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Large Deviations for the Weighted Height
of an Extended Class of Trees1

Nicolas Broutin2 and Luc Devroye2

Abstract. We use large deviations to prove a general theorem on the asymptotic edge-weighted height H �
n

of a large class of random trees for which H �
n ∼ c log n for some positive constant c. A graphical interpretation

is also given for the limit constant c. This unifies what was already known for binary search trees [11], [13],
random recursive trees [12] and plane oriented trees [23] for instance. New applications include the heights of
some random lopsided trees [19] and of the intersection of random trees.
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1. Introduction. This paper gives general laws of large numbers for the height of
a class of edge-weighted random trees, which includes as special cases random bi-
nary search trees [11], random recursive trees, random plane oriented trees [23] and
random split trees [16]. However, it also covers random k-ary trees not analyzed un-
til now. The paper extends the earlier theorems of Devroye [11], [12], [15] where the
theory of branching processes was used for this purpose. A special kind of branching
random walk permitted Biggins and Grey [5] to obtain the asymptotic height of var-
ious random trees including random binary search trees and random recursive trees.
We propose in this paper a method based on large deviations for sums of independent
random variables. The closest approach was the one of Biggins [4] which used multi-
dimensional branching processes. Our method makes intensive use of Cramér’s theo-
rem for large deviations [17], [10] and some properties of the rate functions it defines.
The height is characterized as the solution of a two-dimensional optimization problem
involving Cramér’s functions. We apply our method in some cases where these func-
tions can be expressed in a closed form. In particular, we are able to obtain the height
for random binary search trees, random recursive trees, random median-of-(2k + 1)
trees and random lopsided trees, thus extending the class of trees covered by a single
theorem.

We first present the main result and its proof, taking for granted some results about
large deviations. The proofs for these have been put in the Appendix. We next make
the link between trees of random variables and random trees of size n, leaving the most
interesting part on applications as a concluding section.
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2. Main Results. Consider an infinite rooted b-ary tree T∞. Let π(u) denote the set
of edges in T∞ on the path from the root to node u. Assign independently to each node
u a random b-vector {(Z1, E1), (Z2, E2), . . . , (Zb, Eb)}, where each couple (Zi , Ei )

is distributed as (Z , E) for non-negative and independent Z and E , both having finite
means. Also, E is not mono-atomic, has no atom at zero, and inf{x : P{E > x} > 0} = 0
(this condition may be removed if we change slightly the statement of Theorem 1). Note
that every Z is independent of any E , but the couples (Zi , Ei ) inside a single b-vector
may be dependent. These random variables are mapped to the edges, so that each edge
e receives a couple (Ze, Ee). For each node u, let its age be Gu =

∑
e∈π(u) Ee and

define the weighted depth Du =
∑

e∈π(u) Ze. We now have a complete b-ary tree with
nodes augmented with two independent random variables Gu and Du . Define Tn to
be the tree of nodes u ∈ T∞ for which Gu ≤ n. We are interested in the weighted
height Hn = max{Du : u ∈ Tn}. The following theorem characterizes Hn , whatever
the distributions of Z and E . In what follows, we let 	�

Z denote the right-tail Cramér
function for a random variable Z [25], [10] (see below). Also, 	�

E denotes the left-tail
Cramér function for E . More about large deviations can be found in the Appendix.

THEOREM 1. Let {Ee, e ∈ T∞} and {Ze, e ∈ T∞} be families of random variables as
in the previous setting. Then

Hn

n
−−−→
n→∞

c

in probability, where c is the unique maximum value of α/ρ along the curve CZ ,E and

CZ ,E = {(ρ, α): 	�
Z (α)+	�

E (ρ) = log b, ρ ≤ EE, α ≥ EZ}.(1)

We first argue about the existence of a solution in (1). We need to show that CZ ,E �= ∅.
However, from fact 5 of Lemma 5,	�

Z (EZ) = 0. Since	�
E is continuous where it is not

infinite (Lemma 10), 	�
E (EE) = 0 and limρ→0	

�
E (ρ) = ∞, there must be a value ρ0

for which	�
E (ρ0) = log b. Thus (EZ , ρ0) ∈ CZ ,E �= ∅. The uniqueness of the constant

c defined above follows from the geometry of CZ ,E :

LEMMA 1. The curve CZ ,E defined in Theorem 1 is increasing and concave.

Note that ρ/α is the slope of a line with one endpoint at the origin and the other
one on CZ ,E . If Z has a single atom at EZ , then CZ ,E consists of a single point, and
there is nothing to show. So assume that Z too is not mono-atomic. As we will see in
Proposition 8, 	�

Z has a derivative at α = EZ and

d

dα
	�

Z (α)

∣∣∣∣
α=EZ

= 0.

This means that the graph of CZ ,E has a horizontal tangent at EZ , because if α = EZ ,
then ρ �= EE . Similarly, the slope is infinite at the other end of the domain, at a
point (EE, α�). Using Lemma 1 above, this shows that the optimal point occurs for
α ∈ (EZ , α�) (see Figure 1). We conclude:
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Fig. 1. Geometric interpretation of the constant c in the non-degenerate case. We draw α versus ρ along the
curve CZ ,E . Note that EZ < α < α� and that ρ� < ρ < EE . The slope of the tangent line is c. The grey box
is the domain to be considered.

LEMMA 2. If Z is not mono-atomic, then the maximal value c = α0/ρ0 on CZ ,E occurs
in the interior of CZ ,E . If Z is mono-atomic, then CZ ,E consists of a single point (ρ�,EZ),
where 	�

E (ρ
�) = log b.

PROOF OF LEMMA 1. Assume that none of Z and E is a single mass. Since 	�
Z and

	�
E are the rate functions for the right tail of Z and left tail of E , 	�

Z increases and
	�

E decreases on its support. Thus, CZ ,E is increasing. Consider now α1, α2 ≥ EZ
and x ∈ (0, 1). Let ρ1, ρ2 and ρ be the points of CZ ,E corresponding to α1, α2 and
α = xα1+ (1− x)α2, respectively. We have to show that ρ ≤ xρ1+ (1− x)ρ2 to obtain
the concavity. By convexity of both rate functions,

	�
E (xρ1 + (1− x)ρ2) ≤ x	�

E (ρ1)+ (1− x)	�
E (ρ2)

= log 2− (
x	�

Z (α1)+ (1− x)	�
Z (α2)

)
≤ log 2−	�

Z (xα1 + (1− x)α2)

= 	�
E (ρ).

Since 	�
E decreases, the concavity holds.

Knowing that c is uniquely defined, we can address the issue of the main part of the
proof of Theorem 1. We split it into two lemmas, following the analysis of Devroye [15].
Collecting the results to prove Theorem 1 is then straightforward.
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LEMMA 3 (Upper Bound). With the notations of Theorem 1, for any ε > 0,

lim
n→∞P{Hn ≥ c(1+ ε)n} = 0.

