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PREFACE 

Hashlng algorlthms scramble da t a  and create pseudo-unlform data dlstrl bii- 
tlons. Bucket algorlthms operate on raw untransformed data whlch are partl- 
tloned lnto groups accordlng to  membershlp In equl-slzed d-dlmenslonal hyperrec- 
tangles, called cells or buckets. The bucket data structure 1s rather sensltlve tr, 
the dlstrlbutlon of the data. In these lecture notes, we attempt to explaln the 
connectlon between the expected tlme of varlous bucket algorlthms and the d1.u- 
trlbutlon of the data. The results are lllustrated on standard searchlng, sortlng 
and selectlon problems, as well as on a varlety of problems In computatlonal 
geometry and operatlons research. 

The  notes grew partlally from a graduate course on probablllty theory In 
computer sclence. I wlsh to thank Ellzabeth Van Gullck for her help wlth the 
manuscrlpt, and Davld Avls, Hanna Ayukawa, Vasek Chvatal, Beatrlce Devroye, 
Hossam El Glndy, Duncan McCallum, Magda McCallum, Godfrled Toussalnt and 
Sue Whltesldes for maklng the School of Computer Sclence at  McGlll Unlverslty 
such a n  enjoyable place. The work was supported by NSERC Grant A3456 and 
by FCAC Grant EQ-1679. 
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Theorem 1.4. 
Assume that supf 5 C < 00. For all E > 0, we have 

where 

and lf e,, CQ, then 

CHAPTER 1 

Proof of Theorem 1.4. 
The proof 1s based upon Chernoffs boundlng technlque and a slmple expres 

sfon for the moment generatlng functlon of the multlnomlal dlstrlbutlon (see 
Lemma 5.2). Let t > 0 be an arbltrary number. Then 

CHAPTER 1 2o 

Let us recall the detlnltlon of the functlon f, from Lemma 1.1. Uslng tha  fact 

that e"-1 I u + - e u  for u > 0, we have the followlng chaln of equolltles 

and lnequalltles (where the Rrst expresslon 1s equal to the last expresslon or the 
chaln glven above): 

U 2  

2 

Here we also used the lnequallty ( l + u )  5 exp(u), and the fact that 
If, for all s 2 1 (Lemma 1.1). The flrst half of the Theorem follows 
from the cholce t = rm.  Now, as e IO, we see that the supremum ls reached 
for r =r (E) > 0, and that A (e) 1s asymptotic to the value sup r rJf ' - - r 2 J f  '. 
The latter supremum, for each E > 0. Is reached for r = e J f  '/Jf '. Resubstl- 

tutlon glves the deslred solutlon, A (e) - - e 2 ( J f  ')'/Jf '. 
00, I t  1s easy to see that the supremem In the expresslon for A (e) 

1s reached for r (e) t 00. By standard functlonal lteratlons, applled to the e q u s  
1 tlon r (e)=-log(EJf '/(r (e)!/ 3)), we see that A (6) - the value of the expres- 
C 

slon to be optlmlzed. at r =-log(eJf '/(Jf 3-10ge)). whlch glves us our solu- 
C C 

tlon. 

5 If 
1 

r > o  2 

1 
2 

When e 

1 1 
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Remark. 
1 06, 1s called a moderate 

deviation inequality. It provldes us wlth good lnformatlon about the tall of 
the dlstrlbutlon of Du for values of the order of magnltude of the mean of D" 
plus a few standard devlatlons of Du. On the other hand, when c,, ls constant 
or tends to 06, we have large deviation inequalities. As a rule, these should 
glve good lnformatlon about the extreme tall of the dlstrlbutlon, where the cen- 
tral llmlt theorem 1s hardly at work. For example, I t  appears from the form of 
the lnequallty that the extreme tall of Du drops off at the rate of the tall of the 
Polsson dlstrlbutlon. 

The lnequallty of Theorem 1.4 for E ,  1 0. n E, 

1.5. DOUBLE BUCKETING. 
The results that we have obtalned untll now quallfy the statement that 7" 1s 

close to n (l+;Jf ') when If ' < 00. The presence of If ' In thls expresslon 1s 

dlsappolntlng. Perhaps we could hope to reduce the dlrect lnfluence of f on the 
quantltles that are of lnterest to us by hashlng the n lntervals a second tlme: 
each lnterval Ai 1s subdlvlded lnto Ni equal sublntervals. Thls method wlll be 
referred to as the "double bucketlng" method. The ldea of double bucketlng 1s 
obvlously not novel (see for example Maclaren, 1966). In fact, we could keep on 
dlvldlng lntervals untll all data polnts are In separate lntervals. The structure 
thus obtalned 1s called an N-tree (Ehrllch (1982), Tammlnen (1982)). Some 
analysls for restrlcted classes of densltles 1s glven in these papers. Recurslve 
bucketlng when applled to sortlng ls analyzed In Doboslewlcz (1978) and Van 
Dam, Frenk and Rlnnooy Kan (1983). 

