
The Dictionary ADT & Binary Search Trees
Florestan Brunck

February 28, 2022

This introduction to dictionaries builds from a transcription of a lecture
given by Luc Devroye in the winter semester of 2019 for the under-
graduate class on Data Structures and Algorithms at McGill University
(COMP 251). This lecture introduces the dictionary ADT and its imple-
mentation through binary search trees.

1 Introduction

The purpose of a dictionary is to store a collection of items in a way
that makes them easily and quickly accessible by a search. To that
effect, each object is associated a key, typically a value or elements of
a set which has been endowed with a total order1. 1 We can for example think of an En-

glish dictionary, in which the items are
the words and the key of a particular
word is the word itself, seen as a num-
ber in binary (recall that each letter can
be attributed a value ranging from 0 to
256 in the ASCII code.

The default operations of the dictionary adt are the search oper-
ation, together with the insert and delete operation.

Additionally, some optional operations that are often expected to
be implemented in a dictionary are the sometimes called browsing
operations. Namely the max/min operation, which return the item
whose key is maximal/minimal, and the successor/predecessor

operations, which take as input an item and return the item whose
key is the next/previous value in the total order.

2 Implementations

Dictionaries can be implemented with a variety of data structures,
each with their own advantages and drawbacks. The particular
choice of data structure must tailor to the problem at hand and make
use of the nature and structure of the objects being stored.

5
1

3

2 4

6

1 2 3 4 5 6
Figure 1: An implementation of
a dictionary storing the numbers
{1, 2, 3, 4, 5} in a binary tree.

The main data structures are:

Binary Search Trees (BST)

Balanced Trees (e.g. red-black trees)

Hash Tables

B-Trees

Tries & Suffix Trees

Because of their simplicity, binary search trees are a fundamen-
tal data structure to which we will dedicate the rest of this lecture.
Some of the others data structures also have dedicated lectures in this
course.



the dictionary adt & binary search trees 2

3 Binary Search Trees –

v

keys
< 

key[v]
keys 

>
 key[v]

Figure 2: The Search Tree Property.

Definition 1. A binary search tree (BST) is a binary tree in which
each node stores exactly one key, with the added requirement that
each node has the search tree property. For each node, this property
enforces that all the nodes situated in its left (resp. right) subtree
have lower (resp. higher) key values (see Fig. 8).

4 Binary Search Trees on the Entropy Scale

The problem at hand when building a dictionary is to store a list
of ordered items in a way that makes them easily accessible via a
search. We can therefore ask ourselves what makes BSTs good can-
didates for dictionaries. A useful tool in that regard is what one may
call the entropy scale. On that scale we measure the amount of effort
(i.e. the number of comparisons or use of elementary operations)
needed to create the data structure from an unordered list. We can
think about this amount of effort as entropy in the sense that it mea-
sures the amount of order in a given data structure. An unordered
list realising the maximal amount of disorder with no given structure
while an ordered list stands as the maximal amount of order, with
the most structure. Indeed for an ordered list no effort (just printing
the elements one by one) is required to output the ordered list (n
comparisons).

Chaos
(highest entropy)

Order
(lowest entropy)

Unordered List
0 

Ordered List/BST
n log n

Binary Heap
n 

Figure 3: The entropy scale.

We can position the various potential data structures on that scale
depending on how much work it takes to construct them from an
unordered list. Where do binary search trees stand on that list? Well,
notice first that to output an ordered list from a binary search tree, all
that is required is to traverse the tree in order. Indeed in this traversal
we first visit the left subtree, then the node itself and then the right
subtree, the search tree property then guarantees that the output is
the ordered list. Recall then from the lecture on trees that traversing
a tree takes order O(n). So a binary search tree really has the same
order/entropy as an ordered list!



the dictionary adt & binary search trees 3

5 Basic Operations

In this section we provide an overview of the elementary operations
that come with the dictionary adt and describe their explicit imple-
mentations for binary search trees.

