Progress in Computer Science
No. 6
Edited by
J. Bentley
E. Coffman
R. L. Graham
D. Kuck
N. Pippenger

Luc Devroye
 Lecture Notes on
 Bucket Algorithms

Author:

TABLE OF CONTENTS

Luc Devroye
School of Computer Science
McGill University
Montreal H3A 2K6

Canada

Library of Congress Cataloging in Publication Data

Devroye, Luc.

Lecture notes on bucket algorithms
(Progress in computer science ; no. 6)
Bibliography: \mathbf{p}.
Includes index.
Includes index.

1. Data structures (Computer science) \quad 2. Algorithms.
I. Title. II. Title: Bucket algorithms. III. Series.

QA76.9.D35D48 1985 005.7'3
ISBN 0-8176-3328-6

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Devroye, Luc:

Lecture notes on bucket algorithms / Luc Devroye. -
Boston ; Basel ; Stuttgart : Birkhäuser, 1985.
(Progress in computer science ; No. 6)
ISBN 3-7643-3328-6 (Stuttgart . . .)
ISBN 0-8176-3328-6 (Boston)
NE: GT

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright owner
(C) 1986 Birkhäuser Boston, Inc.

Printed in Germany
ISBN 0-8176-3328-6
SBN 3-7643-3328-6

- INTRODUCTION. 1

1. ANALYSIS OF BUCKET SORTING AND SEARCHING. 10
1.1. Expected values. 10
1.2. Weak convergence 17
1.3. Varlance 23
1.4. Large deviation Inequalltles. 30
2. DENSITIES WITH UNBOUNDED SUPPORT. 37
2.1. Maln results. 37
2.2. Proofs. 48
2.3. A superlinear number of buckets. 52
3. MULTIDIMENSIONAL BUCKETING. 55
3.1. Main theorem.55
3.2. Sorting and searching. 84
3.3. The travellng salesman problem 73
3.4. Closest point problems 80
4. THE MAXIMAL CARDINALITY 93
4.1. Expected value and inequalltles. 93
4.2. An example : the selection problem. 108
4.3. Nonllnear functlons of the maximal cardinallty. 09
4.4. Extremal point problems. 114
5. AUXILIARY RESULTS FROM PROBABLITY THEORY. 127
5.1. Propertles of the multinomlal distrlbution. 27
3.2. Propertles of the Polsson distribution 132
5.3. The Lebesgue density theorem. 134
REFERENCES. 138
INDEX. 43

PREFACE

Hashing algorithms scramble data and create pseudo-uniform data distributlons. Bucket algorlthms operate on raw untransformed data which are partitloned Into groups according to membership in equi-sized d-dimenslonal hyperrec. tangles, called cells or buckets. The bucket data structure is rather sensitive u, the distribution of the data. In these lecture notes, we attempt to explain the connection between the expected time of various bucket algorlthms and the distribution of the data. The results are illustrated on standard searching, sorting and selection problems, as well as on a varlety of problems in computational geometry and operatlons research.

The notes grew partlally from a graduate course on probabllty theory in computer sclence. I wish to thank Ellzabeth Van Gullck for her help with the manuscript, and David Avls, Hanna Ayukawa, Vasek Chvatal, Beatrice Devroye, Hossam El Gindy, Duncan McCallum, Magda McCallum, Godfrled Toussalnt and Sue Whitesides for making the School of Computer Sclence at McGill University such an enjoyable place. The work was supported by NSERC Grant A3458 and by FCAC Grant EQ-1879

It is not a secret that methods based upon the truncation of data have good expected time performance. For example, for nice distributlons of the data, searching is often better done vla a hashing data structure instead of via a search tree. The speed one observes in practice is due to the fact that the truncation operation is a constant time operation.

Hashing data structures have not recelved a lot of attention in the 1870's because they cannot be fit into the comparison-based computational model. For example, there is no generally accepted lower bound theory for algorithms that can truncate real numbers in constant time. The few analyses that are avallable (see Knuth (1973), Gonnet $(1981,1984)$ and the references found there) relate to the following model: the data points are unlformly distributed over elther $[0,1]$ or $\{1, \ldots, M\}$. The unlform model is of course motivated by the fact that it is often possible to flnd a good hash function $h($.$) , l.e. a function of the data points which$ distributes the data evenly over its range. In the vast majority of the cases, $h($. is not a monotone function of its argument when the argument is an integer or a real number. Non monotone functlons have the undesirable slde-effect that the data are not sorted. Although this is not important for searching, it is when the data need to be llsted in sorted order rather frequently. If the data form a data base, l.e. each data point can be considered as a point $\ln R^{d}$ with $d>1$, then range querles can be convenlently handled if the data are hashed via monotone functions. There is an ever increasing number of appllcations in computational geometry (see the general survey articles by Toussaint $(1980,1982)$ where appllcations in pattern recognition are highlighted ; and the survey article on bucket methods by Asano, Edahiro, Imal, Irl and Murota (1985)) and computer graphics, In which the data polnts should preserve their relative positions because of the numerous geometrical operations that have to be carrled out on them. Points that are near one another should stay near. In geographic data processing, the cellular organization is partlcularly helpful in storing large amounts of data such as satellite data (see the survey article by Nagy and Wagle, 1979). Many tests in statistics are based upon the partition of the space in equal intervals, and the counts of the numbers of points in these intervals. Among these, we cite the popular chl-square test, and the empty cell test. See for example Kolchin, Sevast'yanov and Chistyakov (1978) and Johnson and Kotz (1977) for appllcatlons in statistics. In economic surveys and management science, the histogram is a favorite tool for visuallzing complex data. The histogram is also a superb tool for statisticlans in exploratory data analysis. In all these examples, the order in the data must be preserved.

Figure 0.1.

If we use monotone or order-preserving hash functions, or no hash functions at all, the unlform distribution model becomes suspect. At best, we should assume that the data points are random vectors (or random varlables) that are Independent and identically distrlbuted. The randomness is important because we are not interested here in worst-case performance. Expected time can only be analyzed if some randomness is assumed on the part of the data. The independence assumptlon can be defended in some situatlons, e.g. In the context of data bases for populations. Unfortunately in some geometrlcal applications, particularly Image processing, the Independence assumption is just not good enough. Notice that if pixels in a screen were selected independently and according to a glven distribution, then the composed plcture would be a "pure nolse" plcture. In a sense, the more information we have in a plcture, the more dependence we see between the pixels. Finally, if we accept the Independence assumption, we might as well accept the identical distribution assumption, except if there is some nonstationary (time-dependent) element in the data collection process.

We will only deal with d-dimensional real numbers and with distributions that have densitles. The complexitles of varlous algorithms are measured in terms of fundamental operations. Typically, truncation or hashing is one such operation. We whll of course assume that real numbers can be truncated and / or hashed in time independent of the size or the precision of the number - recall that a simllar assumption about comparing two real numbers is needed in the well-known comparison-based complexity theory. Densitles are convenient because they free us from having to consider discretization problems: if a distribution is atomic (1.e., It puts its mass on a countable set), and enough data points
are drawn from this distribution, the number of colliding values increases steadily. In fact, if n independent identically distrlbuted random vectors are considered with any atomic distribution, then $N / n \rightarrow 0$ almost surely as $n \rightarrow \infty$ where N is the number of different values. Meaningful asymptotics are only possible if elther the atomic distribution varles with n, or the distribution is non-atomic. There is another key argument in favor of the use of densitles: they provide a compact description of the distribution, and are easlly visuallzed or plotted.

When Independent random vectors with a common density are partitioned by means of a d-dimensional grid, the number of grid locations (or buckets) with at least 2 polnts has a distrlbution which depends upon the density in question. The density affects the frequency of collislons of data polnts in buckets. For example, if the density is very peaked, the buckets near the peak are more likely to contaln a large number of polnts. We want to Investlgate how thls crowding affects the performance of algorlthms of bucket or grld algorithms.