What we wlll try to show here ls that most of the beneflts of recurslve buck- 
etlng are obtalned after two passes. 1.e. wlth double bucketlng. The structure 
that we wlll analyze 1s obtalned as follows: 

1 

Step 1. 
- i -1  i 

n n  
Let Ai =[-,-), 1 5 i 5 n . For each A i ,  keep a llned llst of xj' s fal- 

llng In It. Let Ni be the cardlnallty of A i .  

For i = 1 to n do : li  Ni 2 1, dlvlde Ai lnto Ni equal lntervals A;, , and 
keep for each Aii llnked llsts of the data polnts In I t .  Let Nii be the cardl- 
nallty of Aii . 

Step 2. 

Double bucket structure. 
n=l7 data points ( 
6 original buckets 
bucket with cardinality N divided into Ni intervals 

Figure 1.4. 

The quantltles that  we wlll conslder here are 

n N 1 
C = (- (Nij2-Nii))  = - (T -n ) ,  2 

i = l  2 j=1 

and 

N. 

j - 1  
where all the summatlons C for Ni = 0 must be omltted. and 

P i ,  = J f when Aij  1s deflned. We note that the flrst dlvlslon 1s Into n 
A?, 
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Intervals. The generallzatlon towards a dlvlslon lnto m Intervals Is stralghfor- 
ward. 

Theorem 1.5. 
If If < 00. then the double bucketlng structure glves 

and 

E ( D u )  + 1.. 

If we compare these asymptotlc expresslons wlth those for ordlnary bucket- 
lng when m = n ,  1.e. E ( T ) / n  - l+Jf ', we see that double bucketlng 1s 
strlctly better for all f . Thls follows from Jensen's lnequallty and the fact that  
e-' 5 1-u +-u2: 1 

2 

For all f wlth Jf < 00, we have 

1 
n - a ,  n e 
Ilm Eo E [I+--, 2 ) .  

Thus, the llmlt of E ( T ) / n  Is unlformly bounded over all such f . In other 
words, double bucketlng has the effect of ellmlnatlng all peaks In densltles wlth 
If < 00. Let us  also note In passlng that the lower bound lor E(T) /n  1s 
reached for the unlform denslty on [0,1]. and that the upper bound can be 
approached by conslderlng densltles that are unlform on [0,1], and that the upper 
bound can be approached by conslderlng densltles that are unlform on 

CHAPTER 1 s3 

1 
1 1 

( 0 . ~ 1  (Je-! = l - - + l e - K )  and lettlng K --c 00. The fact that the proper- 

tles of the double bucketlng structure are baslcally lndependent of the denslty f 
was observed lndependently by Tammlnen (1985). The same 1s a fortlorl true for 
N-trees (Ehrllch (1981). Van Dam, Frenk and Rlnnooy Kan (1983). Tammlnen 
(1983)). 

K K  0 

Proof of Theorem 1.5. 
N, 

j =I 
In the proof, all summatlons for whlch Ni = 0 should be omltted, to 

avold trlvlalltles. We start wlth a lower bound for E (T ). 

n 

i =I 

1 

2 n + exp(-npi /(l-pi )) (because 1-u Lexp(-u /(l-u )), O l u  <1) 

= n + n l e x p ( - f n / ( l - f n / n ) )  (where f n ( z ) = n p i ,  z E A i )  
0 

1 - n + n l e - '  
0 
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by the Lebesgue domlnated convergence theorem and Lemma 5.10. 

We now derlve an upper bound for E (T  ). For any lnteger K , we have 

where 

and 

The statements about E (T ), E ( C  ) and E (Ds ) In Theorem 1.5 are proved lf we 
can show that 

1 
1 "  lim llm - C E ( V i ' ) =  e - /  ; 

i =I 0 K-co n + w  n 

1 "  llm l lmsup-  C E ( V i " ) = ~ .  
K+co n-mo n i = l  

We wlll use the functlon gn (z ) = E (Vi ' ), z EAi . Clearly, 

Thus, by an extended verslon of the Lebesgue domlnated convergence theorem 
(see e.g. Royden (1868, p. 8@)),  we have 

provlded that the llmlt of gn exlsts almost everywhere. Conslder now a sequence 
of couples ( i  . j )  such that z E A i j  S A i  for all n. We have by Lemma 5.11. 
nNi p i j  + f (z ) for almost all z , unlformly In Ni ,  1 5 Ni 5 K. From thls, we 
conclude that 

g, (Z ) - E ((Ni -1)+IN, S K )  , almost all 2. 