PROOF. Let c be defined as in Theorem 1 and let ε > 0 be arbitrary. Let Ln,k be the set
of nodes u that are k levels away from the root in Tn . For any α ≥ EZ , the union bound
on the nodes at level k gives

P{∃u ∈ Ln,k : Du ≥ αk} ≤ bkP

{
k∑

i=1

Zi ≥ αk,
k∑

i=1

Ei ≤ n

}

= bkP

{
k∑

i=1

Zi ≥ αk

}
· P

{
k∑

i=1

Ei ≤ n

}
,

by independence. For each tail probability, we use Chernoff’s bound, which is a one-
sided explicit version of Cramér’s theorem [17], [10]. Recalling that 	�

E (ρ) = 0 for
ρ ≥ EE and 	�

Z (α) = 0 for α ≤ EZ , and setting ρ = n/k, we have

P
{∃u ∈ Ln,k : Du ≥ αn/ρ

} ≤ bkP

{
k∑

i=1

Zi ≥ αk

}
· P

{
k∑

i=1

Ei ≤ ρk

}

≤ bk exp(−k ·	�
Z (α)) · exp(−k ·	�

E (ρ))

= exp(k[log b −	�
Z (α)−	�

E (ρ)])

def= exp(−kγ (α, ρ)).

With α = (1+ε)cρ, we have γ (α, ρ) = γ ((1+ε)cρ, ρ) ≥ β def= infρ γ ((1+ε)cρ, ρ) >
infρ γ (cρ, ρ) = 0. The last statement follows from the continuity of γ where it is finite,
and the monotonicity in both of its arguments. Using the union bound we obtain, for any
integer K ,

P{Hn ≥ c(1+ ε)n} = P{∃k, ∃u ∈ Ln,k : Du ≥ c(1+ ε)n}

≤
K−1∑
k=0

P{∃u ∈ Ln,k : Du ≥ c(1+ ε)n}

+
∑
k≥K

P{∃u ∈ Ln,k : Du ≥ c(1+ ε)n}.

Consider first the second term:

∑
k≥K

P{∃u ∈ Ln,k : Du ≥ c(1+ ε)n} ≤
∑
k≥K

e−βk = O(e−βK ).
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Furthermore, by Markov’s inequality,

K−1∑
k=0

P{∃u ∈ Ln,k : Du ≥ c(1+ ε)n} ≤
K−1∑
k=0

P{∃u ∈ L∞,k : Du ≥ c(1+ ε)n}

≤ K · bK · sup
k<K ,u∈L∞,k

P {Du ≥ c(1+ ε)n}

≤ K · bK · K EZ

c(1+ ε)n −−−→n→∞
0,

which shows that P{Hn ≥ c(1+ε)n} ≤ O
(
e−βK

)+o(1). Since K is arbitrary, the proof
is complete.

LEMMA 4 (Lower Bound). For any ε > 0, there exists some node u for which Du ≥
c(1− ε)n with probability tending to 1 as n→∞.

PROOF. This proof uses ideas of Biggins [3]. Let ε > 0 be arbitrary. We exhibit a path
in Tn to a node u with Du ≥ c(1 − 2ε) log n. For this purpose, we build a surviving
Galton–Watson process. We start with the root. Consider in T∞ the nodes L levels away.
A given node u is called good if Du ≥ αL and Gu ≤ ρL , for some α and ρ to be chosen
later. We define the Galton–Watson children to be the good nodes. Each child reproduces
independently according to the same reproduction distribution, that is, a node v lying
L levels below a node u is a good child of u if Dv − Du ≥ αL and Gv − Gu ≤ ρL .
The process of good nodes survives with positive probability if the expected number of
children is more than one. Write NL for the number of good nodes L levels away from
the root.

ENL = bLP{Du ≥ αL ,Gu ≤ ρL}
= exp(−γ (α, ρ)L + o(L)),

according to the proof of Lemma 3. Choosing α and ρ such that γ (α, ρ) < 0 makes
ENL > 1 for L large enough. Picking α = α0 and ρ = ρ0/

√
1− ε suffices, where α0,

ρ0 are as in Lemma 2. Therefore, writing q < 1 for the probability of extinction, the
process survives with probability 1 − q > 0. We now have to boost this probability up
to 1−o(1). We do this by starting the Galton–Watson process at level t L instead, giving
more chance that at least one of the bt L processes survives. We now need to consider the
joint distribution of the E random variables {E1, E2, . . . , Eb} down the same vertex: for
any β > 0, we can pick a such that P{E1 ≤ a, E2 ≤ a, . . . , Eb ≤ a} ≥ 1 − β. Let A
be the event that all the Ee random variables in the top t L levels take values less than a.
Then

P{Ac} ≤ β bt L .

Thus A occurs with probability arbitrary close to 1, controlled by our choice for β. If A
is true, then all nodes v at level t L are such that Gv ≤ at L . Let now B be the event that
one of the bt L Galton–Watson processes survives. Then

P{Bc} = qbt L
,
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by independence. If both A and B occur, then there is a node u at level t L + kL in T∞
such that Gu ≤ at L + ρkL and Du ≥ αkL . Taking

k =
⌊

n(1− ε)
ρ0L

⌋
,

ρ = ρ0/
√

1− ε and α = α0 gives Gu ≤ n
√

1− ε + at L < n, for n large enough and
Du ≥ c(1− ε)n − α0L ≥ c(1− 2ε)n for n large enough. Thus

P{Hn ≥ c(1− 2ε)n} ≥ P{A ∪ B} ≥ 1− P{Ac} − P{Bc},

and we can control the lower bound and make it as close to 1 as we want by choice of β
and t independently of n. Therefore, for all ε > 0,

lim
n→∞P{Hn ≥ c(1− 2ε)n} = 1.

3. Towards Applications. Our primary aim is to obtain results about the height of
some incrementally built random trees. The main problem is the number of nodes.
Indeed, the tree Tm has a random number of nodes N . We would like to pick the right
m for N to be almost n. In most examples below, we need to pick a node uniformly at
random in order to grow the tree. This can be achieved in the following way.

We need a particular kind of Crump–Mode–Jagers process [9], namely a Bellman–
Harris process [18], [1]. Let X be a random variable of mean µ which takes non-
negative integer values. Consider a branching process that starts with a single individual.
It dies at a random time M1 and gives birth to, at the time of its death, X + 1 new
independent individuals that behave similarly. Call these events replacements. Assume
that the lifetime of each individual is exponentially distributed with mean 1 so that, in

particular, M1
L= exponential(1). Let Mk be the random time of the kth birth, and let

Nk be the size of the population just before Mk . Because of the memoryless property of
the exponential distribution, we just start a new process at Mk with Nk+1 = Nk + Xk

brand new individuals, where Xk is an independent copy of X . Symmetry shows that
each individual is equally likely to be the next one to die. Let {Ei , i ≥ 1} be a family of
independent exponential(1) random variables. Since

min{E1, E2, . . . , Em} L= E1

m
,

and X0 = 1, we have

Mk
L=

k∑
i=1

Ei∑i−1
j=0 X j

.

