
Introduction to Trees and Traversals
Florestan Brunck

April 18, 2022

This introduction to trees builds from a transcription of a lecture given
by Luc Devroye on the 28th of February 2019 for the undergraduate
class on Data Structures and Algorithms at McGill University (COMP
251). This lecture introduces trees and their traversals.

1 Introduction and Definitions 9

1
53

8

4

7

2
6

Figure 1: An example of a free tree.

Trees are fundamental objects which can be endowed with various
structures according to more specific purposes. In our particular con-
text, the main characteristic of trees we will exploit is their recursive
character. To hint at the underlying data structures at work, we refer
to the vertices of a graph by nodes in the present chapter.

Definition 1. A free tree is a connected acyclic graph.

OLDEST

CHILD

YOUNGEST

CHILD

Figure 2: An example of an ordered
rooted tree (or plane tree).

Definition 2. A rooted tree is a free tree with a single marked node
called the root.

Equivalently, we have the following recursive definition for rooted
trees.

Definition 3 (Recursive definition). A rooted tree T is a non-empty
finite set of nodes such that:

(i) A single designated node is marked as the root of T (root(T))

(ii) The remaining nodes (with the exception of the root) are par-
titioned into disjoint sets T1, . . . , Tn, each of which is a tree. The
trees T1, . . . , Tn are called the subtrees of the root.

Definition 4. An ordered rooted tree (or plane tree) is a rooted tree
for which the recursive criterion (ii) in definition 3 associates an n-
tuple of disjoint Trees (T1, . . . , Tn) to the root (and not just n disjoint
trees). That is, each subtree is given an order.

–

Figure 3: An example of a binary tree.

Definition 5. A k-ary tree is a tree in which every node has exactly
k (possibly empty) subtrees. In the particular instances where k = 2
and k = 3 we call such trees binary and ternary trees respectively.
If there is an order on subtrees and each child has a position P ∈
{1, . . . , k}, we call such a tree a position tree.

Remark 6. The definition of a k-ary tree in computer science is dif-
ferent from the regular definition of a k-ary, in which all nodes have

introduction to trees and traversals 2

degree k. Indeed, with our definition, the root of the tree has degree
k− 1 (see Figure 4 and 5).

Figure 4: a ternary tree, in the common
sense of the term (where every vertex is
of degree 3).

Figure 5: A binary tree, in the computer
science of the term (where every vertex
except for the root is of degree 3).

Pictorial notation: When it comes to representing trees in diagrams,
the top-down presentation is preferred (we refer the reader to the
sidenote1 quotation of Knuth’s The Art of Programming to motivate

1 "It may seem that the [bottom-up rep-
resentation] would be preferable simply
because that is how trees grow in nature;
in the absence of any compelling reason
to adopt any of the other three forms, we
might as well adopt nature’s time-honored
tradition. With real trees in mind, the
author consistently followed a root-at-the-
bottom convention as the present set of
books was first being prepared, but after two
years of trial it was found to be a mistake:
Observations of the computer literature
and numerous informal discussions with
computer scientists about a wide variety of
algorithms showed that trees were drawn
with the root at the top in more than 80
percent of the cases examined. There is
an overwhelming tendency to make hand-
drawn charts grow downwards instead of
upwards (and this is easy to understand in
view of the way we write); even the word
"subtree", as opposed to "supertree", tends
to connote a downward relationship. [. . .]
Henceforth we will almost always draw
trees [. . .] with the root at the top and
leaves at the bottom. Corresponding to this
orientation, we should perhaps call the root
node the apex of the tree, and speak of nodes
at shallow and deep levels." [1]

this choice).
Rather than formally define the remaining tree terminology we

point the reader to figure below.

SIBLINGS

NODE/VERTEX

ROOT

HEIGHT

v

w

ANCESTOR OF v

OLDEST CHILD OF v DESCENDANT OF w

EDGE

PARENT OFv

SUBTREE

Level 1

Level 0

Level 2

Level 3

Level 4

DEGREE

= #CHILDREN

PATH

|PATH| = DEPTH OF A NODE

2 Complete Binary Trees

Definition 7. A complete binary tree is a binary tree for which all
the levels are filled, with the possible exception of the last one, which
is filled from left to right.