Conslder only those 2' 8 for whlch f (z)  > 0, and Lemma 5.11 applles. 
Clearly, Ni tends In dlstdbutlon to Z where z 1s a Polsson (f (z )) random varl- 
able (thls follows from npi + f (2) (Chow and Telcher (1878, p. 36-37))). Slnce 
(Ni-l)+IN, forms a sequence of bounded random varlables. we also have con- 
vergence of the moments, and thus, 

for all such z , 1.e. for almost all z (f ). Thus, 

1 

Here we needed the fact that llm s E ( ( z - l ) + I ~ > ~ )  dz = 0, whlch Is a slmple 

consequence of the Lebesgue domlnated convergence theorem (note that 

J E ( Z ) &  = 1 ) .  ASO. 

K + W o  

1 

0 

Deflne the functlon h, (z ) = E (Ni 21N, ,K ), z EAi, and the functlon 
h ( z )  = E ( Z 2 1 z , ~ )  where Z 1s Polsson (f (2)) dlstrlbuted. We know that  
h , ( z )  5 E ( N , ~ )  5 npi + (npil2 = f n ( z ) + f n 2 ( z )  -* l(z) + 121z). almost 
all z; and that 11, +f, --+ +f '. Thus, by an extenslon of the Lebesgue 
domlnated convergence theorem, we have 
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1 

(see e.g. Slmons and Johnson, 1971). But 1 h + o as K + 00 since 

I E ( 2 ' )  = If +f ' < co. and E ( Z ' ~ ~ , K ) + O  for almost all x .  Thls concludes 

I 
1 1 

0 

0 0 

provlded that the almost everywhere llmlt of h, exlsts. For almost all z, Ni 
tends In dlstrlbutlon to 2 .  Thus, for such 2 ,  

1 "  llmsup llm sup - E ( V i '  ' ) = 0. 
K+co n + w  n 

We wlll only sketch the proof for 

Flrst. I t  1s easily seen that 

Also, If we follow the treatment to obtaln an upper bound for E ( T ) ,  we come 
across terms V, ' and Vi ' ' In whlch (Ni  2-Ni ) Is now replaced by p i  Ni . Mlm- 
lcklng the Polsson approxlmatlon arguments for E ( T  ), we obtaln 
Ilm sup E(&,) 5 1 when sf < co. Thls concludes the proof of Theorem 1.5. 

n +Q) 

CHAPTER 2 

Chapter 2 

37 

DENSITIES WITH UNBOUNDED SUPPORT 

2.1. MAIN RESULTS. 
In chapter 1, we have analyzed In some detall what happens when f Is 

known to have support contalned In [0,1]. In flrst approxlmatlon. the maln term 
In the asymptotlc expresslons for E ( T ) / n  and E ( D u )  contaln the factor I/ 2, 

whlch 1s scale-dependent. If we were to dlvlde the lnterval [M,, .Mn '1 = 
[mln xi .max xi ] lnto m equal-slzed sub-lntervals, these expected values would 
obvlously not be scale-dependent because the dlstrlbutlon of N , ,  . . . , N,,, Is 
scale lnvarlant. 

We could repeat all of chapter 1 for thls more general settlng lf tedlum waa 
no deterrent. There 1s a new lngredlent however when f has lnflnlte talls 
because Mn and / or Mn ' dlverges In those cases. The results In thls chapter 
rely heavlly on some results from the theory of order statlstlcs. The technlcalltles 
are deferred to sectlon 2.2. The followlng notatlon wlll be Introduced: 

M,, = mln Xi , 
l < i  In 

Mn* = max Xi , 
l < i < n  

R,, = range(& . . . , X,, ) = Mn *-M,, , 

xi =M,, +T(Mn*-Mn),~<i5m+1, i -1 
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s = ess sup X ,  - ess Inf XI = wldth of support of f .  

. :13 points X. 
I 

I 

Figure 2.1. 

Theorem 2.1. 
Let f be a denslty on R wlth Sf < 00. Then 

E ( T )  l + S  qf? E ( T )  llm Inf - = Ilm sup - = 
C n-+m n n-w n 

Theorem 2.1 shows that there Is a close relatlon between E ( T )  and the 
range R, . For densltles wlth no talls. we have a generallzatlon of Theorem 1.1. 

It Is noteworthy that 1+-Jf ', the llmlt value of E ( T ) / n ,  1s scale lnvarlant. 