Estimating the number of nodes when the process is stopped at time mn is made easier
by first considering Mk .

PROPOSITION 1. The time Mk of the kth birth satisfies µMk ∼ log k, almost surely.
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PROOF. We have that

1

i

i−1∑
j=0

X j −−−→
i→∞

µ a.s.,

by the strong law of large numbers. From a generalized law of large numbers, see
Theorem 2 on p. 331 of [8],

1

log k

k∑
i=1

Ei

i
−−−→
k→∞

1 a.s.,

which together yield

Mk

log k
−−−→
k→∞

1

µ
a.s.

With this in hand, we can now consider the number of nodes in the process. Let

mn = 1

µ
· log n,(2)

and write N (t) for the number of individuals when the process is stopped at the determin-
istic time t . It happens that N (mn) is close enough to n for us to make use of Theorem 1
in what follows.

PROPOSITION 2. The number of nodes N (mn) in the process stopped at time mn defined
in (2) is such that log N (mn) ∼ log n, almost surely.

PROOF. Again, from the law of large numbers

Nk

k
−−−→
k→∞

µ a.s.,

so

log Nk

log k
−−−→
k→∞

1 a.s.

Using Proposition 1, this yields

log Nk

µMk
−−−→
k→∞

1 a.s.

So, stopping the process at time t ,

log N (t)

µt
−−−→
t→∞

1 a.s.

Taking t = mn finishes the proof.
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We now make the link between branching random walks stopped at a deterministic
time mn and random trees over n nodes. Let H �

n be the height of a random tree with n
nodes, grown by appending, at each step, 1+ X children to a uniform random leaf. The
following proposition is of interest for most applications.

PROPOSITION 3. Let c be the constant defined in Theorem 1 with E having exponential(1)
distribution. Then

H �
n

log n
−−−→
n→∞

c

µ

in probability.

PROOF. Let ε > 0. Then, with probability tending to 1 as n→∞,

n1−ε ≤ Nn ≤ n1+ε.

Therefore,

µ(1− ε) · H �
n1−ε

(1− ε) log n
= H �

n1−ε

mn
≤ H �

Nn

mn
= Hmn

mn
≤ H �

n1+ε

mn
= H �

n1+ε

(1+ ε) log n
·µ(1+ ε),

and Theorem 1 yields the conclusion.

REMARK. Since the exponential distribution is the only memoryless distribution, any
other choice for the lifetimes leads to non-uniform sampling for the next individual that
dies. This is sometimes required for the applications such as the median-of-(2k + 1)
trees (see Section 4.3).

4. Applications. We now present a few applications of Theorem 1, using our unify-
ing view. We present in particular random binary search trees, random recursive trees,
median-of-(2k + 1) trees and other models of random trees. The rate functions 	�

Z and
	�

E are Cramér functions which are often hard to express in a closed form. This makes
it difficult to derive useful properties of the optimal point of (1). Also, the equations we
obtain are often implicit.

4.1. Random Binary Search Tree. Let us test Theorem 1 on the height of the random
binary search tree, which, following Knuth [20] is defined as follows: take a random
permutation Y1, Y2, . . . , Yn of {1, 2, . . . , n}; insert the elements Yi , i = 1, 2, . . . , n, one
after an other as nodes in an initially empty search tree. We define the partial rank Ri

of Yi to be the rank of Yi in the sequence {Y1, Y2, . . . , Yi }. We make Y1 the root and
send all Yi ’s such that Yi < Y1 to the left subtree and the others to the right subtree.
We then process the elements falling into each subtree in a recursive way. Interesting
functionals of this random tree are the depth of Yn (the time to insert Yn) and the height
H �

n (the maximal time to insert an element). Knuth [20] and Mahmoud [22] summarize
the known properties. Regarding the height, we have
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THEOREM 2 (Devroye, 1986, 1987, 1998). For a random binary search tree,

H �
n

log n
−−−→
n→∞

c

in probability, where c is the unique solution greater than 1 of 2e/c = e1/c.

Usually, Theorem 2 is proved by considering the tree in which we associate with
each node the size of the subtree rooted at that node. For instance, at the root, the size

of the left subtree is �nU�, with U
L= [0, 1]-uniform. This approach implies dealing

with some tedious truncations [11]. Instead, we use a property of the partial ranks Ri

[22]. Indeed, at time step i , the next element Yi is equally likely to fall into any of the
i slots defined by the partition generated by the previous elements Y1, Y2, . . . , Yi−1: Ri

is uniform in {1, 2, . . . , i} and R1, R2, . . . are independent [13]. Therefore each external
node is equally likely to be picked and replaced by Yi . This makes the link with Bellman–
Harris process of the previous section when we set 1+ X = 2. All edges account for one
step down the tree, so that we let Z = 1 with probability 1. The depth Du induced by
the values of Ze’s along the path to node u corresponds to the usual depth. For the paper
to be self-contained, we show the details of the computation of one of the tail function,

namely 	�
E , which will be used many times. We first note that E

L= − log U , where U
is [0, 1]-uniform. Then the moment generating function

ME (x) = E{ex E } = E
{
U−x

} = 1

1− x
.

Then it follows that the cumulant generating function (see the Appendix) is

	E (x) = − log(1− x)

and the associated rate function

	�
E (ρ) = sup

x
{xρ −	E (ρ)} = sup

x
{xρ + log(1− x)}.

The maximum is achieved when taking x = 1− 1/ρ and therefore

	�
E (ρ) = ρ − 1− log ρ.

Also, with these settings,

	�
Z (α) =

{
0 if α = 1

∞ if α > 1.

The maximum of α/ρ is achieved when α0 = 1 and 	�
Z (α0) = 0 and ρ0 is the unique

solution smaller than 1 of ρ − 1 − log ρ = log 2, or 2eρ = eρ . Proposition 3 applies,
and therefore, for a random binary search tree,

H �
n

log n
−−−→
n→∞

1

ρ0
(3)
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in probability. Note that as claimed earlier, independence is not needed for the random
variables appearing in disjoint paths in the tree. For example, in the usual binary search
tree, the two edges emanating from the same node have exponentials associated with
them that are distributed as (− log U,− log(1−U )), where U is uniform on [0, 1] [11].
Stopping the process at mn = log n leads to a tree of size Nn = n a.s. [15]. Dropping this
dependence makes Nn random but the result still holds. As an example, we can generate
a tree giving to the two edges out of any node u the same value. The height is not affected
and still satisfies (3).