Let h denote the height of a complete binary tree and n its total
number of node. The previous definition yields the following in-
equality:

introduction to trees and traversals 3

1

2

h-1

h

Figure 6: Computing the height of a
complete binary tree on n nodes.

1 + 2 + . . . + 2h−1 <n ≤ 1 + 2 + . . . + 2h

2h − 1 <n ≤ 2h+1 − 1

2h ≤n < 2h+1

h ≤ log2n < h + 1

From which we infer that h = blog2 nc.

Exercise 8. Derive a similar formula for a complete k-ary tree.

3 Binary Trees and Ordered Trees

There is a very useful trick which allows one to reduce every tree to
a binary tree. Namely, there is a bijection between the set of binary
trees on n − 1 nodes and the set of ordered trees on n nodes. The
bijection is the described as follows (see Fig. 7): start with the root
of an ordered tree on n nodes and create a first corresponding node
in the binary tree we want to construct and associate uniquely to
this ordered tree. The oldest child of the root is to be placed as a
left child of the newly created node, while the other siblings will be
placed as successive right children of this left child. We then proceed
inductively on the rest of the tree. This process may be seen as a

1

2 3 4 5

6 7 8

9 10 11

1

2
3

4
56

7

8

9
10

11

1

2
3

4
56

7

8

9
10

11

Figure 7: There is a bijection between
ordered trees on n nodes and binary
trees on n− 1 nodes.

introduction to trees and traversals 4

"rotation" of the original ordered tree. So far, it would seem that this
process defines a bijection between ordered trees on n nodes and
binary trees on n nodes. Notice, however, that the root of the binary
we obtained contains no information on the tree and is redundant.
Indeed, the root cannot have a right child (by construction) and we
can therefore trim the root and always tacitly assume we have to
start building the root first when going back from a binary tree to an
ordered tree.

1

Figure 8: The root is redundant in the
binary tree we obtain, thus defining
a bijection on binary trees with n − 1
nodes.

4 Implementations

A first straight-forward way to implement a tree data structure is to
associate linked cells to each node which each consist of a data element
and two pointers to the left child and the right child of the associated
node in the tree. In this construction, the tree is the pointer to the cell
associated with the root node.

DATA

LEFT
CHILD

RIGHT
CHILD

(oldest child) (next sibling)

Cell

DATA

LEFT

CHILD

RIGHT

CHILD

PARENT

POINTER
Figure 9: The standard implementation
of a tree, which sometimes include a
pointer to the parent node.

Very concretely, this can be implemented with an array quite eas-
ily, the following example corresponds to the tree shown in Figure
10.

1

5 3

6

2 11 9 8

10 7

Figure 10: Example of an array imple-
mentation of a tree.

Node # 1 2 3 4 5 6 7 8 9 10

Data
Left Child 5 ∅ ∅ ∅ 6 2 ∅ ∅ ∅ 9

Right Child 3 ∅ 7 ∅ 10 11 ∅ ∅ ∅ 8

4.1 Implicit Storage of a Complete Binary Tree

In the particular case of complete binary trees there is an elegant way
to store a tree in a linear array. Numbering nodes from top to bottom
and from left to right within layers, we proceed as follows:

1. We store the i-th node in position [i] in our array

2. The left child of the i-th node is stored in position [2i]

3. The right child of the i-th node is stored in position [2i + 1]

introduction to trees and traversals 5

4. By construction we then get that the parent node of the i-th node
is stored in position b i

2c

With this construction, we see that a necessary and sufficient con-
dition for the i-th node to be a leaf is to satisty the inequality 2i > n,
if n denotes the number of nodes in the tree.