Throughout thls set of notes, we will consider a d-dimensional array of equislzed rectangles (which we will call a grid), and within each rectangle, polnts are kept in a chain (or llnked llst). The number of rectangles will be denoted by m, and the data size by n. We will not consider infinite grids such as $\{[i, i+1) \mid i$ integer $\}$ because Infinite arrays cannot be stored. However, because data may grow not only in slize but also in value as $n \rightarrow \infty$, we will consider at tlmes grid sizes m that are data value dependent. In any case, m is usually a function of n.

Figure 0.2 .
2d Grid

The purpose of this collection of notes is to give a varlety of probability theoretical technlques for analyzing various random varlables related to the bucket structure described above. Such random varlables include for example, the average search time, the tlme needed for sorting, the worst-case search time and other nonllnear functions of the cardinalltes N_{1}, \ldots, N_{m} of the buckets. The probabillty theoretical techniques have several features: they are general (for example, the Lebesgue density theorem is needed in cruclal places in order to avold having to impose any smoothness conditions on the densitles), and whenever possible, approprlate probabillty Inequalltles are Invoked (for example, heavy use is made of Jensen's inequallty (see e.g. Chow and Telcher (1978)) and Chernoff's exponentlai bounding technlque (Chernoff (1952))). Since N_{1}, \ldots, N_{m} is multinomlally distributed for a data-independent grld, and the N_{i} 's are thus not independent, it is sometimes useful to use an embedding method that relates the multinomial vector to a vector of independent Polsson random variables. This method is commoniy called Polssonization. Even in our Polssonization, we choose to rely on inequallites because only inequalitles will
help us in the assessment of the expected time performance for particular values of n.

The polnt is that we do not wish to give an exhaustive description of known results in the fleld, or to present a llst of exotlc applications. We start very slowly on standard problems such as one-dimensional sorting and searching, and will move on to multidimensional applications towards the end of the notes. These applications are in the areas of computational geometry, operations research (e.g. the traveling salesman problem) and pattern recognition (e.g. the all-nearest nelghbor problem).

In chapter 1 , we have the simplest of all possible settings: the random varlables X_{1}, \ldots, X_{n} have a common density f on $[0,1]$, and $[0,1]$ is divided into m equal intervals $A_{i}=\left[\frac{i-1}{m}, \frac{i}{m}\right], 1 \leq i \leq m$. We are concerned with the slmplest possible measures of performance in searching and sorting such as the average successful search time (called D_{S}) and the number of element comparisons for sorting (called C). If $m=n$, and f is uniform on [0,1], then each Interval recelves on the average one data polnt. It is well-known that $E\left(D_{S}\right)=O(1)$ and $E(C)=O(n)$ In that case. It is also known that the density f affects the distribution of quantities such as D_{S} and C. We will see that $E\left(D_{S}\right) \sim 1+\frac{1}{2} \int f^{2}$ and $E(C) \sim \frac{n}{2} \int f^{2}$ as $n \rightarrow \infty$. The factor $\int f^{2}$, which is a measure of the peakedness of the denslty f, affects the performance in a dramatlc way. For example, when $\int f^{2}=\infty$, we have $E(C) / n \rightarrow \infty$ and $E\left(D_{S}\right) \rightarrow \infty$ as $n \rightarrow \infty$. In other words, bucket sorting takes llnear expected tlme if and only if $\int f^{2}<\infty$.

While most users will be quite satisfled with information about $E(C)$, some may doubt whether the expected value is a good measure of the state of affalrs. After all, $E(C)$ is an estimate of the time taken per sort if averaged over a large number of sorts. The actual value of C for one individual sort could be far away from its mean. Fortunately, this is not the case. We will see that $C / n \rightarrow \frac{1}{2} \int f^{2} \ln$ probabllity as $n \rightarrow \infty$: thus, if $\int f^{2}<\infty, C / E(C) \rightarrow 1 \ln$ probabllity. For large n, even if we time only one sort, it is unllkely that $C / E(C)$ is far away from 1 . Of course, simllar results are valld for D_{S} and the other quantitles.

We can take our analysis a blt further and ask what the variation is on random varlables such as C. In other words, how small is $C-E(C)$ or $D_{S}-E\left(D_{S}\right)$? This too is done in chapter 1 . The answer for C is the following:

$$
\operatorname{Var}(C) \sim n\left[\int f^{3}-\left(\int f^{2}\right)^{2}+\frac{1}{2} \int f^{2}\right]
$$

In other words, $C-E(C)$ Is of the order of \sqrt{n} whereas $E(C)$ itself is of the order of n. Varlances are used by statlstlclans to obtaln an upper bound for

$$
P(C-E(C) \geq \epsilon)
$$

via the Chebyshev-Cantelll Inequality:

$$
P(C-E(C) \geq \epsilon) \leq \frac{\operatorname{Var}(C)}{\epsilon^{2}+\operatorname{Var}(C)}
$$

Sometimes, this inequality is very loose. When ϵ is large compared to \sqrt{n}, there are much better (exponentlal) Inequalitles which provide us with a lot of confldence and securlty. After all, if C is extremely unllkely to be much larger than $E(C)$, then the usual worst-case analysls becomes almost meaningless.

We close chapter 1 with an attempt at reducing the dependence upon f. The idea is to apply the bucket method again within each bucket. This will be called double bucketing. The rather surprising result is that double bucketing works. For example, when $\int f^{2}<\infty$, we have

$$
\frac{E(C)}{n} \sim \frac{1}{2} \int_{0}^{1} e^{-f} \leq \frac{1}{2}
$$

The detalled analysis of chapter 1 is well worth the effort. The development given there can be mimicked in more complicated contexts. It would of course be unwise to do so in these notes. Rather, from chapter 2 on, we will look at various problems, and focus our attention on expected values only. From chapter 2 onwards, the chapters are independent of each other, so that interested readers can Immedlately skip to the subject of thelr cholce.

In chapter 2, the data X_{1}, \ldots, X_{n} determine the buckets: the interval [$\min X_{i}$, $\max X_{i}$] is partitioned into n equal intervals. This introduces addltlonal dependence between the bucket cardinalltles. The new factor working against us is the size of the tall of the distribution. Infinite talls force min X_{i} and $\max X_{i}$ to diverge, and if the rate of divergence is uncontrolled, we could actually have a situation in which the sizes of the intervals increase with n in some probabllistic sense. The study of $E\left(D_{S}\right), E(C)$ and other quantitles requires auxillary results from the theory of order statistics. Under some condltlons on f, including $\int f^{2}<\infty$, we will for example see that

i.e. the asymptotic coefficlent of n is the expected range of the data (thls measures the heaviness of the tall of f) times $\int f^{2}$, the measure of peakedness. Unless f vanishes outside a compact set, it is Impossible to have $E(C)=O(n)$.

In chapter 3, we look at multidimensional problems in general. The applicatlons are so different that a good treatment is only possible if we analyze

$$
\sum_{i=1}^{m} g\left(N_{i}\right)
$$

where $g($.$) is a "work function", typlcally a convex positive function. The maln$ result of the chapter is that for $m=n$, the expected value of this sum is $O(n)$ if and only if f has compact support, and

$$
\int g(f)<\infty
$$

provided that $g($.$) is a "nlce" function. Some applications in computational$ geometry and operations research are treated in separate sections of the chapter.

In some problems, we need to have assurances that the expected worst-case is not bad. For example, in the simple one-dimensional bucket data structure, the worst-case search time for a given element is equal to the maximal cardinallty. Thus, we need to know how large

$$
\max \left(N_{i}\right)
$$

1s. This quantity is analyzed in chapter 4 . If f is bounded on a compact set of R^{d}, and $m=n$ then its expected value is asymptotic to $\frac{\log n}{\log \log n}$. If f is not bounded, then its expected value could increase faster with n. Thls resuit is for example applied to Shamos' two dimensional convex hull algorithm.

Figure 0.3.
Binary trie for points distributed on $[0,1]$.