4.2. Random Recursive Tree. The random recursive tree is one of the simplest random
trees [27]. It is built incrementally: when starting, the tree T1 consists of a single node
v1. At each step i a new vertex vi is added to the tree and appended as a child to a node
chosen uniformly in {v1, v2, . . . , vi−1}. This is sometimes called a Yule process. Various
functionals of this tree have been studied in the literature. We are particularly interested
in its height H �

n when n goes to infinity.

THEOREM 3 (Devroye, 1987; Pittel, 1994). The height H �
n of a random recursive tree

with n nodes is e log n in probability as n goes to infinity.

To use Theorem 1, we look at the uniform random recursive tree as a binary tree
(Figure 2). Recall that a random binary search tree can be build alternatively by choosing
at each step an external node uniformly at random and replacing it with an internal one.
This is because the partial rank Ri of the element Yi inserted at time i is uniformly
distributed in {1, 2, . . . , i} [22]. Therefore, building a binary tree in which the external
nodes represent the nodes of our random recursive tree solves the issue of the uniform
choice. Thus we want to map the nodes of a rooted tree to the external nodes of a binary
tree, in such a way that we keep the information about the distances to the root. Consider

2

1

43

5

3

2

5 4 1

Fig. 2. A rooted tree and the corresponding binary tree. The white nodes have been added for the sake of the
construction. Solid lines correspond to edges with Z = 1 and dashed ones to those with Z = 0. Therefore, 1
is equivalent to the root (as the root distance is zero), 2 to the first child of the root (distance one), and so on.
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a rooted tree Tn on n vertices. Let S = {d1, d2, . . . , dn} be a multiset of numbers that
represent the distances from the nodes to the root tree. To make the mapping more visual,
we also describe the construction of a binary tree with labeled edges T b

n on n external
vertices together with Sb

n , the sequence of distances in T b
n (see Figure 2).

• T1 consists of a single node and S1 = {0}. Appending a node yields a tree on two
nodes and S2 = {0, 1}. Let T b

2 be the binary tree with two external nodes. Let e and
f be its edges. Label them with ze = 1 and z f = 0. Consider the labels as distances.
Then T b

2 has distance sequence Sb
2 = {0, 1} = S2.

• Suppose now we are given Tn and the corresponding T b
n . They match the distance

sequence Sn = {d1, d2, . . . , dn}. Appending v to node u means that we make Sn+1 =
Sn ∪ {d + 1}, where d ∈ S is the distance from u to the root in both Tn and T b

n . In
terms of trees, we replace the external node u in T b

n by an internal node x . There
are two new external nodes associated with x , and the edges e and f out of x are
labeled ze = 1 and z f = 0. We may as well label the new external vertices v (such
that e = (x, v)) and u (with f = (x, u)). Then we clearly have Sb

n+1 = Sb
n ∪ {d + 1},

and the sequences Sn+1 and Sb
n+1 match, as required.

Replacing deterministic labels by random variables makes this model fit for our

framework. For the same reason as in binary search trees, E
L= exponential(1). Since on

any path π from the root in T∞, each edge e is as likely to be labeled with 0 as with 1,

we have Z
L= Bernoulli( 1

2 ). From Theorem 1, we have to maximize α/ρ on the curve

CZ ,E = {(α, ρ): 	�
Z (α)+	�

E (ρ) = log 2}.

However, we have that 	�
Z = α logα + (1 − α) log(1 − α) + log 2 and 	�

E (ρ) =
ρ − 1− log ρ [10], which yields (Figure 3)

CZ ,E = {(α, ρ): α logα + (1− α) log(1− α)+ ρ − log ρ = 1}.(4)

The slope of the curve ρ(α) is

dρ

dα
= logα − log(1− α)

1/ρ − 1
.(5)

Recalling the geometric interpretation shows that the optimal α satisfies

dρ

dα
· α = ρ.

Straightforward manipulations using (5) give α logα − α log(1 − α) = 1 − ρ. Taking
the value for 1− ρ in (4) for CZ ,E yields ρ = 1− α. Using this value again in (4) gives
the desired result, that is, α/ρ = e.

4.3. Median-of-(2k+ 1) Trees and Split Trees. A well-known improvement of Quick-
sort [20], [26] samples 2k+1 elements at random and uses the median as a pivot instead
of splitting the data at a uniform random point. Such a scheme makes the splits more bal-
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

0.5

1.0

Fig. 3. The curve corresponding to uniform recursive trees CZ ,E = {(ρ, α): α logα + (1− α) log(1− α)+
ρ − log ρ = 1, ρ ≤ 1, α ≥ 1

2 }.

anced, and therefore the tree less high. The trees produced are called median-of-(2k+1)
trees. They can equivalently be viewed as trees produced by a balancing heuristic ap-
plied to the fringe of the tree [24], [29]. It is clear that the external nodes are no longer
uniformly picked, and as a consequence Proposition 3 does not apply. However, since
our goal is to demonstrate the generality of our framework, we avoid wandering around
and refer for the details to [14].

Consider again the associated tree of subtree sizes, with the root having value n.
The sizes of the subtrees of the children of the root are both distributed as multinomial
(n − 1,W, 1−W ) random variables, where W and 1−W are in turn distributed as the
median of 2k+1 uniform [0, 1] random variables, which is known to be β(k+1, k+1).
The multinomial is really concentrated about its mean, and thus behaves roughly as
(nW, n(1−W )). So we get same first-order behavior for the height and other parameters
if we were to associate with the edges out of the root random variables W and 1 − W ,
and let the tree consist of all nodes u for which the product of edge values on π(u) is at
least 1/n. Equivalently, taking logarithms, and associating with sibling edges the values
− log(W ) and− log(1−W ), and independently so for all other sibling pairs, we may let
the tree consist of all nodes u for which the sum of edge values on π(u) is at most log n.
Thus, − log W now plays the role of the lifetime of a particle. We are able to rediscover
with little work the following theorem.

THEOREM 4 (Devroye, 1993). The height H �
n of a median-of-(2k + 1) tree satisfies

H �
n

log n
−−−→
n→∞

c(k)
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in probability, where c = c(k) is the unique solution of the equation

s

c
+

2k+1∑
i=k+1

log
(

1− s

i

)
= log 2,

and s is implicitly defined by the equation

1

c
=

2k+1∑
k+1

1

i − s
.

PROOF (Outline only). Let X be β(k + 1, k + 1) and let E = − log X . Let Z = 1
almost surely. Then

M(s) = E{e−s log X } = �(2k + 2)

�(k + 1)2

∫ 1

0
x−s xk(1− x)k dx = (2k + 1)!

k!

2k+1∏
i=k+1

1

i − s
.

Then we have that

	�
E (ρ) = sup

t
{ρt + log M(t)}.

