆

√
2 log n

log logn
, where ∆ =

√
1 + ε/2−

√
1 + ε/4

L
.

After the first (main) round, we will show that the smallest component is whp at least δ log n in
size, for a specific δ > 0. We then show that whp, in each of the remaining rounds, each component
joins another component, and thus the minimal component size doubles in each round. After the
last round, the minimal component is therefore of size at least

δ log n× 2
c−ĉ
L ,
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which in turn is larger than exp
(
(log n)1/3

)
for all n large enough.

So, on to round one. Let Nh count the number of connected components of Sn of size exactly
h obtained after round one. By definition, Nh = 0 for h ≤ ĉ. We show by the first moment method
that whp the smallest component after round one is of size at least δ log n for some δ > 0.

Let D# be the event described in Lemma 1. If D# holds, the number of sets of h vertices that
can be connected is bounded from above by n(eβ#nr

d)h since we count subgraphs of the visibility
graph with maximum degree ∆ = β#nr

d.

Given a fixed set {i1, . . . , ih} of indices, one can only form a connected component if all the h
vertices choose their neighbours among the remaining vertices in the set. Assuming h < α#nr

d, the
probability of this is at most

h∏
j=1

(
ĉ∏

k=1

h− k
N(B(Xij , r))− k

)
≤

(
ĉ∏

k=1

h− k
α#nrd − k

)h
≤
(

h

α#nrd

)ĉh
.

Therefore,

E
{
Nh1D#

}
≤ n

(
eβ#nr

d
)h( h

α#nrd

)ĉh
.

We can rewrite the upper bound as

f(h) = exp

(
log n+ h log

(
eβ#nr

d
)

+ ĉh log

(
h

α#nrd

))
.

Note that f(h) is decreasing for h ≤ ρnrd = ργd log n where ρ < α#/e because

d

dh

(
log f(h)

)
= log

(
eβ#nr

d
)

+ ĉ log

(
eh

α#nrd

)
< −1

for n sufficiently large since ĉ = ω(log nrd). For such ρ, and n large enough, the upper bound is
thus maximal at h = ĉ+ 1. We have shown that

E
{
Nh1D#

}
≤ f(ĉ+ 1)e−h+ĉ+1 < n−ε/5e−h+ĉ+1

for n large enough, since we have

f(ĉ+ 1) = exp

(
log n+ (ĉ+ 1) log

(
eβ#nr

d
)

+ ĉ(ĉ+ 1) log

(
ĉ+ 1

α#nrd

))
= exp

(
ĉ2
(

log(ĉ+ 1)− log(α#nr
d)
)

+ log n+ o(log n)
)

= exp

(
(2 + ε/2) log n

log log n

(
1

2
log log n− log logn

)
+ log n+ o(log n)

)
≤ exp

(
−(1 + ε/4) log n+ log n+ o(log n)

)
≤ exp

(
−(ε/4 + o(1)) log n

)
,

This means we can take δ = α#γ
d/e. Define the event Eh = [Nh > 0] of having a component of

size h. Finally, the probability that a component of size at most δ log n exists after round one is
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bounded from above by

P

{
δ logn⋃
h=ĉ+1

Eh

}
≤ P

{
Dc

#
}

+

δ logn∑
h=ĉ+1

P {Eh ∩D#}

≤ P
{
Dc

#
}

+

δ logn∑
h=ĉ+1

E
{
Nh1D#

}
≤ o(1) +

(
e

e− 1

)
n−ε/5 → 0.

For the final act, we tile the unit cube into minicells of side length `. Consider a connected
component having size t after round one, where δ log n ≤ t ≤ n1/4. (Note that, for n large enough,
any component of size at least n1/4 already satisfies the lower bound of exp

(
(log n)1/3

)
we want

to prove.) Let the vertices of this component populate the cells. The i-th cell receives ni vertices
from this component, and receives mi vertices from all other components taken together. The cell
is colored red if ni > mi and blue otherwise. First note that not all cells can be red, since that
would mean that t =

∑
i ni ≥ n/2. In one round, each vertex chooses L eligible vertices in its

neighborhood independently and with replacement. Consider two neighboring cells i and j (in any
direction or diagonally) of opposite color (i is red and j is blue). Conditional on D = D� ∩ D#,
the probability that these cells do not establish a link between the size t component and any of the
other components is at most(

1− ni
β#nrd

)Lmj

≤ exp

(
−Lnimj

β#nrd

)
≤ exp

(
−L(α�n`

d/2)2

β#nrd

)
(recall ` > r/2d and rd = γd log n/n),

= exp

(
− Lα2

�γ
d

4(2d)2dβ#
log n

)
.