It is sometimes important to have bucket structures which are allowed to grow and shrink dynamically, i.e. structures that can handle the operations insert and delete efficlently. The essential ingredient in such a structure is an auxilary array of bucket cardinallties. One can choose to split individual buckets once a certaln threshold value is reached. This leads to a tree structure. If a bucket can hold at most one element, then one obtalns in fact a blnary trie (Knuth, 1973). Another strategy consists of splltting all buckets in two equi-sized buckets slmultaneously as soon as the global cardinallty reaches a certain level. In thls manner, the number of buckets is guaranteed to be a power of two, and by manipulating the threshold, one can assure that the ratio of points to buckets is a number between 1 and 2 for example. This has the additional advantage that Individual bucket counts are not necessary. Also, no polnters for a tree structure are needed, since data points are kept in linked lists within buckets. Thls dyadic dynamic structure is at the basis of the extendible hash structure described and analyzed In Fagin, Nlevergelt, Plppenger and Strong (1978), Tamminen (1981) and Flajolet (1983). Tamminen (1985) compares extendible hashing with ordinary bucketing and various types of tries. See Tamminen (1985) and Samet (1984) for multid1mensional tries. To keep these notes simple, we will not analyze any tree structures, nor will we specifically deal with dynamle bucket structures.
A last remark about the grid slze m. Usually, we will choose m such that $m=m(n) \sim c n$ for some constant $c>0$. (The ratlo m / n will be called c_{n},
so that $c_{n} \rightarrow c$ as $n \rightarrow \infty$.) We do so because we are malnly interested in searching and sorting. Roughly speaking, we can expect to sort the data in time $O(n)$ and to search for an element in time $O(1)$. If $m=O(n)$, the average number of points per interval grows unbounded, and we cannot hope to sort the data in time $O(n)$. On the other hand, if $m / n \rightarrow \infty$, the overhead due to housekeeping (e.g., travelling from bucket to bucket), which is proportional to m, and the storage requirements are both superinear $\ln n$. Thus, there are few situations that warrant a subllnear or superlinear cholce for m.

Whlle we do generally speaking have some control over m, the grld slze, we do not have the power to determine d, the dimension. Raw bucket algorithms perform particularly poorly for large values of d. For example, if each axis is cut into two intervals, then the grid size is 2^{d}. There are problems in which 2^{d} is much larger than n, the sample size. Thus, storage llmitations will keep us from creating fine mazes in large dimensions. On the other hand, if rough grids are employed, the distribution of points is probably more uneven, and the expected time performance deterlorates.

Chapter 1

ANALYSIS OF BUCKET SORTING AND SEARCHING

1.1. EXPECTED VALUES

In thls chapter, f is a density on $[0,1]$, which is divided into m intervals

$$
A_{i}=\left[\frac{i-1}{m}, \frac{i}{m}\right], 1 \leq i \leq m
$$

The quantitles of interest to us here are those that matter in sorting and searching. If sorting is done by performing a selection sort withln each bucket and concatenating the buckets, then the total number of element comparisons is

$$
C=\sum_{i=1}^{m} \frac{N_{i}\left(N_{i}-1\right)}{2}=\frac{1}{2}(T-n)
$$

Figure 1.1.
Bucket structure with $n=17$ points, $m=12$ buckets.

The other work takes time proportional to m, and is not random. Selection sort was only chosen here for its slmplicity. It is clear that for quadratic comparisonbased sorting methods, we will eventually have to study T.

To search for an element present in the data, assuming that all elements are equally llkely; to be querled, takes on the average

$$
D_{S}=\frac{1}{n}\left[\sum_{i=1}^{m} \frac{1}{2} N_{i}\left(N_{i}+1\right)\right]=\frac{1}{n}\left[\frac{T}{2}+\frac{n}{2}\right]=\frac{T}{2 n}+\frac{1}{2}
$$

comparlsons. Thls will be referred to as the ASST (Average Successful Search Time). Note that D_{S} is a function of the N_{i} 's and is thus a random varlable.

To search for an element not present in the data (1.e., an unsuccessful search), we assume that the element querled is X_{n+1}, Independent of the data and distributed as X_{1}. The expected number of comparisons conditional on the data is

$$
D_{U}=\sum_{i=1}^{m} N_{i} \int_{A_{i}} f=\sum_{i=1}^{m} N_{i} p_{i}
$$

where only comparisons with non-empty cells in the data structure are counted. D_{U} will be called the AUST (Average Unsuccessful Search Time), and p_{i} is the integral of f over A_{i}.

The properties of this simple bucket structure for sorting and searching have been studled by Maclaren (1986), Doboslewlcz (1978) and Akl and Meljer (1982). In thls chapter, we will unravel the dependence upon f. To get a rough idea of the dependence, we will start with the expected values of the quantlties defined above.

Furthermore, $E(T)=o\left(n^{2}\right), \quad E(C)=o\left(n^{2}\right), \quad E\left(D_{U}\right)=o(n)$ and $E\left(D_{S}\right)=o(n)$.

Figure 1.2.

Theorem 1.1.

Let f be an arbitrary density on $[0,1]$. Then, even if $\int f^{2}=\infty$,

$$
\begin{aligned}
& E(T) / n \sim 1+\frac{1}{c} \int f^{2} ; \\
& E(C) / n \sim \frac{1}{2 c} \int f^{2} ; \\
& E\left(D_{S}\right) \sim 1+\frac{1}{2 c} \int f^{2} ; \\
& E\left(D_{U}\right) \sim \frac{1}{c} \int f^{2} .
\end{aligned}
$$

Theorem 1.1 sets the stage for thls paper. We see for example that $E(T)=O(n)$ if and only if $\int f^{2}<\infty$. Thus, for hashing with chaining, $\int f^{2}$ measures to some extent the influence of f on the data structure: it is an indlcator of the peakedness of f. In the best case ($\int f^{2}<\infty$), we have Hnear expected time behavior for sorting, and constant expected time behavior for searching. This fact was first polnted out in Devroye and Klincsek (1981). Under stricter conditions on f (f bounded, etc.), the given expected time behavior was establlshed in a serles of papers; see e.g. Doboslewlcz (1977), Welde (1978), Meljer and Akl (1980) and Akl and Meljer (1982). Theorem 1.1 gives a characterization of the densities with $\int f^{2}=\infty$ in terms of quantites that are important in computer sclence. It also provides us with the form of the "best" density. Because $\int f^{2} \geq\left(\int f\right)^{2}=1$ (Jensen's inequallty), and $\int f^{2}=1$ for the uniform density
on $[\mathbf{0}, \mathbf{1}]$, we see that all the expected values in Theorem 1.1 are minlmal for the unlform density.

Theorem 1.1 does not give the rate of Increase of $E(T)$ as a function of n when $\int f^{2}=\infty$. However, even though $T=\sum_{i=1}^{m} N_{i}{ }^{2}$ can reach its maximal value n^{2} (Just set $N_{1}=n, N_{2}=\cdots=N_{m}=0$), we have $E(T)=o\left(n^{2}\right)$ for all densities f. Thus, hashing with chaining when used for even the most peaked density, must dramatically lmprove the expected time for sorting and searching when n is large.

Proof of Theorem 1.1.

The proof is based upon a fundamental Lemma that will be useful in several places:

Lemma 1.1.

(1) $\max _{i} p_{i}=o(1)$ as $m \rightarrow \infty$.
(i1) For all $r \geq 1, n^{r} \sum_{i=1}^{m} p_{i}^{r} \leq\left(\frac{n}{m}\right)^{r} m \int f^{r}$.
(iii) For all $r \geq 1$,

$$
\sum_{i=1}^{m}\left(n p_{i}\right)^{r} \sim\left(\frac{1}{c}\right)^{r-1} n \int f^{r}, \text { and } \sum_{i=1}^{m} p_{i}^{r}=o\left(\sum_{i=1}^{m} p_{i}^{r-1}\right)
$$

Proof of Lemma 1.1.