The first operation is the search operation, which allows us to
retrieve the item associated to a given key.

search(k, x)

1 // Returns the node in a tree with root t that has the key k
2 if t = nil or key[t] = k
3 return t
4 elseif k < key[x]
5 search(left[x], k)
6 elseif k > key[x]
7 search(right[x], k)

Exercise 2. Re-write the search algorithm non-recursively.

The second most elementary operation is the insert operation,
which allows us to create and add a new item with a given key and
place it at the right position in a given binary search tree.

x
y

t

x
y

x
y

k
Figure 4: The insert algorithm uses a
travelling pair of pointers to descend
the binary search tree from the root to
the correct position.

insert(k, t)

1 // Inserts the node with the key k in the BST rooted at t
2 // We start by positioning ourselves at the right node in the BST
3 while x 6= nil
4 y←− x
5 if k < key[x]
6 x ←− left[x]
7 else
8 x ←− right[x]
9 // We then create a new cell x with the given k

10 // at that position in the tree
11 key[x]←− k
12 parent[x]←− y
13 if k < key[y]
14 left[y]←− x
15 else
16 right[y]←− x
17 left[x]←− nil
18 right[x]←− nil



the dictionary adt & binary search trees 4

Conversely, we also need to be able to delete an item with a given
key and update the tree so that it still retains the search tree property.
If node x has no children (case 1), then one can just set the appropri-
ate child pointer of parent[x] to nil. If x has only one child (as in the
figure on the right), then one can simply bypass the node by adjust-
ing two pointers (see case 2 in the figure). Case 3 occurs when x has
at most one child and is also the root. The trickier case 4 covers the
situation when x has two children. In that instance, one could let `
denote the rightmost node in the left subtree of x, and transfer key[`]
to x. Since ` has no right child, we can simply delete ` as described
above.

Figure 5: Case 2 of the delete algo-
rithm.

x

L Rl r

Figure 6: Case 4 of the delete algo-
rithm.

delete(x)

1 // Delete the node x when it has two children
2 // Let L = left[x] denote the left subtree of x
3 Let `←− maximum(L)
4 key[x]←− key[`]
5 delete(`) (as ` has at most one child)
6 // Note that equivalently we could
7 // replace ` with r ←− minimum(R)
8 // where R = right[x] denotes the right subtree of x



the dictionary adt & binary search trees 5

successor(x)

1 // Returns the node with the next key in the total order.
2 if right[x] 6= nil
3 return minimum(right[x])
4 else
5 y←− parent[x]
6 while y 6= nil & x = right[y]
7 x ←− y
8 y←− parent[x]
9 return y

Since we go down a tree level at each call, the running time is at
most the height of the binary search tree.

x
y

s

t

Figure 7: An example of an ordered
rooted tree (or plane tree).

6 Browsing in BSTs

The browsing operation can be simply implemented by repeated
application of the successor operation. Namely, browsing k-steps
can be realised by k successive calls of the successor operation
started at a given node.

What is the complexity of this operation? Well, the successor

operation takes O(h) so a naive first answer would be to multiply this
by the number of steps to obtain a running time of O(h · k). However
we can show that the running time is O(h + k).

x
y

k-1

Figure 8: The browsing operation,
obtained by iterating the successor

operation.

To see this notice that the repeated application of the succes-
sor operation amounts in the path indicated in dashed lines which
consists namely of two components:

1) Going down and back up each subtree between the start and end



the dictionary adt & binary search trees 6

node (all the subtrees visited in between in a preorder traversal,
think "along the coastline" as in our lectures on trees). In each
subtree an amount of time equal to twice the amount of nodes in
these subtree (going down and back up). But there are k− 1 nodes
in between the start and end node by construction, which means
that the total time spent is 2 · (k− 1)

2) Going up the tree from the start node to the least common ances-
tor of the start and end node, and then climbing back down to the
end node. This clearly takes at most time 2 · h where h is the height
of the tree.

x
y

1)

2)

Figure 9: The complexity of the brows-
ing operation can be broken down in
two components.

The overall cost of the browsing operation is thus O(h + k).


	Introduction
	Implementations
	Binary Search Trees
	Binary Search Trees on the Entropy Scale
	Basic Operations
	Browsing in BSTs