Another elegant property of this construction is the fact that the
position of the node in the array (written in binary) directly reads
a path from the root to the node (if we omit the first bit). This is
of course due to the fact that the k-th digit in the binary expansion
is either 0 or 1 depending on whether the node was obtained as a
left or right child from its parent. As an example, the 10-th node
reads (1010)2 in binary, corresponding to the path 010, i.e., starting
from the root: left, then right, then left (see Figure 11, in which node
numbers refer to the position of the node in the array).

1

2

4

8 9

5

10

6

3

7

Figure 11:
1 2 3 4 5 6 7 8 9 10

Example of implicit storage of a
complete binary tree via an array.5 Properties of Trees

In this section we list various properties on trees which are useful to
keep in mind.

1. Every tree on n nodes has n− 1 edges.

2. In a binary tree, let ni denote the number of nodes with i children.
Then:

n = n0 + n1 + n2 =⇒ n− 1 = n1 + 2n2

3. The number of binary trees on n nodes is given by the n-th Cata-
lan number: 1

n+1 (
2n
n).

2 2 We prove this identity later on in this
chapter (c.f. section 8).

6 Traversals

6.1 Traversals in Binary Trees

Unlike lists, trees are not inherently 1-dimensional objects. For rep-
resentation purposes at the computer level and many other purposes
one needs ways to linearise trees. As we will see in this section, trees
can be linearised in multiple ways.

Definition 9. By a traversal of an ordered tree we mean any means
of exhaustively listing the nodes of the tree as they are visited exactly
once.

Traversals can become quite elaborate, but we concern ourselves
here only with the four basic schemes for binary trees, which are
in a sense more fundamental. We list them here together with the
ordering associated to the example of figure blabla:

introduction to trees and traversals 6

1. Level order: 1 2 3 4 5 6 7 8 9

2. Preorder: 1 2 4 5 7 8 3 6 9

3. Inorder: 4 2 7 5 8 1 6 9 3

4. Postorder: 4 7 8 5 2 9 6 3 1

1

2 3

4 5

7 8

6

9
Figure 12: Our example of a binary tree,
which we traverse in 4 different ways.

6.2 Level Order

1

2 3

4 5

7 8

6

9

Figure 13: A heuristic picture for the
level order traversal of a binary tree.

Similarly to the breadth-first-search algorithm, the level order ex-
plores a tree "level by level" where a level consists of nodes a given
combinatorial distance away from the root. The implementation also
relies on a queue.

level order(t)

1 // The input t is a pointer to a tree
2 makenull(Q)

3 enqueue(t, Q)

4 while |Q| ≥ 1
5 v←− dequeue(Q)

6 Visit the node pointed to by v
7 For all children v of t, from left to right
8 enqueue(v, Q)

6.3 PreOrder, InOrder, PostOrder

These three traversal are all defined recursively but differ in the par-
ticular sequence of recursive calls.

Preorder Inorder Postorder

Visit the root node Recurse on the left subtree Recurse on the left subtree
Recurse on the left subtree Visit the root node Recurse on the right subtree

Recurse on the right subtree Recurse on the left subtree Visit the root node

The code for each traversal is exact in all accounts save for the
order of the visit of the root. We provide the code for the Preorder
traversal.

preorder(t)

1 if t 6= nil
2 Visit t
3 v←− Left child of t
4 preorder(v)
5 v←− Right child of t
6 preorder(v)

introduction to trees and traversals 7

1

2 3

4 5

7 8

6

9

Figure 14: One can look at the preorder
traversal of a binary tree as the listing
of a boat sailing along the coast line
defined by the tree.

Remark 10. Seeing a tree as a coast line, one can see the Preorder
traversal as the labelling that a boat leaving from the root and going
along the coast line before returning to the root would obtain (see
figure blabla).

6.4 Traversals in Non-Binary Ordered Trees

The Level Order traversal can be used without changes on any or-
dered tree (in line 7 of the example, there is no specification on the
number of children). Likewise, the Preorder and Postorder traver-
sals can also be generalised to ordered tree by making the following
adjustments:

Preorder Postorder

Visit the root node Recurse on the children subtrees
from left to right

Recurse on the children subtrees Visit the root node
from left to right

For the Inorder traversal however, there is no longer a canonical
choice of splitting of the children subtrees. In the case of a binary tree
we can visit the root in between recursive calls on left and right sub-
trees, but for a k-ary tree for example, there would be k − 1-choices
of Inorder traversals as we may visit the root in between any of the k
recursive calls on the children nodes.