The optimization corresponds to equation

d

dt
(ρt + log M(t)) = 0,

that is,

ρ =
2k+1∑

i=k+1

1

i − s
.

Using Theorem 1, since CZ ,E is restricted to a single point at α = 1, we get the second
equation 	�

E (ρ) = log 2, in other words,

ρs +
2k+1∑
k+1

(log(i − s)− log(i)) = log 2.

For example, in the case k = 1 which corresponds to the much studied median-of-3
quicksort, we have that

M(s) = E{e−s log X } = 6

(3− s)(2− s)
.

Therefore,

	�
E (ρ) = sup

s
{ρs + log(3− s)+ log(2− s)}.

Optimizing with respect to s yields

s = 5ρ − 2−
√
ρ2 + 4

2ρ
.
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Using this optimal value for s leads to an equation we can solve numerically: ρ =
0.31322 . . ., c = 3.19258 . . . and

H �
n ∼ 3.19258 . . . log n.

We note here that the split trees of Devroye [16] can be dealt with similarly. If a subtree of
size n is roughly split into subtrees of sizes close to (nV1, nV2, . . . , nVb), where Vi ≥ 0,
and

∑
i Vi = 1, then we can study the height by setting Ze = 1 for all edges, and

(E1, . . . , Eb) = (− log V1, . . . ,− log Vb).

4.4. Random Lopsided Trees. In information theory, researchers are interested in build-
ing codes that are optimal with respect to various measures. Prefix-free codes are par-
ticularly interesting because they can be decoded directly by following a path in a tree,
and output a character correponding to the codeword when reaching a leaf. In such trees,
a node u represents a prefix p, and its children the words that can be built by append-
ing a symbol to p. In digital applications, characters are usually encoded with bits and
therefore processing each symbol has the same cost. We can think of costs by assigning
lengths to the edges in the tree; in this case they would all have equal length. However,
some codes have encoding length depending on the symbols. These are called Varn codes
[28]. Such encodings lead to trees whose edges have non-equal length, lopsided trees
[19], [6]. Let c1 ≤ c2 ≤ . . . ≤ cb be fixed positive real numbers, then a tree is said to be
lopsided if it is b-ary rooted, and for each node, the edge to the i th child has length ci . We
define a random lopsided tree, and show how its height can be studied using Theorem 1.

Define a random lopsided tree by the following inductive process: start with a single
internal node, L1. To build a random tree Ln+1 with n + 1 (internal) nodes, take an
instance of Ln , pick an external node uniformly at random and replace it with an internal
node. The weights of the b child edges of that internal node are c1, c2, . . . , cb, a set
of non-negative real numbers that are not all equal. In our model we should take E
exponential and Z = cW , where W is uniform on {1, . . . , b}.

THEOREM 5. The height H �
n of a random b-ary lopsided tree having n nodes built with

costs {c1, c2, . . . , cb} satifies

H �
n ∼

c

b − 1
· log n

in probability, where c is the unique maximal value of α/ρ under the constraint that

αt (α)+ logα − log

(∑
i

ci e
tci

)
+ ρ − 1− log ρ = 0,(6)

where t (α) is uniquely defined by∑
i

(α − ci )e
tci = 0.(7)

REMARK. Theorem 5 does not formally apply to the case of equal ci ’s. It is easy to
verify though that when c1 = c2 = . . . = cb = 1, we are led to

H �
n ∼

c

b − 1
log n
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Fig. 4. The pattern that replaces a grey node and the curve CZ ,E together with the optimal tangent when the
set of costs is {1, 3}. The nodes are labeled with their depth.

in probability, where c = 1/ρ, and ρ is the unique solution greater than 1 of 	�
E (ρ) =

ρ − 1− log ρ = log b.

Our random lopsided trees may also be used when we replace a random node by a
fixed deterministic tree. The growing process is as follows. Start with a grey node. Each
step sees the replacement of uniformly selected random grey node by a deterministic tree
consisting of k nodes (see, e.g., Figure 4). In this replacement tree, all leaves, as well as
none, some or all of the internal nodes are painted grey (if the root is grey, then the node
just replaced may be selected again), for a total of � ≤ k grey nodes. If we are interested
in standard distances to the root, and in the classical definition of the height, then we can
imagine another tree in which the replaced node receives a number � of children, with
edge weights equal to the distances to the root in the replacement tree. The original tree
has sizes given by 1+ s(k − 1) for s integer, and the new imagined tree has sizes given
by 1 + s� for s integer: they are linearly related. The weighted height in the new tree
corresponds to the standard height in the original tree. We work out two examples.

In Figure 4 we replace a randomly picked grey node by a subtree of five nodes, of
which two are grey nodes, at distances 1 and 3 from their roots. This corresponds to
a random lopsided tree (modulo a proportionality constant in the size of the tree) with
weights (1, 3), and fanout b = 2. The slope of the tangent going through the origin is
9.3389 . . ., implying

H �
n ∼ 9.3389 . . . log n

in probability.
In Figure 5 we have the same replacement, but paint all five nodes grey. This yields

the random lopsided tree with fanout b = 5 and cost vector (0, 1, 1, 2, 3). The slope of
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Fig. 5. With the set of costs {0, 1, 1, 2, 3}, one can think of a uniform grey node being replaced by the tree
pattern on the left.

the optimal tangent is 20.966 . . ., which gives the height after renormalization:

H �
n ∼ 5.241 . . . log n

in probability.

PROOF OF THEOREM 5. In this model, external nodes are picked uniformly at random
and Proposition 3 applies, with X = b− 1 almost surely. Therefore, 	�

E (ρ) = ρ − 1−
log ρ. Since on a path to the root, each edge is equally likely to have any cost,

	Z (t) = log
(
E
{
et Z

}) = log

(∑
i

etci

)
− log b.

Using the definition	�
Z (α) = supt {αt−	Z (t)}, we see that the optimal value is obtained

for

α =
∑

i ci etci∑
i etci

,

which is equivalent to (7). The value t (α) is unique as long as at least two of the ci ’s are
distinct. Equation (6) follows immediately from Proposition 3.

4.5. Plane Oriented Trees and Linear Recursive Trees. Plane oriented trees (PORTs)
are rooted trees in which the children of every node are oriented. A random PORT with n
nodes is defined as a tree taken uniformly at random from the set of (n−1)! PORTs with
n nodes. The depths of nodes in random PORTs have been studied by Mahmoud [21] and
their height by Pittel [23]. An interesting property of PORTs is their recursive description:
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Fig. 6. A PORT with the slots represented by squares on the left and the tree pattern on the right, representing
the replacement of an external node. The labels on the edges are the costs of crossing them.

one can view a random PORT with n nodes as a random PORT with n − 1 nodes, to
which we add a node uniformly at random in the set of slots available. Nodes have labels
1 through n in order of addition, and therefore the label numbers are increasing on paths
down from the root. The slots are the positions in the tree that lead to different new trees.
Because of the order, each node with k children has k+1 slots (external nodes) attached
to it as described in Figure 6.