When s = 00, I t  Is not clear at all how E (mln(R, cn-'J/ 2,n )) varles wlth n. 
For example, Is thls quantlty close to E (R, )e ,  -'Jf (whlch Is easler to handle)? 
Thus, to apply Theorem 2.1 In concrete examples, some results are needed for 
R, . Some of these are stated In Lemma 2.1. 

We wlll work wlth the followlng quantltles: x = x, has denslty f and dls- 
trlbutlon functlon F (z ) = P (x 5 z ) = 1-G (z ): the Integrals 

S 

C 

In partlcular. lf s < 00, we have 

I 

wlll also be useful. We recall that 

Lemma 2.1 
Let 6 > 0 be arbltrary. Then: 

(1) E (mln(R, ,6n )It .  
(11) 

(111) 

(Iv) 

Ilm sup E (mln(Rn .6n )) < m If and only lf s < co . 
Ilm sup E (R, ) < 00 If and only lf s < co . 
E(R, )  = 00 for all n 2 2 lf andonlylf  E(R,)  = m for some n > 2 

n -00 

n '00 

- m. If and only lf E (IX I) - 
(v) E (IX I) < 00 lmplles E (R, ) = o (n ). 
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E ( - a z )  Ilrn Ilrn lnf - = 00 

E (mln(Rn ,6n )) - E (R,  ) for all 6 > 0. 

Ilm sup E (mln(Rn ,6n ) ) / n  > 0 for all 6 > 0 ; 

a10 ~ - + w  F ( - z )  
imply 

(vll) Are equlvalent: 

n -00 

Ilrn sup 
n ‘ 0 0  

E ,6n for some 6 > 0 ;  

Ilm SUP 15 IP (IX I > z ) > 0. 

Ilm lnf E (mln(R, ,6n ))/n > 0 for all 6 > o ; 

I ‘ 0 0  

(vlll) Are equlvalent: 

n +w 

Ilm Inf E (mln(Rn ,6n ))/n > 0 for some 6 > 0 ; 
n +00 

(And If s < 00, thls Ilrn Inf 1s equal to thls Ilm sup. Its value 1+-lf s ’.) C 

Theorem 2.2 follows from Lemma 2.1 (I), (11) and Theorem 2.1. In Devroye 
and Kllncsek (1980). one flnds a sllghtly stronger result: E (T)=O(n ) lf and only 
If s < 00 and I/ < 00. In the next chapter, thls wlll be generallzed to R d ,  so 
we don’t have to bother wlth an R verslon of I t  here. 

We also have 

Theorem 2.3. 

If f j  < 00, then condltlon (vl) of Lemma 2.1 lmplles that 

Ilrn Inf 
2 +0O 

IZIP(IXI > 5 )  > 0. 

Theorems 2.2 and 2.3 cover all the small-talled dlstrlbutlons wlth llttle oscll- 
latlon In the talk. In Akl and MelJer (1982) the upper bound part of Theorem 
2.3 was obtalned for bounded densltles. The actual llmltlng expresslon of E (T ) 
shows the lnteractlon between the effect of the peaks ( l j  2, and the effect of the 
talk (E  (R,)). Note that E (R, )If 1s a scale-lnvarlant and transtatlon- 
lnvarlant quantlty: I t  Is solely determlned by the shape of the denslty. It 1s 
perhaps lnterestlng to see when condltlon (VI) of Lemma 2.1 Is valld. 

Lemma 2.1 In codunctlon wlth Theorem 2.1 glves us qulte a blt of Informa- 
tlon about E (T ). For example, we have 

Theorem 2.2. 

If I i  < 00, then are equlvalent: 

Ilm Inf E ( T ) / n  < co ; 
n ‘ 0 0  

Example 2.1. (Relatlvely stable dlstrlbutlons.) 
A relatlvely stable dlstrlbutlon 1s one for whlch 

s < a o .  

and 
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If we use the notatlon hf, ' = max(X,+, . . . , x, +) where u+=max(u .O) then 
I t  should be noted that lf P(x > 0) > 0, (1) 1s equlvalent to 

(111) hf, ' + 1 In probablllty for some sequence a, 

1 
n 

(Gnedenko, 1943). In that case we can take a, = lnf(z: G ( z ) ~ - )  where 

G ( z ) = P ( x  3 z), or In short, a, = G-'(-)  (Dehaan. 1975. pp. 117). We note 

that (1) 1s equlvalent to G (0) < 00. G(z)/(zG(z)) -+ 0 as z -+ co; or to 

G ( 0 )  < 00, I t d F ( t ) / ( z G ( z ) )  -+ 1 as z + 00. 