(1) follows from the absolute contlnulty of f, i.e. for each $\epsilon>0$ we can find a $\delta>0$ such that for all sets A with $\int_{A} d x<\delta$, we have $\int_{A} f<\epsilon$.
(ii) follows from Jensen's Inequallty:

$$
\sum_{i=1}^{m}\left(n p_{i}\right)^{r}=\sum_{i=1}^{m}\left(\frac{n}{m}\right)^{r}\left(m \int_{A_{1}} f\right)^{r} \leq\left(\frac{n}{m}\right)^{r} \sum_{i=1}^{m} m \int_{A_{i}} f^{r}=\left(\frac{n}{m}\right)^{r} m \int f^{r}
$$

(iii) follows from (il) and a small additional argument: the upper bound in (II) $\sim\left(\frac{1}{c}\right)^{r-1} n \int f^{r}$. Furthermore, by Fatou's Lemma and the Lebesgue density theorem (see Lemma 5.10 for one verslon of thls theorem), we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{lnf} \frac{1}{n} \sum_{i=1}^{m}\left(n p_{i}\right)^{r}=\lim _{n \rightarrow \infty} \operatorname{lnf} \frac{1}{n}\left(\frac{n}{m}\right)^{r} \sum_{i=1}^{m}\left(m \int_{A_{1}} f\right)^{r} \\
& =\lim _{n \rightarrow \infty} \ln \frac{1}{n}\left(\frac{n}{m}\right)^{r} m \int f_{n}^{r}\left(\text { where } f_{n}(x)=m p_{i} \text { for } x \in A_{i}\right) \\
& \geq \underset{n \rightarrow \infty}{\lim \operatorname{lnf}}\left(\frac{n}{m}\right)^{r-1} \int \underset{n \rightarrow \infty}{\lim \operatorname{lnf} f_{n}^{r}} \\
& \left.=\left(\frac{1}{c}\right)^{r-1} \int f^{r} \quad \text { (because } f_{n} \rightarrow f \text { for almost all } x\right)
\end{aligned}
$$

Note that f_{n} is the histogram approximation of f.

The proof of Theorem 1.1 is slmple. Observe that each N_{i} is a binomlal $\left(n, p_{i}\right)$ random variable and thus $E\left(N_{i}{ }^{2}\right)=\left(n p_{i}\right)^{2}+n p_{i}\left(1-p_{i}\right)$. Thus,

$$
\begin{aligned}
& E(T)=E\left(\sum_{i=1}^{m} N_{i}^{2}\right)=\sum_{i=1}^{m}\left(n^{2} p_{i}^{2}+n p_{i}\left(1-p_{i}\right)\right)=\left(n^{2}-n\right) \sum_{i=1}^{m} p_{i}^{2}+n \\
& \sim \sum_{i=1}^{m}\left(n p_{i}\right)^{2}+n \sim \frac{n}{c} \int f^{2}+n
\end{aligned}
$$

by Lemma 1.1 (iil). Also, by Lemma 1.1 (iII), $\sum_{i=1}^{m} p_{i}{ }^{2}=o$ (1), so that $E(T)=o\left(n^{2}\right)$. All the other statements in the Theorem follow from the relatlons:

$$
\begin{aligned}
& C=\frac{1}{2} \sum_{i=1}^{m}\left(N_{i}^{2}-N_{i}\right)=\frac{1}{2}(T-n) . \\
& D_{S}=\frac{1}{n} \sum_{i=1}^{m} \frac{1}{2}\left(N_{i}^{2}+N_{i}\right)=\frac{1}{2}+\frac{T}{2 n},
\end{aligned}
$$

and

$$
D_{U}=\sum_{i=1}^{m} p_{i} N_{i}\left(E\left(D_{U}\right)=n \sum_{i=1}^{m} p_{i}^{2}\right)
$$

1.2. WEAK CONVERGENCE.

In the previous section, we obtalned an asymptotic expression for $E(T)$. One should not exaggerate the Importance of such a quantlity unless it is known that $T-E(T)$ is usually "small". For example, if we could show that $T / E(T) \rightarrow 1$ in probablilty, then we would be satisfled with our criterion $E(T)$. In addition, stnce $T / E(T)$ is closed to 1 for large n, the value of T obtalned in one particular case (1.e., run; stmulation) is probably representative of nearly all the values that will be obtalned in the future for the same n. The maln result here is

Theorem 1.2.

Let $\int f^{2}<\infty$. Then :
$T / n \rightarrow 1+\frac{1}{c} \int f^{2} \ln$ probabillty ;
$C / n \rightarrow \frac{1}{2 c} \int f^{2} \ln$ probablllty ;
$D_{S} \rightarrow 1+\frac{1}{2 c} \int f^{2} \ln$ probabllity ;
and

$$
D_{U} \rightarrow \frac{1}{c} \int f^{2} \text { in probabllity }
$$

The proof of the Theorem uses Polssonization to handle the fact that N_{1}, \ldots, N_{m} are dependent random varlables. For some properties of the Polsson distribution used here, we refer to section 5.1. We proceed now by extracting a key Lemma:

Lemma 1.2.

Let $\int f^{2}<\infty$. Let N_{i} be Polsson $\left(n p_{i}\right)$ random varlables $1 \leq i \leq m$. Then

$$
\lim _{K \rightarrow \infty} \operatorname{lnmsup}_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{m} E\left(Y_{i}\right)=0
$$

where Y_{i} is elther
(1) $E\left(N_{i}{ }^{2} I_{N_{i} \geq K}{ }^{2}\right)$; or
(II) $E\left(N_{i}{ }^{2}\right) P\left(N_{i}{ }^{2} \geq K\right)$; or
(III) $E\left(N_{i}{ }^{2}\right) I_{n p_{i} \geq K}$,
and I is the indicator function.

Proof of Lemma 1.2.

It is useful to recall a simple assoclation Inequallty: if ϕ, ψ are nondecreasing nonnegative functlons of their arguments, and X is an arbitrary real-valued random variable, then $E(\phi(X) \psi(X)) \geq E(\phi(X)) E(\psi(X))$ (see e.g. Lehmann (1868), Esary, Proschan and Walkup (1987), and Gurland (1988)). For example, applled here,

$$
E\left(N_{i}{ }^{2}\right) P\left(N_{i}^{2} \geq K\right) \leq E\left(N_{i}^{2} I_{N_{i}}{ }^{2} \geq K\right)
$$

Thus, we need not conslder (II). We will deal with (ili) frst.

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{m} E\left(N_{i}^{2}\right) I_{n p_{i} \geq K}=\frac{1}{n} \sum_{i=1}^{m}\left(n^{2} p_{i}^{2}+n p_{i}\right) I_{n p_{i} \geq K} \\
& =\frac{1}{n} \sum_{i=1}^{m}\left(\left(\frac{n}{m}\right)^{2}\left(m \int_{A_{i}} f\right)^{2}+n \int_{A_{i}} f\right) I_{n p_{i} \geq K}
\end{aligned}
$$

(where f_{n} is the function of section 1.1)

$$
\begin{aligned}
& \leq \frac{1}{n} \sum_{i=1}^{m}\left(\frac{n^{2}}{m}\right) \int_{A_{i}} f^{2}+\left(n \int_{A_{i}} f\right) I_{p_{i} \geq K / n} \text { (Jensen's Inequalıty) } \\
& =\int_{0}^{1}\left(\frac{n}{m} f^{2}+f\right) I_{f_{0}} \geq K m / n
\end{aligned}
$$

Now, $n / m \rightarrow 1 / c$. Also, $I_{f_{n} \geq K m / n} \leq I_{f \geq K c / 2}$ for almost all x for which $f(x)>0$, and all n large enough (thls uses the fact that $\rho_{n} \rightarrow \int$ for almost
all x; see section 5.3.) Since $\int f^{2}<\infty$, we thus have by the Lebesgue domInated convergence theorem,

$$
\limsup _{n \rightarrow \infty} \int_{0}^{1}\left(\frac{n}{m} f^{2}+f\right) I_{f_{n} \geq K m / n} \leq \int_{0}^{1}\left(\frac{1}{c} f^{2}+f\right) I_{f \geq K_{c} / 2}
$$

and thls can be made arbltrarlly small by choosing K large enough.
Conslder now (1). Let $L>0$ be an arbltrary constant, depending upon K only.