6.5 Ancestor Information

 v

A3A2

A3

A1

A4
Figure 15: Retrieving the ancestry
of a given node using preorder and
postorder traversals.

Given the preorder and postorder numbers associated to each node
in an ordered tree, one can retrieve all the information about the
ancestors and the descendants of a given node. This is because for
a given node v, another node u has a preorder either strictly less or
strictly greater than that of v and likewise for its postorder. There
is then a partition of the nodes in four sets corresponding to the 2

possible categories that a node falls in for each of the 2 orders (see
Figure 15):

preorder(w)<preorder(v) preorder(w)>preorder(v)

postorder(w)<postorder(v) w ∈ A2 w ∈ A4

postorder(w)>postorder(v) w ∈ A1 w ∈ A3

The Ancestors of v correspond precisely to the set of nodes with
lesser preorder and greater postorder than that of v while the descen-

introduction to trees and traversals 8

dants of v correspond to the nodes with greater preorder and lesser
postorder than that of v.

6.6 Non-Recursive, Stack-Based Algorithms for Traversals

We have already seen recursive algorithms for the preorder and pos-
torder traversals in binary trees. They can, alternatively, be executed
without the use of recursion with the use of a stack to store the suc-
cessive nodes under consideration. Just like before, the difference
between the two traversals will then consist in the order in which
we visit a node and push its children on the stack. In a preorder
traversal, the root node is visited and children are pushed on the
stack from right to left. In a postorder traversal, if the root node is
unmarked, it is marked and pushed on the stack before its children
(again, from right to left; they are unmarked); if the root node is
marked, it is visited and nothing is pushed on the stack. So, an extra
bit for marking suffices.

Remark 11. There is a subtlety in the order in which children are
being pushed on the stack: it is reversed compared to the order of the
recursive calls which were from left to right children. This is because
we want to consider the left subtree first and therefore to push it on
the stack last.

More precisely, we have the following code for a stack-based
traversal in a binary tree:

preorder(t)

1 makenull(S), push(t, S)
2 while notempty(S)
3 v←− pop(S)
4 Visit v
5 if right[v] 6= nil

6 push(right[v], S)
7 if left[v] 6= nil

8 push(left[v], S)

One possible issue with the physical implementation of stack-
based traversals on a computer lies in controlling the size of the
stack and ensuring some sort of upper bound to make sure either
that machine limitations are met or simply that as much space is
saved as possible by our algorithm. To that effect one can modify
the previous algorithms to prioritise the following heuristic: always
push the largest subtree first on the stack. This is again because that way
we will traverse the smaller subtrees first and avoid adding up large
subtrees onto the stack for later consideration.

introduction to trees and traversals 9

With such an algorithm, which one might call a parsimonious
stack-based traversal, we can guarantee that the size of the stack
never exceeds log2 n where n is the number of nodes of the tree, this
is because we can only push one node on the stack for each level (see
Figure 16).

STACK

STACK

STACK

STACK

STACK

≤

NODE BEING

TRAVERSED

Figure 16: Parsimonious stack-based
traversals of trees.

We also have that at any given time during the execution of the
algorithm, the size of the subtree under consideration under the node
currently being visited is at most n

2|S|
where |S| is the size of the stack

at that given time. This is easy to see by induction since pushing a
node on the stack corresponds to a choice of right or left subtree, but
since we always push the largest subtree first on the stack, it must
be that the subtree which we selected under the node being visited
contains less than half of the nodes in the tree rooted at that node.