1 
n 

00 

2 

1 1 
n 

For relatlvely stable dlstrlbutlons. we have E (R, ) - F-'(;)+G-'(-) 
(Plckands. 1968). It 1s very easy to check that condltlon (vl) follows from the 
relatlve stablllty of the dlstrlbutlon of x . When 

we know that (111) holds (Geffroy, 1958; Dehaan, 1975, Theorem 2.9.2). condltlon 
(lv) comes close to belng best posslble because If f 1s nonlncreaslng and posltlve 
for all 2, then (111) lmplles (lv) (Dehaan, 1975, Theorem 2.9.2). 

Example 2.2. (Normal dlstrlbutlon.) 
For the normal dlstrlbutlon wlth denslty (27r)-'l2 exp(-z2/2), we have rela- 

tlve stablllty and square lntegrablllty. In partlcular, 
E (R, ) - 2G-'-) (1 - 2- (see e.g. Galambos, 1978, pp. 65), and thus 

n 

Example 2.3. (Exponentlal dlstrlbutlon.) 

lntegrablllty. Thus, because E (R, ) - log n , 
For denslty f (5) = e-', z > 0, we have relatlve stablllty and square 

Example 2.4. (Regularly varylng dlstrlbutlon functlons.) 
Condltlon (vl) of Lemma 2.1 ls satlsfled for all dlstrlbutlons for whlch 
(1) G(z)  = 0 for all-z large enough; or ls regularly varylng wlth 
coemclent p < o (1.e.. G (az ) / b  (z) -+ U P  for all a > o as 2 -+ 00). 

(11) E(z)  = 0 for all z large enough; or E 1s regularly varylng wlth 
coemclent p < o (1.e.. E (az ) / E  (z -+ U P  for all a > o as 3: -+ 00). 

In (1) and (11) we can replace the functlons and E by G and F lf we wlsh pro- 
vlded that we add the condltlon that the coefnclent of regular varlatlon be 
p_ < -1. The latter fact follows from the observatlon that as z + 00, 

G (z) - zG (z )/(+-I) (Dehaan, 1975, Theorem 1.2.1). 

Example 2.5. (Upper bounds for E (R, ).) 
One of the by-products of Theorem 2.1 1s that 

Thus, good upper bounds for E @ , )  glve us good upper bounds for E ( T ) / n .  
For example, we have 

Thus, dependlng upon the heaviness of the tall of x, we obtaln upper bounds for 
E ( T ) . t h a t  lncrease as n'+'/'. We can do better when the moment generatlng 
functlon of X 1s flnlte In a nelghborhood of the orlgln. Le. 



44 

r 
SlnCe u 5 (-) e tu , u 2 0,we have e t  

CHAPTER 2 

where we took r = log n .  For the t ' s In the lnterval I0.e). we have a: 
n --LOO, 

Thus, the best result ls obtalned by setting t equal to e. In partlcular, 1 
E (e t l x l )  < 00 for all t > 0 (such as for the normal denslty). then 

and thus 

E ( T )  = o (n  log n ) .  

Theorem 2.2 treats densltles wlth compact support, whlle Theorem 2.3 cov 
ers qulte a few densltles wlth flnlte moment. We wlll now sklp over some dens' 
tles In a gray area: some have a flnlte flrst moment but do not satlsfy (vl) c 
Lemma 2.1, and some have lnflnlte flrst moment E(IXI) ,  but have relatlvel 
small talls. The worst densltles are descrlbed In Theorem 2.4: 

CHAPTER 2 

Theorem 2.4. 
Let sf < 00. Then 

(1) Ilm sup E ( T ) / n 2  > 0 lf and only lf llm sup IzIP(IXI > 2 )  > 0; 
n -03 I+oO 

(11) llm Inf E ( T ) / n 2  > 0 If and only lf llm lnf IzIP(IXI > z )  > 0; 
(111) E ( T )  = o ( n 2 )  If and only lf llm sup 15 IP(lXl > z )  = 0; 

n + o ~  I+oO 

I+oO 

(Note that T 5 n 2  for all densltles. and that statement (1) lmplles 
E ( l X l )  = 00.1 

1 
x 

Thus, the Cauchy denslty f (z)=-(l+z')-'. whlch satlsfles (11), must have 

E ( T )  2 cn for some posltlve constant c . If we compare Theorem 2.4 wlth the 
results of chapter 1. we notlce that heavy talk are much more of a nulsance than 
lnflnlte peaks: Indeed, regardless of whlch f 1s chosen on [OJ], we have 
E (T) = o (n2) ;  but even moderately talled densltles can lead to a lower bound 
for E ( T )  of the form en2. Let us also polnt out that there are densltles wlth 
E (1x1) = 00 ror all n , but E (mln(R, Jn)) = o ( n  ) for all 6 > 0: Just take 
F (5) = I-I/((I+z ) log (z +e )), z >O. 