$$
\left.\begin{array}{l}
\frac{1}{n} \sum_{i=1}^{m} E\left(N_{i}^{2} I_{N_{i}}^{2} \geq K\right.
\end{array}\right) \leq \frac{1}{n} \sum_{i=1}^{m} E\left(N_{i}^{2} I_{N^{2} p_{i}{ }^{2}+n p_{i} \geq L}\right), \begin{aligned}
& +\frac{1}{n} \sum_{i=1}^{m} E\left(N_{i}^{2} I_{N_{i}}{ }^{2} \geq K, n^{2} p_{i}^{2}+n p_{i}<L\right)
\end{aligned}
$$

A simple appllcation of (ili) shows that the first term on the right-hand-side has a limit supermum that is $o(1)$ as $L \rightarrow \infty$. Thus, we should choose L in such a way that $L \rightarrow \infty$ as $K \rightarrow \infty$. The second term on the right-hand-side is

$$
\begin{aligned}
& \frac{1}{n} \sum_{\substack{i=1 \\
n^{2} p_{i}^{2}+m p_{i}<L}}^{m} \sum_{i \geq \sqrt{K}} j^{2}\left(n p_{i}\right)^{j} e^{n p_{i} / j!} \\
& \left.\leq \frac{1}{n}\left(\sum_{n^{2} p_{i}^{2}<L . i \leq m} 1\right) \cdot \sum_{j \geq \sqrt{K}} j^{2}(\sqrt{L})^{j} e^{-\sqrt{L} / j!}\right) \\
& \leq(c+o(1)) E\left(Y^{2} I_{Y} \geq \sqrt{K}\right) \text { (where } Y \text { is Polsson }(\sqrt{L}) \text { distributed) } \\
& \leq(c+o(1)) E\left(Y^{3} / \sqrt{K}\right)(b y \text { Chebyshev's Inequallty) } \\
& =(c+o(1))\left(L^{3 / 2}+3 L+\sqrt{L}\right) / \sqrt{K}
\end{aligned}
$$

This tends to 0 as $K \rightarrow \infty$ when we choose $L=K^{1 / 4}$. The proof of Lemma 1.2 is complete.

Proof of Theorem 1.2.

The results for C and D_{S} follow from the result for T. One possible Polssonlzation argument goes as follows: let $n^{\prime}=n-n^{3 / 4}, n^{\prime \prime}=n+n^{3 / 4}$. Let $N^{\prime}, N^{\prime \prime}$ be Polsson (n^{\prime}) and Polsson ($n^{\prime \prime}$) respectlvely. Let N_{i}^{\prime} be a number of $X_{j}^{\prime} s, 1 \leq j \leq N^{\prime}$, belonging to A_{i}. It is clear that $N_{1}^{\prime}, \ldots, N_{m}^{\prime}$ are independent Polsson random varlables with parameters $n^{\prime \prime} p_{i}, 1 \leq i \leq m$. Finally, let $T^{\prime}=\sum_{i=1}^{m}{N_{i}}^{\prime 2}, T^{\prime \prime}=\sum_{i=1}^{m} N_{i}^{\prime \prime}{ }^{\prime 2}$. For arbltrary $\epsilon>0$ we have

$$
\left[\frac{T}{n}>(1+\epsilon)\left(1+\frac{1}{c} \iint^{2}\right)\right] \subseteq\left[N^{\prime},<n\right] \cup\left[\frac{T^{\prime}}{n}>(1+\epsilon)\left(1+\frac{1}{c} \int f^{2}\right)\right] .
$$

Using Theorem 5.5, we have $P\left(N^{\prime \prime}<n\right)=P\left(\frac{N-n^{\prime} \prime}{n^{\prime \prime}}<-n^{3 / 4} / n^{\prime} \prime\right)$ $\leq 2 \exp \left(-n^{3 / 2} /\left(2 n^{\prime} \prime\left(1+\frac{n^{3 / 4}}{n^{\prime} \prime}\right)\right)\right.$. Thus, for all n large enough,

$$
P\left(\frac{T}{n}>(1+\epsilon)\left(1+\frac{1}{c} \int f^{2}\right)\right) \leq o(1)+P\left(\frac{T^{\prime \prime}}{n^{\prime} \prime}>\left(1+\frac{\epsilon}{2}\right)\left(1+\frac{1}{c} \int f^{2}\right)\right)
$$

Similarly,

$$
\begin{aligned}
& P\left(\frac{T}{n}<(1-\epsilon)\left(1+\frac{1}{c} \int f^{2}\right)\right) \leq P\left(N^{\prime}>n\right)+P\left(\frac{T^{\prime}}{n}<(1-\epsilon)\left(1+\frac{1}{c} \int f^{2}\right)\right) \\
& \leq 2 \exp \left(-n^{3 / 2} /(2+o(1)) n^{\prime}\right) \leq P\left(\frac{T^{\prime}}{n^{\prime}}<\left(1-\frac{\epsilon}{2}\right)\left(1+\frac{1}{c} \int f^{2}\right)\right)
\end{aligned}
$$

all n large enough. Now, all the probabllitles involving T^{\prime} and T^{\prime} are $o(1)$ If both T^{\prime} / n^{\prime} and $T^{\prime}, / n^{\prime \prime}$ tend to $1+\frac{1}{c} \int f^{2} \ln$ probabllity. Thus, the statements about T, C and D_{S} are valld if we can show the statement about T where $T=\sum_{i=1}^{m} N_{i}{ }^{2}$ and N_{1}, \ldots, N_{m} are Independent Polsson random varlables with parameters $n p_{i}, 1 \leq i \leq m$.

First, we note that by Lemma 1.1,

$$
E(T)=\sum_{i=1}^{m}\left(n^{2} p_{i}^{2}+n p_{i}\right) \sim n\left(1+\frac{1}{c} \int f^{2}\right)
$$

To show that $(T-E(T)) / n \rightarrow 0 \ln$ probabllty (which is all that is left), we could verify the conditions of the weak law of large numbers for trlangular arrays of non-Identlcally distributed random varlables (see e.g., Loeve (1963, p. 317)). Instead, we will proceed in a more direct fashlon. We will show the stronger result that $E(|T-E(T)|) / n \rightarrow 0$. We have

$$
\begin{aligned}
& |T-E(T)| \leq\left|\sum_{i=1}^{m}\left(N_{i}^{2}-E\left(N_{i}{ }^{2}\right)\right) I_{\mid N_{i}-2}{ }^{2} E\left(N_{i}^{2}\right)\right| \geq K \mid \\
& +\mid \sum_{i=1}^{m}\left(N_{i}^{2}-E\left(N_{i}^{2}\right)\right) I_{\left|N_{i}{ }^{2}-E\left(N_{i}{ }^{2}\right)\right| \leq K|=|I|+I I,}^{E(|I|) \leq \sum_{i=1}^{m}\left[E\left(N_{i}^{2} I_{N_{i}{ }^{2} \geq K / 2}\right)+E\left(N_{i}^{2}\right) I_{E\left(N_{i}\right.}{ }^{2}\right) \geq K / 2}+E\left(N_{i}^{2}\right) P\left(N_{i}^{2} \geq K / 2\right. \\
& \left.\left.+E\left(N_{i}^{2}\right) I_{E\left(N_{i}\right.}{ }^{2}\right) \geq K / 2\right]
\end{aligned}
$$

$$
I I=\left|\sum_{i=1}^{m} Y_{i}\right| \leq\left|\sum_{i=1}^{m}\left(Y_{i}-E\left(Y_{i}\right)\right)\right|+\left|\sum_{i=1}^{m} E\left(Y_{i}\right)\right|=I I I+I V
$$

where $Y_{i}=\left(N_{i}{ }^{2}-E\left(N_{i}{ }^{2}\right)\right) I_{\left|N_{i}{ }^{2}-E\left(N_{i}{ }^{2}\right)\right| \leq K}$,

$$
I V=|E(I)|
$$

and

$$
E(I V) \leq E(|I|)
$$

Now, first choose K large enough so that $\operatorname{lim~}_{n \rightarrow \infty} \sup E(|I|) / n<\epsilon$, where ϵ is an arbitrary positive integer. (This can be done in n
arbltrary positive integer. (Thls can be done in view of Lemma 1.2.) Now, we need only show that for every $K, E(I I I) / n \rightarrow 0$. But thls is an immedlate consequence of the fact that the $Y_{i}-E\left(Y_{i}\right)$ terms are independent zero mean bounded random varlables (see e.g. section 18 of Loeve (1983)).