6.7 Non-Recursive, Stackless Algorithms for Traversals

In a way, the use of the stack in the previous algorithms was solely to
encode parent information for nodes and allow us to climb back up
the tree until the parent node of the subtree we were just traversing.
Assuming we are being given parent pointers for a binary tree, one
might expect to be able to get rid of recursion and stacks altogether
and this is indeed the case.

u
u1 u2

u3

Figure 17: The next function sends
u→ u1, u1 → u2 and u2 → u3.

Notice first that, for an internal node, the next node in the preorder
will be its left child. So that, going down from the root, we can keep
going down the tree, always selecting the left child and incrementing
the order by one. The problem now is then to understand what we
ought to do once we reach a leaf. Well, since we are given parent
pointers, we can climb up the tree until we reach a node with two
children and whose left subtree we ascended from. That node is then
the next node in the preorder. We can thus define, without the use of
recursion or the need for a stack the following next function which
will return, given a node as input, the next node in the preorder of
the given tree.

introduction to trees and traversals 10

next(u)

1 if left[u] 6= nil
2 return left[u]
3 elseif right[u] 6= nil
4 return right[u]
5 else
6 v←− parent(u)
7 while v 6= nil and (right[v] = u or nil)
8 u←− v
9 v←− parent[v]

10 if v = nil
11 return nil
12 else
13 return right[v]

The new stackless preorder algorithm is then simply:

preorder(t)

1 u←− t
2 while u 6= nil
3 Visit u
4 u←− next(u)

7 Compact Representation of Trees

Consider the problem of encoding binary trees using the minimal
number of bits possible. Recall that they are 1

n+1 (
2n
n) binary trees

on n nodes. Recall as well that given a set S of N objects, there is a
theoretical lowerbound of log2 N bits required to represent any single
object in S so that it may be differentiated from any other element
in S. This tells us that the minimal number of bits required to store
binary trees on n nodes is not less than:

log2

[
1

n + 1

(
2n
n

)]
≥ log2

 1
n + 1

2n

∑
i=0

(
2n
i

)
2n + 1

= log2

[
22n

(n + 1)(2n + 1)

]
= 2n− o(n)

n0 2n

1
i

2n
i

Figure 18: The binomial (2n
i), seen as

a function of i with n fixed reaches a
maximum fo i = n.where the first inequality comes from the fact that the binomial (2n

i)

seen as a function of i for n fixed has its maximum at i = n (see
Figure 18).

introduction to trees and traversals 11

As it turns out, we can in fact devise a way of encoding binary
trees which uses exactly 2n bits! Notice that any traversal encodes all
the information we need save for the type of nodes being traversed,
i.e the traversal does not tell us whether we the nodes are leaves,
nodes with two children or nodes with a left/right child. Without
this information there is no way of differentiating for example the
two trees on two nodes (the first with a root and a left child and the
second with a root and a right child) since they both yield the same
preorder traversal.

Figure 19: The four different types of
nodes in a binary tree, to which we
associate the unique binary signatures
00, 01, 10 and 11 respectively.

Observe then that there are exactly 4 types of nodes (see Figure
bla), to which we can then associate a binary signature of 2 digits.
Our encoding is then simply the string resulting from substituting
the number of a node by its signature in the traversal (see Figure bla)!

Exercise 12. Write an algorithm to collect the signatures of each node in a
preorder traversal.

Exercise 13. Reconstruct the binary tree in linear time from each of the
three 2n-bits representations associated with preorder, inorder and postorder
traversals.

Exercise 14. How many bits does one need to represent the shape of an
ordered tree on n nodes?

Exercise 15. Give a linear time algorithm for computing each representa-
tion of a binary tree.