We may consider them as linear recursive trees, a more general model of Pittel [23],
which has also been dealt with by Biggins and Grey [5]. For this kind of tree, each node
u has a weightwu , and when growing a random linear recursive tree, a new node is added
as a child to u at random with probability proportional to wu . For linear recursive trees,
we have wu = 1+ β degu , where degu denotes the number of children of u and β ≥ 0
is called the parameter. We can obtain the same distribution on trees by taking external
nodes uniformly at random and with a suitable number of external nodes for each vertex,
at least when β is an integer (see below).

Assume that β is integer-valued. It is easily seen that when we pick a uniform external
node at depth d , and replace it by β + 2 new external nodes, β + 1 at depth d and one
at d + 1, then this may be seen as replacing a uniform external node by the fixed tree
pattern of Figure 6. The Z values of the β + 2 child edges of a node consist of one 1 and
(β + 1) 0’s. A typical Z value therefore is Bernoulli (1/(β + 2)). One may apply our
result on random lopsided trees with fanout β+ 2 to find a new proof of Pittel’s theorem
on the height.

THEOREM 6 (Pittel, 1994). Assume that β is integer-valued. The height H �
n of a random

linear recursive tree with parameter β and n nodes is such that

H �
n

log n
−−−→
n→∞

c

β + 1

in probability, where c is the maximal value of α/ρ along

α log((β + 2)α)+ (1− α)(log((β + 2)(1− α))− log(β + 1))+ ρ − 1− log ρ

= log(β + 2)

α ≥ (β + 2)−1, ρ ≤ 1


 .
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The special case of random recursive trees is obtained for β = 0 and PORTs for
β = 1 yielding an asymptotic height of 1.7956 . . . log n.

4.6. Intersection of Random Trees. We can also apply Theorem 1 to the intersection
of random trees. One can take k independent copies of a certain kind of random b-ary
tree on n nodes and ask about the height of the intersection (a node is in the intersection
if it is present in all k trees). This model was treated by Baeza-Yates et al. [2] for random
binary search trees in the context of tree matching properties arising in the tree shuffle
algorithm [7]. The authors were in particular interested in the size of the intersection of
two random binary search trees. We consider the intersection of k binary search trees,
and of k plane oriented trees.

Let Sk,n be a collection of k independent copies of identically distributed random
trees with n nodes, and let Ik,n be their intersection. Recall that the shape of the random
tree in our framework is related to the random variables Ee in all k copies. The random
variables E of Theorem 1 are now k-vectors of independent random variables. From
now on, we write E for a coordinate of this vector, and this corresponds to the random
variable describing one of the random trees. By independence of the k trees in Sk,n the
rate function that corresponds to the presence of a node in In,k is k	�

E . We obtain that
the curve to be considered is

{	�
Z (α)+ k ·	�

E (ρ) = log b},
where E and Z are the random variables describing the random trees and b is the
branching factor. As an example, this yields the following result.

PROPOSITION 4. The height H �
n of the intersection Ik,n of k independent copies of

1. random binary search trees is asymptotically cBST(k) log n, in probability, where
cBST(k) is the maximal value of ρ−1 along{

ρ − 1− log ρ = log 2

k
, ρ ≤ 1

}
;

2. PORTs is asymptotically (cPORT(k)/2) log n, where cPORT(k) is the maximum value
of α/ρ along

{α log(3α)+(1−α)(log(3(1−α))−log 2)+k(ρ−1−log ρ)= log 3, α ≥ 1/3, ρ ≤ 1}.

REMARK. Note that Ik,n is likely to contain fewer than n nodes, and the height is not
given as a function of the size of Ik,n .

Table 1 gives numerical values of c1 and c2 for certain values of k. The limit values as
k →∞ can also be derived.

PROPOSITION 5. There exist limits of both constants cBST(k) and cPORT(k) as k goes to
infinity and

lim
k→∞

cBST(k) = lim
k→∞

cPORT(k) = 1.
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Table 1. Some numerical values of the asymptotic height of Ik,n .

k

2 5 10 50 100

cBST 2.62729. . . 1.78088. . . 1.48726. . . 1.18680. . . 1.12760. . .
cPORT 2.03950. . . 1.39752. . . 1.20841. . . 1.05078. . . 1.02788. . .

PROOF. For random binary search trees, this is easily seen since {	�
E (ρ) = ρ − 1 −

log ρ = log 2/k, ρ ≤ 1} is the intersection of two explicitly defined curves. By continuity
of	�

E , ρ → 1 as k →∞. Consider now PORTs. From the properties of CZ ,E , ρ ≥ ρmin,
where ρmin is the value at α = EZ = 1

3 , and k	�
E (ρmin) = log 3, giving that ρmin → 1

as k → ∞. As a consequence, we only look at α. Now, the line � going through the
origin and (ρ = 1, α = 1) crosses CZ ,E because of its concavity and horizontal tangent
at ρ = 1. Therefore, the slope of the tangent τ at the optimal point (ρ, α) is greater
than 1. Writing (ρmin, α�) for the intersection of � and {ρ = ρmin} (Figure 7), we get
that α ≥ α� = ρmin, yielding cPORT → 1 as k →∞.

4.7. Change of Direction in Random Binary Search Trees. Given a tree rooted T and
a path π from a leaf to the root, we define DT (π) as the number of changes of direction
in π . If we let 0 and 1 encode a move down to the left and to the right respectively, then
the path encoded by 0100101 will have D = 5, that is, a count of each occurrence of
the patterns 01 and 10. We are interested in the maximal value over all the paths of the
tree DT = max{DT (π): π ∈ T }. When T is a random binary search tree, this turns
into a random variable that may be handled by our framework. It suffices to notice that
if we took a left step, the next move will increase D only if we go right. We have of
course something similar when the first step was to the right. Thus, we label the edges as
follows. For each level k ≥ 2 of edges, we form the word (0110)k−1, and map the binary
characters to the edges from left to right. Then Dπ corresponds exactly to the sum of
these labels along π (Figure 8).

min

Fig. 7. CZ ,E together with the optimal tangent τ and the line � through the origin and (1, 1).
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Fig. 8. The path consisting of grey nodes is the one with the maximum number of change of direction. Note
that the number of changes of direction is the sum of the labels along the path.

This means that for the tree to match our model we need Z to be binomial( 1
2 ), and

E exponential(1) because the underlying tree is a binary search tree. Therefore the
maximum number of changes of directions along a path in a random binary search tree
is asymptotic to the height of random recursive trees.

PROPOSITION 6. The maximal number of changes of direction along a path Dn in a
random binary search tree is asymptotic to e log n in probability.