This completes the first part of the proof of Theorem 1.2. The argument for D_{U} is left as an exercise: first, argue again by Polssonization that it suffices to
consider Independent N_{i} 's that are Polsson ($n p_{i}$) distributed. Then note that we need only show that $\sum_{i=1}^{m} p_{i}\left(N_{i}-n p_{i}\right) \rightarrow 0$ In probabllity.

1.3. VARIANCE.

The results obtalned so far are more qualltative than quantitative: we know now for example that $E(T)$ grows as $n\left(1+\frac{1}{c} \int f^{2}\right)$ and that $|T-E(T)| / n$ tends to 0 in probabllity and in the mean. Yet, we have not establlshed just how close T is to $E(T)$. Thus, we should take our analysis a step further and get a more refined result. For example, we could ask how large $\operatorname{Var}(T)$ is. Because of the relations between C, D_{S} and T, we need only conslder $\operatorname{Var}(T)$ as $\operatorname{Var}(C)=\operatorname{Var}(T) / 4 \quad$ and $\operatorname{Var}\left(D_{S}\right)=\operatorname{Var}(T) /\left(4 n^{2}\right) . \quad \operatorname{Var}\left(D_{U}\right)$ is treated separately.

Theorem 1.3.

A. For all f, we have

$$
\frac{1}{n} \operatorname{Var}(T) \rightarrow \frac{4}{c^{2}}\left(\int f^{3}-\left(\int f^{2}\right)^{2}\right)+\frac{2}{c} \int f^{2} \geq \frac{2}{c} \int f^{2}
$$

where the right-hand-side remains valld even if $\int f^{2}$ or $\int f^{3}$ are infnite. (To avold $\infty-\infty$, consider only the lowest bound in such situations.)
B. For all f

$$
n \operatorname{Var}\left(D_{U}\right) \rightarrow c^{-2}\left(\int f^{3}-\left(\int f^{2}\right)^{2}\right)
$$

Here, the right-hand-side should formally be considered as ∞ when elther $\int f^{2}=\infty$ or $\int f^{3}=\infty$.

We note that for all $f,\left(\int f^{2}\right)^{2} \leq \int f^{3}$ (Jensen's Inequallty), and that equality is reached for the uniform density on [0,1$]$. Thus, once again, the uniform
density mlminizes the "cost", now measured in terms of variances. In fact, for the unlform density, we have $\operatorname{Var}\left(D_{U}\right)=0$, all n, and $\operatorname{Var}(T)=2 n-4-\frac{4}{n}+\frac{8}{n^{2}}$ when $c=1, m=n$.

For the proof of Theorem 1.3, the reader should consult section 5.1 first. We note here that the Polssonization trick of section 1.2 is no longer of any use because the varlance introduced by It , say, $\operatorname{Var}\left(T^{\prime}-T\right)$ for $n^{\prime}=n$ (see notatlon of the proof of Theorem 1.1), grows as n, and is thus asymptotlcally nonnegllglble.

Proof of Theorem 1.3.

Consider T first. We will repeatedly use Lemma 5.1 because N_{1}, \ldots, N_{m} are multinomlal (n, p_{1}, \ldots, p_{m}). Thus, omittling the fact that we are constantly summing for i and j from 1 to m we have

$$
\begin{aligned}
& E^{2}(T)=\sum E^{2}\left(N_{i}\right)+\sum_{i \neq j} E\left(N_{i}^{2}\right) E\left(N_{j}^{2}\right) \\
& =\sum\left[n^{2}(n-1)^{2} p_{i}^{4}+2 n^{2}(n-1) p_{i}^{3}+n^{2} p_{i}^{2}\right] \\
& +\sum_{i \neq j}\left[n^{2}(n-1)^{2} p_{i}^{2} p_{j}^{2}+n^{2}(n-1)\left(p_{i} p_{j}^{2}+p_{i}^{2} p_{j}\right)+n^{2} p_{i} p_{j}\right]
\end{aligned}
$$

where we used the fact that $E^{2}\left(N_{i}\right)=n(n-1) p_{i}^{2}+n p_{i}$. Using various expresslons from Lemma 5.1, we have

$$
\begin{aligned}
& E\left(T^{2}\right)=\Sigma E\left(N_{i}{ }^{4}\right)+\sum_{i \neq j} E\left(N_{i}{ }^{2} N_{j}{ }^{2}\right) \\
& =\sum\left[n p_{i}+7 n(n-1) p_{i}^{2}+8 n(n-1)(n-2) p_{i}{ }^{3}+n(n-1)(n-2)(n-3) p_{i}{ }^{4}\right] \\
& +\sum_{i \neq j}\left[n(n-1)(n-2)(n-3) p_{i}^{2} p_{j}{ }^{2}+n(n-1)(n-2)\left(p_{i} p_{j}{ }^{2}+p_{i}{ }^{2} p_{j}\right)+n(n-1) p_{i} p_{j}\right.
\end{aligned}
$$

Because $\operatorname{Var}(T)=E\left(T^{2}\right)-E^{2}(T)$, we have

$$
\begin{aligned}
& \operatorname{Var}(T)=\sum\left[\left(-4 n^{3}+10 n^{2}-6\right) p_{i}^{4}+\left(4 n^{3}-18 n^{2}+12\right) p_{i}^{3}+\left(8 n^{2}-7 n\right) p_{i}^{2}+n p_{i}\right. \\
& +\sum_{i \neq j}\left[\left(-4 n^{3}+10 n^{2}-8\right) p_{i}^{2} p_{j}^{2}+\left(-2 n^{2}+2 n\right)\left(p_{i}^{2} p_{j}+p_{i} p_{j}^{2}\right)+(-n) p_{i} p_{j}\right]
\end{aligned}
$$

Using the facts that $\Sigma p_{i}=1, \sum_{i \neq j} p_{i} p_{j}=\Sigma p_{i}\left(1-p_{i}\right)=1-\Sigma p_{i}{ }^{2}, \sum_{i \neq j} p_{i}{ }^{2} p_{j}$ $=\Sigma p_{i}{ }^{2}\left(1-p_{i}\right)=\Sigma p_{i}{ }^{2}-p_{i}{ }^{3}, \quad$ and $\quad \sum_{i \neq j} p_{i}{ }^{2} p_{j}{ }^{2}=\sum p_{i}{ }^{2}\left(\sum p_{j}{ }^{2}-p_{i}{ }^{2}\right)$ $=\left(\Sigma p_{i}^{2}\right)^{2}-\Sigma p_{i}$, we see that

$$
\begin{aligned}
& \operatorname{Var}(T)=\left(-4 n^{3}+10 n^{2}-6\right)\left(\sum p_{i}^{2}\right)^{2} \\
& +\left(4 n^{3}-12 n^{2}-4 n+12\right) \sum p_{i}^{3}+\left(2 n^{2}-2 n\right) \sum p_{i}^{2} .
\end{aligned}
$$

By Lemma 1.1, we have for all constants $r \geq 1, \sum p_{i}{ }^{r} \sim(n c)^{-(r-1)} \int f^{r}$ Thus, if $\int f^{2}<\infty$,

$$
\operatorname{Var}(T) \sim-4 n^{3}(n c)^{-2}\left(\int f^{2}\right)^{2}+4 n^{3}(n c)^{-2} \int f^{3}+2 n^{2}(n c)^{-1} \int f^{2}
$$

which gives us our expression. The right-hand-side of thls expression is nonsense If both $\int f^{2}$ and $\int f^{3}$ are ∞. In that case, note that $\left(\Sigma p_{i}{ }^{2}\right)^{2} \leq \Sigma p_{i}{ }^{3}$ (by Jensen's Inequallty), and that thus, because $\Sigma p_{i}{ }^{3}=o\left(\Sigma p_{i}{ }^{2}\right)$,

$$
\operatorname{Var}(T) \geq\left(-2 n^{2}-4 n+6\right) \sum p_{i}^{3}+\left(2 n^{2}-2 n\right) \sum p_{i}^{2} \sim 2 n^{2} \sum p_{i}^{2}
$$

so that $\operatorname{Var}(T) / n \rightarrow \infty$. This concludes the proof of the first half of Theorem 1.3.