Consider finally the situation that all cells are blue. Then the probability (still conditional on D)
that no connection is established with the other components is not more than

∏
i

(
1− ni

β#nrd

)Lmi

≤ exp

(
−
∑
i

Lnimi

β#nrd

)

≤ exp

(
− Lα�/2

(2d)dβ#

∑
i

ni

)

≤ exp

(
− Lα�δ

2(2d)dβ#
log n

)
.

Since there are not more than n components to start with, the probability that any component of
size between δ log n and n1/4 fails to connect with another one is bounded from above by

n1−Lξ,

where ξ = min{α2
�γ

d/4(2d)2dβ#, α�δ/2(2d)dβ#}. The probability that we fail in any of the (c−ĉ)/L
rounds is at most equal to the probability that D fails plus

c− ĉ
L
× n1−Lξ = o(1)
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by choosing L large enough that Lξ > 1. Thus, whp, after we are done with all rounds, the minimal
component size in Sn is at least

δ log n× 2
c−ĉ
L .

This concludes the proof of Lemma 7.

4 Upper bound for the spanning ratio and diameter

In the previous sections, we have identified the threshold for connectivity near the critical radius.
The connectivity is of course an important property, but the order of magnitude of distances in the
sparsified Sn graph should also be as small as possible. Here we show that in the same range of
values of r as in Theorem 1, as soon as c is of the order of

√
log n the diameter of the graph Sn is

O(1/r) which is clearly best possible as even the diameter of Gn(r) cannot be smaller than
√
d/r.

This improves a result of Pettarin, Pietracaprina, and Pucci [22].

Given a connected graph embedded in the unit cube [0, 1]d and two vertices u and v (points in
space), let d(u, v) denote the Euclidean distance between u and v when one is only allowed to travel
in space along the straight lines between connected vertices in the graph (this is the intrinsic metric
associated to the embedded graph). Of course d(u, v) ≥ ‖u− v‖, and one defines the spanning ratio
as

(2) sup
u,v

d(u, v)

‖u− v‖
.

One would ideally want the spanning ratio to be as close to one as possible. In the present case,
this definition is not very relevant, since there is a chance that points that are very close in the
plane are not connected by an edge. In particular one can show that, with probability bounded
away from zero, there is a pair of points at distance Θ(n−1/d) for which the smallest path along the
edges is of length Θ(r), so that for some ε > 0, whp,

lim inf
n→∞

sup
u,v∈Sn

d(u, v)

‖u− v‖
≥ ε(log n)1/d →∞.

(To see this, consider the event that for a point Xi, one other point falls within distance δn−1/d and
there are no other points within distance ε(n/ log n)−1/d.) This justifies introducing the constraint
that the points in the supremum in (2) be at least at distance r. Hence the following modified
definition of spanning ratio:

Γ(Sn) := sup
i,j:‖Xi−Xj‖>r

d(Xi, Xj)

‖Xi −Xj‖
.

The next theorem shows that the spanning ratio is within a constant factor of the optimal.

Theorem 5. There exist a constant µ > 0 such that for any γ > γ∗∗, if

r = γ

(
log n

n

)1/d

and c ≥ µ
√

log n ,

there exists a constant K independent of n such that Γ(Sn) ≤ K whp. This implies the fact that the
diameter of Sn is at most K

√
d/r.
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The idea of the proof of Theorem 5 is the following. Partition the unit square into a grid of
cells of side length ` = (1/2d) b1/rc−1. We show that, with high probability, any two vertices i and
j, such that Xi and Xj fall in the same cell, are connected by a path of length at most five. On
the other hand, by Lemma 3, with high probability, any two neighboring cells contain two vertices,
one in each cell, that are connected by an edge of Sn. These two facts imply the statement of the
theorem. We prove the former in Lemma 9 below. The bound for the diameter follows immediately
from the fact that, with high probability, starting from any vertex, a point in a neighboring cell can
be reached by a path of length 6 and any cell can be reached by visiting at most 2d2 b1/rc cells.