4.8. Elements with Two Lifetimes. Consider a binary tree in which elements have two
independent exponential(1) lifetimes, E and Z , and let Du and Gu keep their meaning
from Section 2. In the tree Tn , that is, the tree of all nodes u with Gu ≤ n, it is interesting
to ask what the maximal value of Du is when measured with respect to the second
lifetimes (Z ). Since Z and E have similar Cramér functions, and both have mean 1, we
have by Theorem 1,

PROPOSITION 7. The maximal age Du of any node u in the tree of two lifetimes described
above, cut off at date of birth Gu ≤ n is Hn . We have

Hn

n
−−−→
n→∞

c

in probability, where c = 5.82840157 . . . is the maximal value of α/ρ along

CZ ,E = {(ρ, α): ρ − 1− log ρ + α − 1− logα = log 2; ρ ≤ 1, α ≥ 1}.

Thus, in spite of the fact that measured by first lifetimes, all have age less than n, there
exist elements whose age as measured in the other time scale is almost six times as large!
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4.9. Random k-Coloring of the Edges in a Random Tree. Assume that we randomly
color the edges of a random binary search tree with k colors, and that we ask for the
maximal number of similar colors on one path from a root to a leaf. This is equivalent,
when k is constant, to studying the maximum number of red edges on such paths.
However, then this can be studied by attaching to edges independent copies of Z where
Z = 1 with probability 1/k and Z = 0 otherwise. That is, Z is Bernoulli (1/k). We
have seen already the that the rate function for Bernoulli [10] is

	�
Z (α) = α log(kα)+ (1− α)(log(1− α)− log(k − 1))+ log k,

and the curve of interest is

	�

Z (α) = α log(kα)+ (1− α)(log(1− α)− log(k − 1))+ log k + ρ − 1− log ρ

= log 2

kα ≥ 1, ρ ≤ 1


 .

Note that for k = 2, or p = 1
2 , we have a situation not unlike that of the maximum

number of sign changes in random binary search trees, or the random recursive tree,
where the asymptotic maximum value is e log n. The maximal path length decreases
with the number of colors.

For k = 1 and 2 we have the known results for the height of the random binary search
trees and random recursive trees, respectively, as one can check in Table 2. Clearly, we
may even introduce p values not equal to 1/k, and even ask on which path we have most
red–blue color changes, for example, where red and blue occur with probabilities p and
q , respectively.

For studying the maximal number of colors of one kind (among k colors) in a random
recursive tree, it takes just a moment to see that it suffices to take Z = Bernoulli
(1/k)× Bernoulli ( 1

2 ). In other words, Z is Bernoulli (1/(2k)).

4.10. The Maximum Left Minus Right Exceedance. Let the differential depth of a node
u be Du =

∑
e∈π(u)(L(e) − R(e)), where L(e) is the indicator of e being a left edge

and R(e) is the indicator of e being a right edge. We want to study the extreme value
(differential height) H �

n of Du with an application of Theorem 1, when u ranges over the
nodes of a random binary search tree. For this purpose, we may make Z = 1 or−1 with
probability 1

2 . Note that for our Z ,

	Z (λ) = log(eλ + e−λ)− log 2,

Table 2. Some numerical values of ck .

k

1 2 3 4 5

ck 4.3110. . . 2.7182. . . 2.1206. . . 1.7955. . . 1.5869. . .

k

6 7 8 9 10

ck 1.4397. . . 1.3292. . . 1.2426. . . 1.1725. . . 1.1148. . .
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and we obtain the Cramér function associated to Z ,

	�
Z (α) =



∞, α ≥ 1,

α

2
log

(
1+ α
1− α

)
+ log 2− log

(√
1+ α
1− α +

√
1− α
1+ α

)
, 0 ≤ α < 1.

Then results presented in Section 2 allow us to conclude that there exists a limit
constant c such that H �

n ∼ c log n in probability as n tends to infinity. Numerical tools
allow to determine c = 2.07345 . . ..

5. Concluding Remarks. About the type of convergence, one can see that the upper
bound of Theorem 1 also holds almost surely. This is a straightforward application of the
first Borel–Cantelli lemma. As for the lower bound, with some extra assumptions on the

distribution of E (for example, E
L= exponential(1)), and some minor technical modifi-

cation, one can show that the proof can be extended to obtain almost sure convergence
too.

We considered Z as being a real-valued random variable, but the work can be extented
to Z ∈ Rd . This has been considered by Biggins [4] in the context of multivariate
branching random walks. We may look for the extremes of some multidimensional
branching random walk such as the univariate extremes after one has projected the walk
on some direction θ . It has been proved by Biggins [4] that the location of the extremes
when θ takes values in the unit ball of Rd tends to some convex asymptotic shape.

One can also think of a generalized model where the random variables E and Z we
have considered are allowed to be dependent for edges that emanate from the same node.
This may be handled with a multidimensional version of Cramér’s theorem. In this case
we need the joint distribution of E and Z , and one way to look at it is to consider a
unique random vector X = (Z , E). A bivariate rate function	�

X can be defined in a way
that is similar to the univariate case. Then the curve

CX = {	�
X (α, ρ) = log b, α ≥ EZ , ρ ≤ EE}

can be proved to be analogous to CZ ,E in the independent case. Our results could have
been stated in terms of a unique random vector, but one would have lost some insight of
what is going on: our approach distinguishes the shape of the tree (random variables E)
and the weighted depths (random variables Z ) for the sake of the presentation.

Acknowledgment. We are grateful to S. Janson for his helpful comments and his
improvements of our proofs of Propositions 1 and 2. We also thank both referees for
their careful reading.

Appendix. Review of Large Deviations. We now review some properties of Cramér’s
functions that are useful in the proofs of Theorem 1. One can find an introduction to
large deviations and Cramér’s theorem in [17] or more advanced material in the extensive
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textbook by Dembo and Zeitouni [10]. Let X be a positive random variable and assume
that for some λ > 0,

M(λ)
def= E{eλX } <∞.

This implies that E{Xr } <∞ for all r > 0, and that M(λ′) <∞ for all λ′ < λ. We
define

λ� = sup{λ ≥ 0 : M(λ) <∞}.
Clearly, we may have λ� = ∞ as well as λ� = 0. We introduce the cumulant generating
function

	(λ)
def= log(M(λ)).

Then Cramér’s function is defined to be the Fenchel–Legendre dual of	: for t such that
t ≥ EX ,

	�(t)
def= sup

λ≥0
{λt −	(λ)} = sup

0≤λ<λ�
{λt −	(λ)}.

Similarly, for t ≤ EX , the left-tail Cramér function is

	�(t)
def= sup

λ≤0
{λt −	(λ)}.