We have $E\left(D_{U}\right)=\Sigma n p_{i}^{2} \sim \frac{1}{c} \int f^{2}$, and

$$
\begin{aligned}
& E\left(D_{U}^{2}\right)=E\left(\sum p_{i}^{2} N_{i}^{2}\right)+E\left(\sum_{i \neq j} p_{i} p_{j} N_{i} N_{j}\right) \\
& =\sum p_{i}^{2}\left(n p_{i}+n(n-1) p_{i}^{2}\right)+\sum_{i \neq j} p_{i}^{2} p_{j}^{2} n(n-1) \\
& =n \sum p_{i}^{3}+n(n-1)\left(\sum p_{i}^{2}\right)^{2}
\end{aligned}
$$

Thus,

$$
\operatorname{Var}\left(D_{U}\right)=n \sum p_{i}^{3}-n\left(\Sigma p_{i}^{2}\right)^{2}
$$

If $\quad \int f^{3}<\infty, \quad$ then $\quad \operatorname{Var}\left(D_{U}\right) \sim \frac{1}{n c^{2}}\left(\int f^{3}-\left(\int f^{2}\right)^{2}\right) . \quad$ If
$\int f^{3}=\infty$ but $\int f^{2}<\infty$, this is still true. If both Integrals are Infintte, we need an additional argument. For example, let J be the collection of Indices for which $p_{i}>a / m$, where $a>0$ is a constant. We have, by the inequallty $(u+v)^{2} \leq 2 u^{2}+2 v^{2}$,

$$
\operatorname{Var}\left(D_{U}\right) \geq n \sum_{J} p_{i}^{3}-2 n\left(\sum_{J} p_{i}^{2}\right)^{2}+n \sum_{J^{i}} p_{i}^{3}-2 n\left(\sum_{J^{i}} p_{i}^{2}\right)^{2}
$$

where J^{c} is the complement of J. By Jensen's inequality,

$$
\sum_{J} p_{i}^{3} \sum_{J} p_{i} \geq\left(\sum_{J} p_{i}^{2}\right)^{2}
$$

and similarly for J^{c}. Thus, we have

$$
\operatorname{Var}\left(D_{U}\right) \geq n\left(\sum_{J} p_{i}^{2}\right)^{2}\left(\left(\sum_{J} p_{i}\right)^{-1}-2\right)+n\left(\sum_{J^{c}} p_{i}^{2}\right)^{2}\left(\left(\sum_{J^{c}} p_{i}\right)^{-1}-2\right) .
$$

It is a simple exercise to show that $m \sum_{J^{t}} p_{i}^{2} \rightarrow \int_{f \leq a} f^{2}, \sum_{J^{\prime}} p_{i} \rightarrow \int_{f \leq a} f$, $\sum_{J} p_{i} \rightarrow \int_{f>a} f, m \sum_{J} p_{i}^{2} \rightarrow \infty$. For any cholce of a with $\int_{f>a} f \in(0,1)$, we have

1.4. LARGE DEVIATION INEQUALITIES.

Often, one would llke to know the llkellhood of the event $[C>x$] (or of [$\left.D_{S}>x\right]$ or $\left[D_{U}>x\right]$), and in the absence of an exact answer, good upper bounds for the corresponding probabllitles $P(C>x), P\left(D_{S}>x\right)$ and $P\left(D_{U}>x\right)$ will do too. For the sake of slmpllicty, we will derive such upper bounds for $P\left(D_{U}>x\right)$. The analysis for C and D_{S} is considerably more complleated.

First, we observe that there is little hope to get a small bound unless x exceeds $E\left(D_{U}\right) \sim \frac{1}{c_{n}} \int f^{2}$. Thus, we will ask for upper bounds for the probabllity

$$
P\left(D_{U}>\frac{1}{c_{n}} \iint^{2}(1+\epsilon)\right), \epsilon>0
$$

From Markov's Inequality and Theorem 1.1, we have

$$
P\left(D_{U}>\frac{1}{c_{n}} \int f^{2}(1+\epsilon)\right) \leq \frac{E\left(D_{U}\right)}{\frac{1}{c_{n}} \int f^{2}(1+\epsilon)} \leq \frac{1}{1+\epsilon}
$$

valld for all f. Unfortunately, this bound requires large values of ϵ to be useful. By restricting ourselves to smaller classes of densities, we can obtain smaller upper bounds.

For example, by the Chebyshev-Cantelll Inequallty and $E\left(D_{U}\right) \leq c_{n}{ }^{-1} \int f^{2}$, we have

$$
\begin{aligned}
& P\left(D_{U} \geq(1+\epsilon) c_{n}^{-1} \int f^{2}\right) \leq P\left(D_{U}-E\left(D_{U}\right) \geq \epsilon c_{n}^{-1} \int f^{2}\right) \\
& \leq \operatorname{Var}\left(D_{U}\right) /\left(\operatorname{Var}\left(D_{U}\right)+\epsilon^{2}\left(\iint^{2}\right)^{2} c_{n}^{-2}\right) \\
& \leq\left(\int f^{3} /\left(\int f^{2}\right)^{2}-1\right) /\left(n \epsilon^{2}\right)
\end{aligned}
$$

If $\int f^{2}<\infty$. The upper bound is obviousiy useless when $\int f^{3}=\infty$. When $\int f^{3}<\infty$, it decreases with n for every $\epsilon>0$. Unfortunately, the decrease is only as $1 / n$. Better rates can be obtalned at the expense of stricter conditions on f. For example, we can hope to obtaln bounds that decrease as $\left(n \epsilon^{2}\right)^{-r}$ for arbltrary $r>1$ provided that $\int f^{p}<\infty$ for an approprlately blg constant p.

The conditions $\int f^{p}<\infty, p>1$, are conditions restricting the slze of the infinite peaks of f. The strongest possible peak condition is " $f \leq C$ for some constant $C^{\prime \prime}$. In that case, we can obtaln an exponential Inequallty:

Theorem 1.4.

Assume that $\sup f \leq C<\infty$. For all $\epsilon>0$, we have

$$
P\left(D_{U} \geq(1+\epsilon) c_{n}^{-1} \int f^{2}\right) \leq \exp (-A(\epsilon) n)
$$

where

$$
A(\epsilon)=\sup _{r>0} r \epsilon \int f^{2}-\frac{r^{2}}{2} \int f^{3} e^{r C}>0 .
$$

In particular, if $\epsilon=\epsilon_{n}$ varles with n in such a way that $\epsilon_{n} \downarrow 0$, then

$$
A\left(\epsilon_{n}\right) \sim \frac{1}{2} \epsilon_{n}^{2}\left(\int f^{2}\right)^{2} / \int f^{3}
$$

and if $\epsilon_{n} \dagger \infty$, then

$$
A\left(\epsilon_{n}\right) \sim \frac{1}{2 C} \int f^{2} \epsilon_{n} \log \epsilon_{n}
$$

Proof of Theorem 1.4.