Just like in the arguments for the lower and upper bounds for connectivity, all we need about
the underlying random geometric graph Gn is that the points X1, . . . , Xn are sufficiently regularly
distributed. This is formulated as follows: A moon is the intersection of two circles, one of radius r
and the other of radius r/2 such that their centers are within distance 5r/4 (see Figure 3). Denote
by M(x, y) = B(x, r) ∩B(y, r/2) the moon with centers x and y.

Lemma 8 (Moon density Lemma). Let γ∗∗ = d
√

2/c1, where c1 is the infimum of the volume of a
moon. Then for each γ > γ∗∗, there exist constants 0 < αG < βG <∞ such that the following event,
which we denote by DG, occurs whp:

αG log n < N(M(Xi, y)) < βG log n

for every 1 ≤ i ≤ n and every center of a cell y within distance 5r/4 of Xi.

Proof. Since any moon has volume at least in [c1r
d, c2r

d] the number of vertices N(M(Xi, y)) is
stochastically between ζ1 ∼ Binomial(n, c1r

d) and ζ2 ∼ Binomial(n, c2r
d). Thus, we have for any

1 ≤ i ≤ n

P
{
N(M(Xi, y)) ≤ αGnrd

}
≤ P

{
ζ1 ≤ αGnrd

}
≤ exp

(
f

(
αG

c1

)
c1nr

d

)
,

P
{
N(M(Xi, y)) ≥ βGnrd

}
≤ P

{
ζ2 ≥ βGnrd

}
≤ exp

(
f

(
βG

c2

)
c2nr

d

)
.

Let αG < c1 so that f(αG/c1) = −1/2 and βG > c2 so that f(βG/c2) = −1/2. Define the events Di =

{N(M(Xi, y)) ∈ [αGnr
d, βGnr

d] ∀y ∈ Yi} where Yi = {y : ‖Xi − y‖ < 5r/4 and y is a cell center}.
Note that there exists a constant Cd that only depends on d such that |Yi| < Cd. So, we can apply
a union bound to obtain

P

{
n⋃
i=1

Dc
i

}
≤

n∑
i=1

P {Dc
i} ≤

n∑
i=1

2Cd exp
(
−c1nr

d/2
)
≤ 2Cdn exp

(
−c1γ

d

2
log n

)
→ 0,

if γ > d
√

2/c1 where c1 = inf VolM(x, y).

The key lemma is the following.

Lemma 9. Fix {X1, . . . , Xn} such that D = DG ∩D# occurs with β# ≥ 128. Let i, j be such that

Xi and Xj fall in the same cell of the grid. If c ≥
√

(β#/2) log n then

P {d(Xi, Xj) > 5 | X1, . . . , Xn} ≤
1

n
(1 + o(1)) .

where d(Xi, Xj) denotes the distance of i and j in the graph Sn.
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Proof. Let Mi ⊂ {1, . . . , n} denote the set of all vertices k such that d(Xi, Xk) ≤ 2 and Xk is within
Euclidean distance r/2 of the center of the grid cell that contains Xi. The outline of the proof is
the following: It suffices to show that Mi contains a large constant times log n vertices. Since the
same is true for Mj and any two vertices in Mi ∪Mj are within Euclidean distance r, with high
probability there exists an edge between Mi and Mj , establishing a path of length 5 between i and
j. Let Ni denote the set of c neighbors picked by i. Then each h ∈ Ni chooses its c neighbors.
Those that fall in the moon defined by Xh and the center of the cell belong to Mi, see Figure 3.

r

Xi

Xh

Figure 3: For any point Xi in a box of edge length `, if h ∈ Ni is a neighbor selected by i, then
h may select neighbors within distance r/2 of the center of the square from the shaded regions–the
so-called “moons”. The volume of any moon is at least a constant times rd. The figure shows two
possible positions of Xi in a box with a corresponding neighbor and moon.

Next we establish the required lower bound for the cardinality of Mi. Clearly, |Mi| is at least
as large as the number of neighbors selected by the vertices in Ni that fall in R, the ball of radius
r/2, centered at the mid-point of the cell into which Xi falls. Denote by h1, . . . , hc the c vertices
belonging to Ni. Then

|Mi| ≥ |Nh1 ∩R|+ |Nh2 \Nh1 ∩R|+ · · ·+ |Nhc \
(
Nh1 ∪ . . . ∪Nhc−1

)
∩R| .