8 Counting Binary Trees & Catalan Numbers

We first establish a 1-to-1 correspondence between binary trees on
n nodes and walks with steps 1 of −1 on the positive integers, start-
ing at 0 and ending at 0 after 2n steps. An equivalent way to look
at these walks which we will adopt is to consider lattice paths from
(0, 0) to (2n, 0) with steps (1, 1) and (1,−1) which never fall under
the x-axis3. In order to make this correspondence clear, we first asso- 3 Such lattice paths are called Dyck

paths. See an example in Figure bla.
They can be viewed alternatively as
"staircase" lattice paths joining (0, 0)
to (n, n) with steps (0, 1) and (1, 0)
which do not cross the main diagonal
of points (i, i), i ≤ n.

ciate to every node in a binary tree the markings consisting of a "+"
sign, respectively of a "−" sign on its left, respectively bottom side
(See Figure 21). That way, looking back at remark 10 we can perform
a preorder traversal and collect the signs of each node as the traversal
is executed. We can then associate to this traversal the lattice path
resulting from the following correspondence:

1. If a "+" sign is collected, execute the (1, 1) step.

2. If a "−" sign is collected, execute the (1,−1) step.

introduction to trees and traversals 12

+

+ +
+

+

+

− −

−

−

− −

(0,0) (2n,0)

Figure 20: Seeing binary trees as Dyck
paths.

+ +

+

+ + +

−

−

−

−

− −
Figure 21: The markings describing
the bijection between binary trees and
Dyck paths. A preorder traversal of this
tree would collect the markings in the
following order: ++−+−−++−−
+−.

This clearly defines a lattice path from (0, 0) to (2n, 0) since at the
end of the traversal, all the signs have been collected and "+" and "−"
signs are present exactly in equal amount. It is not hard either to see
that the path stays positive (does not cross the x-axis) since for each
single node, the preorder traversal necessarily collects the "+" sign
first (we start going along the coastline down from the left side of the
root).

We have thus established that:

#
(
bin. trees on n nodes

)
= #

(
positive paths: (0, 0) → (2n, 0)

)
Since all the lattice paths which fail to be positive necessarily cross

the line ` with y-coordinate −1 we can rewrite the number of posi-
tive lattice paths as the following difference:

#
(

paths: (0, 0) → (2n, 0)
)
− #
(

paths: (0, 0) → (2n, 0) meeting `
)

The number of (all the) lattice paths from (0, 0) to (2n, 0) is sim-
ply (2n

n). Indeed for such a path, we need to go up exactly n times
and down exactly n times as well, there are then (2n

n) different ways
of choosing at what step we ought to go up or down (the steps at
which we go up, resp. down steps constitute a subset of size n inside
the set of all 2n steps).

Now all that is left to do is count the number of lattice paths start-
ing at (0, 0) and ending at (2n, 0) which cross the line `. Consider
such a lattice path and note that either the path crosses ` or it stays
above it.

Suppose then the path under consideration crosses ` and look at
the first point of crossing of this path with `. We can then perform
a reflection of the remaining section of the path across ` to obtain a
path which will now end at (2n,−2). We can perform this operation
for any given path which crosses ` (see Figure 22). But notice as
well that any lattice path from (0, 0) to (2n,−2) must necessarily

introduction to trees and traversals 13

(0,0) (2n,0)

Figure 22: A lattice path crossing the
line ` of ordinate −1 and the corre-
sponding pivot point and reflected path
(shown in grey).

cross `. So this reversible process of reflection defines a bijection
between paths from (0, 0) to (2n, 0) crossing ` and paths from (0, 0)
to (2n,−2). Following our previous reasoning it is immediate that
the number of paths joining (0, 0) to (2n,−2) is equal to (2n

n+1) =

(2n
n−1) (there are now n + 1 down steps, or n− 1 up steps).

We thus obtain that the number of lattice paths staying above the
x-axis is precisely: (

2n
n

)
−
(

2n
n + 1

)
=

1
n + 1

(
2n
n

)
This number is called the n-th Catalan number4.

4 The Catalan numbers appear in a lot
of counting problems in combinatorics
and there is a plethora of well-known
bijections between sets of objects which
are counted by Catalan numbers. For
a reference see [2], [5], [4] or [3] for a
more introductory presentation of some
of these bijections. Among the most
famous ones we mention the number of
balanced bracketings/parenthesizations
of a given string of n + 1 characters
and the number of triangulations of a
convex (n + 2)-gon.

Figure 23: A pictorial description of
the bijection between binary trees and
triangulations on convex (n + 2)-gons.