Recall that if X1, X2, . . . , Xn are i.i.d. with the same distribution as X , then Cramér’s
theorem states that [10, Theorem 2.2.3, p. 27]

P{X1 + X2 + · · · + Xn ≥ nt} = exp(−n	�(t)+ o(n)),

for t ≥ EX . Similarly,

P{X1 + X2 + · · · + Xn ≤ nt} = exp(−n	�(t)+ o(n)),

for t ≤ EX , where 	� is now the left-tail Cramér function. This gives sharp esti-
mates for large deviations of a sum of i.i.d. random variables, provided we have some
information about the rate 	�. These functions have been intensively studied, as the
Fenchel–Legendre transform is standard in convex analysis [25]. An example is shown
in Figure 9. We note here that	�(t)may be infinite for all t larger than a finite threshold.
Also, we may have	�(t) = 0 for all t (this occurs when λ� = 0, a case which is largely
uninteresting for us).

LEMMA 5 (Properties of Cramér’s Functions). Let X be any random variable with EX =
µ finite. Let M ,	 and	� be the moment, cumulant generating functions and Cramér’s
function, respectively. Then:

1. 	�(t) is increasing for t ≥ µ, M(λ) is increasing where λ > 0 and M(λ) <∞, and
M(0) = 1.

2. 	(λ) ≥ λµ.
3. 	�(µ) = 0.
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Fig. 9. The Cramér function 	�E when E is exponentially distributed with mean 1 is ρ − 1− log ρ.

PROOF. The first fact is obvious from the definitions. Fact 2 comes from Jensen’s
inequality

	(λ) = log E{eλX } ≥ E{log(eλX )} = λEX.

Consider now fact 3. By definition we have

	�(EX) = sup
λ

{λEX −	(λ)} ≤ sup
λ

{λµ− λµ} = 0.

However 	�(t) is non-negative:

	�(t) = sup
λ

{λt −	(λ)} ≥ {λt −	(λ)}λ=0 = 0,

so that 	�(µ) = 0.

We need one more result to prove the uniqueness of the optimal point on the curve
CZ ,E . Indeed, CZ ,E is concave and the values of the slope at both ends are of great
importance. This is directly dependent on the derivative of the rate functions	�

Z and	�
E

at their mean.

PROPOSITION 8. If X is not a single mass at EX = µ, and λ� > 0, then

d	�

dt

∣∣∣∣
[t=µ]

= 0.

The following lemmas help us to prove Proposition 8 without using fancy arguments.

LEMMA 6. Under the conditions of Lemma 5, 	(λ)/λ is increasing in λ. Since
P {X = µ} < 1, 	(λ)/λ is in fact strictly increasing.
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PROOF. Let Z = eX and λ < λ′. From Hölder’s inequality we have that

E{Zλ}1/λ ≤ E{Zλ′ }1/λ′ ,(8)

and therefore

(M(λ))1/λ ≤ (M(λ′))1/λ′ .
Taking logarithms shows that 	(λ)/λ is increasing. Note that equality in (8) occurs if
and only if Z puts all its mass at one point, and thus the second statement holds.

LEMMA 7. Under the conditions of Lemma 5,

lim
λ↓0

	(λ)

λ
= EX.

PROOF. Write ψ(x) = eλx − λx − 1, then

M(λ) = E{eλX } = E{1+ λX + ψ(X)} = 1+ λEX + E{ψ(X)}.
By Taylor’s series expansion,

ψ(x) ≤ λ
2x2

2
eλx ,

and for any ε > 0, eεx ≥ εx so that

ψ(x) ≤ λ2

2ε2
e(λ+2ε)x .

Choosing ε such that λ+ 2ε < λ� gives the bounds

1+ λEX ≤ M(λ) ≤ 1+ λEX + λ2

2ε2
M(λ+ 2ε).

As M(λ+ 2ε) decreases as λ ↓ 0, 	(λ) ∼ λEX .

LEMMA 8. Assume λ� > 0. At every λ ∈ [0, λ�), 	(λ)/λ is continuous in λ.

PROOF. For λ = 0, this follows from Lemma 7. If λ > 0, then we have the re-
sult if M is continuous, but M is the moment generating function and is known to be
continuous.

LEMMA 9. If X is not a single mass, and λ� > 0, then there exists t� > µ = EX
(assumed finite) such that 	�(t) <∞ for all t < t�.

PROOF. Assume first that 	(λ)/λ increases to ∞ (we consider limits in the domain
where it is finite). Since 	(λ)/λ is continuous, for any t ≥ µ, there exists a solution
λt < λ� of 	(λ) = λt . Thus,

	�(t) = sup

{
λ

(
t − 	(λ)

λ

)}
≤ λt (t − µ) <∞.(9)
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Now if 	(λ)/λ increases to a finite limit F , we have the similar result 	�(t) < ∞ for
every µ ≤ t < F .

PROOF OF PROPOSITION 8. Recall from Lemma 9 that 	�(t) < ∞, t ≤ t� for some
t� > EX . As t ↓ 0, by the strict increasing nature and continuity of	(λ)/λ, the solution
λt of

	(λ)

λ
= t

tends to zero. However, by (9) 	(t) ≤ λt (t − µ), and thus

lim
t↓µ

	�(t)−	�(µ)

t − µ ≤ lim
t↓µ

λt = 0.

LEMMA 10. For any random variable X with finite mean and having λ� > 0, the
associated rate function 	� is convex and strictly convex inside the interior of the set
{	′(λ) : λ < λ�}. If λ� = 0, then 	�(t) = 0 for all t ≥ EX .

PROOF. We can assume without loss of generality that µ ≤ t < t�, where t� is as in
the previous lemma. Then for ε > 0 small enough, it suffices to show that

	�(t + 2ε)−	�(t + ε) ≥ 	�(t + ε)−	�(t).

However, for functions f, g,

max
x

f (x)+max
x

g(x) ≥ max
x
{ f (x)+ g(x)},(10)

and so, using the definition of 	�,

	�(t + 2ε)+	�(t) = sup
λ

{λ(t + 2ε)−	(λ)} + sup
λ

{λt −	(λ)}(11)

≥ 2 sup
λ

{λ(t + ε)−	(λ)}

= 2	�(t + ε).

We can obtain strict convexity by being more careful. Using the geometric interpretation
of 	� [10], the optimal λ for the supremum is the abscissa of the point where 	 admits
a tangent of slope t . Since 	 is convex and has a continuous derivative where it is finite
(proof of this is very similar to the one of Lemma 7 using a Taylor series expansion),
the values of λ and λ′ corresponding to t and t ′ respectively are distinct whenever
t �= t ′. As equality in (10) occurs only if both maxima are achieved at the same point
x , we actually obtain a strict inequality in (12) and therefore strict convexity where
one can find such tangents to 	 with slope t and t + 2ε, that is in the interior of the
set {	′(λ) : λ < λ�}.
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