h1 picks its c neighbors among all vertices within distance r. The number of those neighbors falling
in R has a hypergeometric distribution. Since we are on D, |Nh1∩R| stochastically dominates H1, a
hypergeometric random variable with parameters (c, β# log n, (β# − αG) log n). To lower bound the
second term on the right-hand side, and to gain independence, remove all c neighbors picked by h1.
Then |Nh2\Nh1∩R| stochastically dominatesH2, a hypergeometric random variable with parameters
(c, β# log n − c, (β# − αG) log n + c) (independent of H1). Continuing this fashion, we obtain that
|Mi| is stochastically greater than

∑c
i=1Hi where the Hi are independent and Hi is hypergeometric

with parameters (c, β# log n − (i − 1)c, (β# − αG) log n + (i − 1)c). Since c ≥
√

(β#/2) log n, this

may be bounded further as
∑c

i=1Hi is also stochastically greater than
∑c

i=1 H̃i where the H̃i are
i.i.d. hypergeometric random variables with parameters (c, (β#/2) log n, (3β#/2) log n).

Clearly, E{
∑c

i=1 H̃i} = c2/4 ≥ (β#/8) log n. We may bound the lower tail probabilities of∑cn
i=1 H̃i by recalling an observation of Hoeffding [16] according to which the expected value of any

convex function of a hypergeometric random variable is dominated by that of the corresponding bi-
nomial random variable. Therefore, any tail bound obtained by Chernoff bounding for the binomial
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distribution also applies for the hypergeometric distribution. In particular,

P

{
c∑
i=1

H̃i ≤
1

2
E

{
c∑
i=1

H̃i

}}
≤ exp

−E
{∑c

i=1 H̃i

}
8

 ≤ exp

(
−β#

64
log n

)
≤ n−2 .

Thus, by the union bound, we obtain that

P

{
∃i ∈ {1, . . . , n} : |Mi| ≤

β# log n

16

∣∣∣ X1, . . . , Xn, F

}
≤ 1

n
.

Thus, we have proved that with high probability, for every vertex i, the number of second generation
neighbors (i.e., the neighbors selected by the neighbors selected by i) that end up within distance
r/2 of the center of the grid cell containing i is proportional to log n. In particular, if i and j are
two vertices in the same cell, then both Mi and Mj contain at least (β#/16) log n vertices. If two
of these vertices coincide, there is a path of length 4 between i and j. Otherwise, with very high
probability, at least one vertex in Mi selects a neighbor in Mj , creating a path of length five. Indeed,
the probability that all neighbors selected by the vertices in Mi miss all vertices in Mj , given that
|Mi| and |Mj | are both greater than (β#/16) log n and Mi ∩Mj = ∅ is at most

∏
h∈Mi

c−1∏
k=0

(
1− (β#/16) log n− k

βG log n

)
≤
(

1− β#

32βG

)c(β#/16) logn

which goes to zero faster than any polynomial function of n. (Here we used that fact that c ≤
(β#/32) log n for a sufficiently large n.) Finally, we may use the union bound over all pairs of at
most

(
n
2

)
pairs of vertices i and j to complete the proof of the lemma.
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[17] S. Janson, T.  Luczak, and A. Ruciński. Random Graphs. Wiley, New York, 2000.

[18] H. Kesten. The critical probability of bond percolation on the square lattice equals 1/2.
Communications in Mathematical Physics, 74(1):41–59, 1980.

[19] A. Panconesi and J. Radhakrishnan. Expansion properties of (secure) wireless networks. In
Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and archi-
tectures, SPAA ’04, pages 281–285, New York, NY, USA, 2004. ACM.

[20] M. Penrose. The longest edge of the random minimal spanning tree. The annals of applied
probability, 7(2):340–361, 1997.

[21] M. Penrose. Random Geometric Graphs. Oxford Studies in Probability. Oxford University
Press, 2003.

20



[22] A. Pettarin, A. Pietracaprina, and G. Pucci. On the expansion and diameter of bluetooth-like
topologies. In A. Fiat and P. Sanders, editors, Algorithms - ESA 2009, volume 5757 of Lecture
Notes in Computer Science, pages 528–539. Springer, Berlin / Heidelberg, 2009.

[23] R. Stanley. Enumerative combinatorics, Volume 2. Cambridge Studies in Advanced Mathe-
matics. Cambridge University Press, 1999.

[24] R. Whitaker, L. Hodge, and I. Chlamtac. Bluetooth scatternet formation: a survey. Ad Hoc
Networks, 3:403–450, 2005.

21


	Introduction
	A lower bound for connectivity on the whole range
	Connectivity near the critical radius
	Upper bound for the spanning ratio and diameter