We conclude thls sectlon by notlng that 

and 

Nearly all that was sald about E ( T  ) remalns easlly extendlble to E (C ), E (Ds ) 
and E(Du) .  For example, lf s < 00, 
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and 

1 I f s  = m . w e h a v e E ( C ) - -  - ) - E ( T ) / ( 2 n ) a n d E ( D u ) - E ( T ) / n .  
E (Ds 

We flnally note that the quantlty s 1s scale lnvarlant and that for all 
densltles I t  Is a t  least equal to 1, In vlew of 

I = (  J r,"JIr2 J d z = s J f 2  
support of f supporto1 f 

2.2. PROOFS. 

Proof of Lemma 2.1. 
Fact ( I )  Is trlvlal. For fact (11). we note that lf s = 00, we have R, + oc 

almost surely, and thus, llm Inf E (mln(R, ,6n )) > E (llm Inf mln(R, ,671 )) = 00. 

Also, In all cases, s 2 R, , and we are done. Fact (Ill) Is proved as (11). 

E ( R 2 )  = E(IX,-X,I)> 1nf E(IX-si)  = 00 when E(IX1) = 00. 

n +m n -00 

For Item (Iv), we note that E (R, ) 5 2nE (1x1). that E (R, ) t and that 

2 

To show (v), I t  sufflces to prove that E ( m a (  I x, 1 , . . . , I X, I )) = o (n  ). 
Let /X,I have dlstrlbuted functlon F on [0,00). Then for all E > 0, 
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We wlll now prove (VI). Slnce mln(R, .6n) 5 R, , we need only show that 
Ilm Inf E (mln(R, .6n ))/E (Rn )> 1 for all 6 > 0. Let us deflne z+=mBx(z ,O), 

z-=mln(z ,O), R+=max(X,+, . . . , Xnf), R-=mln(X,-, . . . , X,-). We wlll 
show that E (R, -mln(R, .6n ))/E (R, ) -+ 0 for all 6 > 0 and all nondegenerate 
dlstrlbutlon wlth s = 00 ( for otherwlse. the statement Is trlvlally true). Clearly, 
it sufflces to show that for all 6 > 0. E (R+-mIn(R+h) ) /E  (R,) -+ 0. If X+ 
has flnlte support, we see that thls follows from (11). Thus, we need only conslder 
the case that X+ has Inflnlte support. NOW, E(R,)  2 E((R+-X)IR+,o) 

n --roo 

00 

2 E(R+IR+,,) -E(IXI) = E ( R + )  -E(lXl) = JI-(I-G(t))"dt -E(IXI)  
0 

00 00 - Jl-(l-G(t))" dt. 
0 6n 

reduced the problem to that of showlng that for all 6 > 0. 
Also, E(R+-rnln(R+,bn)) = Jl-(l-G(t)), d t .  We have 

00 00 

6n Jl-(l-G(t))n dt / Jl-(l-G(t)), 0 dt 0. 

We wlll need the followlng lnequallty: 

1 
2 
-mln(nu ,I) 5 I-(I-u), 5 mln(nu .I) , all n 2 1. u E [0.1]. 

1 
ThIs follows from 1-nu 5 (1-u)" 5 e-,"; e- t  5 - 2 for t 2 1; and 

e-t 5 1-- 2 for t E[O,l]. Thus, If a, = lnf(z :G (2) 5 -) n and n Is so large that 

a,, > 0, we have 

t 1 

00 00 
1 - 5 JI-(l-G(t))"dt / ( a , ,  +nJ G ( t ) d t  ) 5 1. 
2 0  a. 

Thus, we need only show that 

and we are done. 
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00 00 

By our assumptlon In (VI), we have I G (t )dt / I G ( t  )dt + 00 when a, / n  N 0 

(and thls In turn follows of course from the fact that I G ( t ) d t  < 00 lmplles 

tC (t  ) + 0 88 t -+ 00). Thls concludes the proof of (VI). 

0. 6n 
00 

0 

We wlll now prove (vll) an$ (vlll) for R +  and Ilm sup (or llrn Inf) 

s G ( z )  > 0. The extenslon of the result to R, Is left as an exerclse. For 
E E (0,s) we have the followlng chalns of Inequalltles: 

z -m z -m 

and 

6n en 6n 

n o  ' o en 

1 1 1 -E (mln(R + ,6n )) = - I 1-(1-G ( t  ))" dt = -( J + 
n ) 

6 
6n 

5 (en + n I G(t)dt  ) 5 E + 6 n G ( m )  = E + - En G ( c n ) ;  
E en n 

Thls proves that llm sup zG(z)  > 0 1s equlvalent to 

llm sup E (rnh(R+Jn))/n > 0 for all 6 > 0 or for some 6 > 0; and that slmllar 

statements are true for the llmlt Inflmum. Thls concludes the proof of Lemma 
2.1. 