9 Arithmetic Expressions

9.1 Expression Trees

The problem of evaluating arithmetic expressions is an interesting
example of the use of binary trees and traversals. Notice indeed that
any arithmetic operation involves exactly two operands and we can
therefore construct an expression tree for any arithmetic expression
where the internal nodes correspond to the operators and the leaves
the operands (see Figure 24). Different traversals of such an expres-
sion tree correspond to different notation systems:

A

B C

D E

+ ×

/

×

Figure 24: The expression tree corre-
sponding to the arithmetic expression
" A+(B×C)

D×E "

1. The Prefix/Polish notation corresponds to a preorder traversal of the
expression tree.

Example: / + A× B C× D E

2. The Postfix/Reverse Polish notation corresponds to a postorder
traversal of the expression tree5. 5 Postfix notation is used for example in

the PostScript language.
Example: A B C×+D E× /

introduction to trees and traversals 14

9.2 Evaluating Postfix Expressions

If given a postfix expression we can evaluate it using the following
simple algorithm relying on a stack:

evaluate(E)

1 // The input is an arithmetic expression/string E in postfix
2 // notation, consisting of a concatenation of characters x ∈ E
3 // which are thus all either operands or (binary) operators

4 makenull(S)
5 for x ∈ E (read from left to right)
6 if x ∈ {Operands}
7 push(x, S)
8 else
9 A←− pop(S)

10 B←− pop(S)
11 C ←− AxB
12 push(C, S)
13 Return pop(S)

Exercise 16. How many bits suffice to store the shape of an n-node expres-
sion tree ?

References

[1] Donald E Knuth. The Art of Computer Programming, Volumes
1-4A Boxed Set. Addison-Wesley Professional, 2011. ISBN 978-
0321751041.

[2] Igor Pak. Catalan numbers page. URL https://www.math.ucla.

edu/~pak/lectures/Cat/pakcat.htm.

[3] Richard P Stanley. Catalan numbers. URL http://www-math.

mit.edu/~rstan/transparencies/china.pdf?fbclid=

IwAR1LrjTdL7OZ3xeaPfJmxultM7a8EoiMXW4usSIxq2ugBO5Ck66Dg1pVGTA.

[4] Richard P. Stanley. Enumerative Combinatorics, volume II. Cam-
bridge University Press, 2nd edition, 1999. ISBN 0-521-56069-1.

[5] Richard P. Stanley. Enumerative Combinatorics, volume I. Cam-
bridge University Press, 2nd edition, 2012. ISBN 978-1-107-01545-
5.

https://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm
https://www.math.ucla.edu/~pak/lectures/Cat/pakcat.htm
http://www-math.mit.edu/~rstan/transparencies/china.pdf?fbclid=IwAR1LrjTdL7OZ3xeaPfJmxultM7a8EoiMXW4usSIxq2ugBO5Ck66Dg1pVGTA
http://www-math.mit.edu/~rstan/transparencies/china.pdf?fbclid=IwAR1LrjTdL7OZ3xeaPfJmxultM7a8EoiMXW4usSIxq2ugBO5Ck66Dg1pVGTA
http://www-math.mit.edu/~rstan/transparencies/china.pdf?fbclid=IwAR1LrjTdL7OZ3xeaPfJmxultM7a8EoiMXW4usSIxq2ugBO5Ck66Dg1pVGTA

	Introduction and Definitions
	Complete Binary Trees
	Binary Trees and Ordered Trees
	Implementations
	Implicit Storage of a Complete Binary Tree

	Properties of Trees
	Traversals
	Traversals in Binary Trees
	Level Order
	PreOrder, InOrder, PostOrder
	Traversals in Non-Binary Ordered Trees
	Ancestor Information
	Non-Recursive, Stack-Based Algorithms for Traversals
	Non-Recursive, Stackless Algorithms for Traversals

	Compact Representation of Trees
	Counting Binary Trees & Catalan Numbers
	Arithmetic Expressions
	Expression Trees
	Evaluating Postfix Expressions