2 dm 

n -00 

We are left wlth the proof of Theorem 2.1. Thls wlll be taken care of In 
small steps. From the observatlon that condltlonal on M,, , M,, ' , the Ni 's  are 
blnomlally dlstrlbuted wlth parameters n -2, p i  / p  , we deduce the followlng: 

Lemma 2.2. 
(I) T 5 n2. 

Proof of Lemma 2.2. 
Part (1) 1s obvlously true. Parts (11) and (Ill) follow from 

and the fact that 

Proof of Theorem 2.1 (i) 

Then 
We start from Lemma 2.2 (Ill). Let 6 > 0 be a sufnclently small number. 
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Y 
(where f ( a  , x )  = lnf f / ly-z I) 

E $ : 2 y  E 

CHAPTER 2 

6 00 6 A (6 )  

--oo A ' ( @  
Flnd values A (6) and A *(a) such that f = -f J f = f 2, and a 

value B (6) such that 

Thus. lf A Is the event [M,, < A (a), Mn * > A *(@I and B 1s the event 
[R, /m 5 B (41. we have on A n B ,  for u =Rn /m , 

M. 00 M. 

M. M. 00 
J f ' ( a  . X I  L J f ' ( a  . X I  - J f 2(a , X I  - J f 2(a , X I  

6 6 
3 

2 (1--)J f - 231, = (1-6)Jf 

Thus, 

We also have 

where 
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Note that as 6 10, we have B(6) + 0 and thus c(6) -c 0. Comblnlng these 
bounds glves 

where Z(R,) 1s an lncreaslng functlon of R, . By Gurland's lnequalltles (Gur- 
land, 1968) we have E (IA Z(R, )) 2 P ( A  ) E (Z(Rn )). We also know that 
P ( A  ) + 1 for all 6 E (OJ). Thus, wlth a llttle extra manlpulatlon we obtaln the 
followlng bound: 

Thls concludes the proof of Theorem 2.1 (1). 

Proof of Theorem 2.1 (E). 
From Lemma 2.2, we have 

Let us take expectatlons on both sides of thls lnequallty. For arbitrary E > 0 we 
have 
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The proof 1s complete If we can show that the last probablllty is o ( 1 )  for every 
e > 0. Let U , , U ,  be lndependent unlform [ O J ]  random varlables, and note that 
p 1s dlstrlbuted as ull/n U2'/(''-'). Thus, 

The mlnlmum 1s attalned at 

and we are done. 
and the mlnlmal value of the cost functlon 1s 

2.3. A SUPERLINEAR NUMBER OF BUCKETS. 

asymptotlcally. For example, for densltles covered by Theorem 2.3, 
For many lnflnlte-talled dlstributlons, we know preclsely how E ( T  ) varles 

when m - cn . We also have In those cases, by the proof of Theorem 2.1 (11). 

for arbltrary E > 0. Here c ,  = m / n  . When we sort, there 1s an addltlonal c a s  
of the form Am for some constant A > 0 due to  the tlme needed to  lnltlallze 
and concatenate the buckets. If E ( R , )  -+ 00. lt 1s easy to see that In the upper 
bound, 

provlded that E ( R , ) / c ,  + 03. If we balance the two contrlbutlons to the cost 
of searchlng wlth respect to m , then we wlll flnd that I t  1s best to let m lncrease 
at  a faster-than-llnear pace. For example. conslder the mlnlmlzatlon of the cost 
functlon 

If we had plcked m - e n ,  then the maln contrlbutlon to the sortlng tlme would 
have come from the selectlon sort, and I t  would have lncreased as a constant 
tlmes n E (R, ). The balanclng act reduces thls to about n J E ! ? ,  albelt at 
some cost: the space requlrementa lncrease at a superlinear rate too. Futhermore, 
for the balanclng to be useful, one has to have a prlori lnformatlon about E (R, ). 

Let us conslder a few examples. For the normal dlstrlbutlon, we would 
optlmally need 

and obtaln 

Am - E ( T ) - n d -  

For the exponentlal dlstrlbutlon, we have 
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Slmllarly. for all dlstrlbutlons wlth flnlte IIz 1' f (z)&, If 2(z)dz ,  we can 
choose m such that 

1+' *' Am - E ( T )  5 C n 

for some constant C.  
The ldea of a superllnear number of buckets to reduce the expected tlme can 

also be used advantageously when If has compact support. 
When preprocesslng 1s allowed, as In the case of searchlng, and space requlre- 
ments are no obstacle, we could choose rn so large that E ( D s )  and E ( D " )  are 
both O(1) .  To lllustrate thls polnt, we use the bound lor E ( T )  used In the 
proof of Theorem 2.1 (11). and the fact that 

= co and f 

T i  
2n 2 

Ds = - + -  

Thus, when If < 00, E (R, ) + co, we can choose 

and conclude that 

llm sup E ( D s )  5 - 3 . 
n +oo 2 

Chapter 3 

MULTIDIMENSIONAL BUCKETING. 

3.1. MAIN THEOREM. 
by flrst stor- 

lng the polnts In equal-slzed cells, and then travellng from cell to cell, to obtaln 
some solutlon. Often these algorlthms have good expected tlme behavlor when 
the polnts are sufflclently smoothly dlstrlbuted over R d .  Thls wlll be lllustrated 
here by exhlbltlng necessary and sufflclent condltlons on the dlstrlbutlon of the 
polnts for llnear expected tlme behavlor. 

Our model 1s as follows: X , ,  . . . , x,, are lndependent random vectors from 
R wlth common denslty f . We let C, be the smallest closed rectangle cover- 
lng X , ,  . . . , X ,  . Each slde of c, ls dlvlded lnto n' = Lnlld] equal-length 
lntervals of the type [a , b  ): the rlghtmost lntervals are of the type [a  , b ] .  Let A 
be the collectlon of all rectangles (ceb) generated by taklng d-fold products of 
Intervals. Clearly, A has m cells where 

Several algorlthms In computer sclence operate on polnts In R 

The cells wlll be called A 1, . . . , A,,, , and Ni wlll denote the number of xi' 8 

In cell A i .  Thus, to determlne all the cell membershlps takes tlme proportlonal 
to  n . Wlthln each cell, the data are stored In a llnked llst for the tlme belng. 

We stress agaln that the ldea of a superllnear number of buckets seems more use- 
ful In problems In whlch a lot of preprocesslng 1s allowed, such as In ordlnary 
searchlng and In data base query problems. 
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Figure 3.1. 

8 by 8 grid 
64 points 

Ai has Ni =3 points 

The cell structure has been used wlth some success In computatlonal 
geometry (see for example, Shamos (1978). Welde (1978). Bentley, Welde and Ym 
(1980). and Asano, Edahlro. Imal, Irl and Murota (1985)). Often I t  sufflces to 
travel to each cell once and to do some work In the 1-th cell that takes tlme 
g (Ni ) for some functlon g (or at least, 1s bounded from above by ag (Ni ) and 
from below by 69 ( N i )  for some approprlate constants a ,b : thls sllghtly more 
general formulatlon wlll not be pursued here for the sake of slmpllclty). 

For example, one heurlstlc for the travellng salesman problem would be as 
follows: sort the polnts wlthln each cell accordlng to thelr y-coordlnate, Joln 
these polnts, then joln all the cells that have the same x-coordlnate. and flnally 
joln all the long strlps at the ends to obtaln a travellng salesman path (see e.g. 
Chrlstofldes (1878) or Papadlmltrlou and Stelglltz (1978)). It 1s clear that the 

work here 1s 0 (n ) + g ( N i )  for g ( u  )=u2 or g (u  )=a log(u +1) dependlng 
m 

i =1 
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upon the type of sortlng algorlthm that 1s used. The same serpentlne path con- 
structlon Is of use In mlnlmum-welght perfect planar matchlng heurlstlcs (see e.g. 
Irl. Murota. and Matsul 1981, 1983). 

If we need to flnd the two closest polnts among x,, . . . , x, In [OJ]~, I t  
clearly sufflces to conslder all palrwlse dlstances d (xi ,xi ) for xi and Xi at most 
ad (a constant dependlng upon d only) cells apart, provlded that the grld 1s con- 
structed by cuttlng each slde of 0.lId lnto n' = [ n ' / d J  equal pleces. Uslng the 
lnequailty (u  ,+ u2+ ...+ uk )' 5 h - ' ( u  :+ ...+ uk '), I t  1s not hard to see that the 

total work here 1s bounded from above by 0 (n ) plus a constant tlmes 
m 

i -1 
Ni '. 

8 by 8 grid 
64 points 

3 
Figure 3.2. 

Range search problem: report all points in the 
intersection of A and B. Grid to be used in solution is also shown. 

For multldlmenslonal sortlng and searchlng, we refer to sectlon 3.2. In sec- 
tlon 3.2, a few brlef remarks about the polnt-locatlon and polnt enclosure prob- 
lems wlll be Included. The polnt enclosure problem can be consldered as a speclal 
case of range searchlng, 1.e. the problem of retrlevlng all polnts satlsfylng certaln 