The proof is based upon Chernoff's bounding technique and a simple expresston for the moment generating function of the multinomial distribution (see Lemma 5.2). Let $t>0$ be an arbltrary number. Then

$$
\begin{aligned}
& P\left(D_{U}=\sum_{i=1}^{m} N_{i} p_{i}>(1+\epsilon) \frac{1}{c_{n}} \int f^{2}\right) \\
& \leq E\left(\exp \left(-t(1+\epsilon) \frac{1}{c_{n}} \int f^{2}+t \sum_{i=1}^{m} N_{i} p_{i}\right)\right) \\
& =\exp \left(-t \frac{1}{c_{n}} \int f^{2}(1+\epsilon)\right)\left(\sum_{i=1}^{m} p_{i} \exp \left(t p_{i}\right)\right)^{n} .
\end{aligned}
$$

Let us recall the definttion of the function f_{n} from Lemma 1.1. Using the fact that $e^{z}-1 \leq u+\frac{u^{2}}{2} e^{y}$ for $u>0$, we have the following chaln of equaltiles and Inequalitles (where the first expression is equal to the last expression of the chain given above):

$$
\begin{aligned}
& \exp \left(-t c_{n}^{-1}(1+\epsilon) \int f^{2}\right) \cdot\left(\int f_{n} \exp \left(\frac{t}{m} f_{n}\right) d x\right)^{n} \\
& =\exp \left(-t c_{n}^{-1}(1+\epsilon) \int f^{2}\right) \cdot\left(1+\int f_{n}\left(\exp \left(\frac{t}{m} f_{n}\right)-1\right) d x\right)^{n} \\
& \leq \exp \left(-t c_{n}^{-1}(1+\epsilon) \int f^{2}\right) \cdot\left(1+\frac{t}{m} \int f_{n}^{2}+\frac{t^{2}}{2 m^{2}} \int f_{n}^{3} \exp \left(\frac{t}{m} f_{n}\right)\right)^{n} \\
& \leq \exp \left(-t c_{n}^{-1}(1+\epsilon) \int f^{2}+t c_{n}^{-1} \int f_{n}^{2}+n \frac{t^{2}}{2 m^{2}} \int f_{n}^{3} \exp \left(\frac{t}{m} C\right)\right) \\
& \leq \exp \left(-t c_{n}^{-1} \epsilon \int f^{2}+n \frac{t^{2}}{2 m^{2}} \int f^{3} \exp \left(\frac{t}{m} C\right)\right) .
\end{aligned}
$$

Here we also used the inequallty $(1+u) \leq \exp (u)$, and the fact that $\int f_{n}^{s} \leq \int f^{s}$ for all $s \geq 1$ (Lemma 1.1). The first half of the Theorem follows from the cholce $t=r m$. Now, as $\epsilon \downarrow 0$, we see that the supremum is reached for $r=r(\epsilon)>0$, and that $A(\epsilon)$ is asymptotic to the value $\sup _{r>0} r \epsilon \int f^{2}-\frac{1}{2} r^{2} \int f^{3}$. The latter supremum, for each $\epsilon>0$, is reached for $r=\epsilon \int f^{2} / \int f^{3}$. Resubst1tution gives the desired solution, $A(\epsilon) \sim \frac{1}{2} \epsilon^{2}\left(\int f^{2}\right)^{2} / \int f^{3}$.

When $\epsilon \dagger \infty$, it is easy to see that the supremem in the expression for $A(\epsilon)$ is reached for $r(\epsilon) \uparrow \infty$. By standard functional iterations, applled to the equatlon $r(\epsilon)=\frac{1}{C} \log \left(\epsilon \int f^{2} /\left(r(\epsilon) \int f^{3}\right)\right)$, we see that $A(\epsilon) \sim$ the value of the expression to be optlmized, at $r=\frac{1}{C} \log \left(\epsilon \iint^{2} /\left(\int f^{3} \frac{1}{C} \log \epsilon\right)\right)$, whlch glves us our solutlon.

Remark.

The Inequallty of Theorem 1.4 for $\epsilon_{n} \downharpoonright 0, n \epsilon_{n}{ }^{2} \uparrow \infty$, is called a moderate deviation inequality. It provides us with good information about the tall of the distribution of D_{U} for values of the order of magnitude of the mean of D_{U} plus a few standard deviations of D_{U}. On the other hand, when ϵ_{n} is constant or tends to ∞, we have large deviation inequalities. As a rule, these should give good Information about the extreme tall of the distribution, where the central llmit theorem is hardly at work. For example, it appears from the form of the Inequallity that the extreme tall of D_{U} drops off at the rate of the tall of the Polsson distribution.

1.5. DOUBLE BUCKETING.

The results that we have obtalned untll now quallfy the statement that T is close to $n\left(1+\frac{1}{c} \int f^{2}\right)$ when $\int f^{2}<\infty$. The presence of $\int f^{2}$ in this expression is disappointing. Perhaps we could hope to reduce the direct influence of f on the quantitles that are of interest to us by hashing the n intervals a second time: each interval A_{i} is subdivided into N_{i} equal sublntervals. This method will be referred to as the "double bucketing" method. The idea of double bucketing is obvlously not novel (see for example Maclaren, 1988). In fact, we could keep on dividing intervals until all data points are in separate intervals. The structure thus obtained is called an N-tree (Ehrlich (1982), Tamminen (1982)). Some analysls for restricted classes of densities is given in these papers. Recursive bucketing when appled to sorting is analyzed In Doboslewlcz (1978) and Van Dam, Frenk and Rinnooy Kan (1883).

What we will try to show here is that most of the benefits of recursive bucketing are obtained after two passes, i.e. with double bucketing. The structure that we will analyze is obtained as follows:

Step 1.
Let $A_{i}=\left(\frac{i-1}{n}, \frac{i}{n}\right), 1 \leq i \leq n$. For each A_{i}, keep a llned llst of $X_{j}^{\prime} s$ fallling in it. Let N_{i} be the cardinallty of A_{i}.
Step 2.
For $i=1$ to n do: if $N_{i} \geq 1$, divide A_{i} into N_{i} equal intervals $A_{i j}$, and keep for each $A_{i j}$ llnked Ilsts of the data points in It. Let $N_{i j}$ be the cardlnallty of $A_{i j}$.

Figure 1.4.

The quantlites that we will consider here are

$$
\begin{aligned}
& T=\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} N_{i j}^{2} \\
& C=\sum_{i=1}^{n}\left(\frac{1}{2} \sum_{j=1}^{N_{i}}\left(N_{i j}^{2}-N_{i j}\right)\right)=\frac{1}{2}(T-n) \\
& D_{S}=\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{N_{i}} \frac{1}{2}\left(N_{i j}^{2}+N_{i j}\right)=\frac{1}{2 n}(T+n)
\end{aligned}
$$

and

$$
D_{U}=\sum_{i=1}^{n} \sum_{j=1}^{N_{i}} p_{i j} N_{i j}
$$

where all the summations $\sum_{j=1}^{N_{i}}$ for $N_{i}=0$ must be omltted, and
$=\int f$ when $A_{i j}$ is defined. We note that the first diviston is into $p_{i j}=\int_{A_{1,}} f$ when $A_{i j}$ is defined. We note that the first division is into n

Intervals. The generallzation towards a division into m intervals is stralghforward.

Theorem 1.5.

If $\int f^{2}<\infty$, then the double bucketing structure gives

$$
E(T) / n \sim 1+\int_{0}^{1} e^{-f} ; E(C) / n \sim \frac{1}{2} \int_{0}^{1} e^{-f} ; E\left(D_{S}\right) \sim \frac{1}{2}\left(2+\int_{0}^{1} e^{-f}\right)
$$

and

$$
E\left(D_{U}\right) \rightarrow 1
$$

If we compare these asymptotic expressions with those for ordinary bucketIng when $m=n$, i.e. $E(T) / n \sim 1+\int f^{2}$, we see that double bucketing is strictly better for all f. This follows from Jensen's Inequallty and the fact that $e^{-u} \leq 1-u+\frac{1}{2} u^{2}$:

$$
\int f^{2}>\frac{1}{2} \int f^{2} \geq \int_{0}^{1} e^{-f} \geq \exp \left(-\int_{0}^{1} f\right)=\frac{1}{e}
$$

For all f with $\int f^{2}<\infty$, we have

$$
\lim _{n \rightarrow \infty} \frac{E(T)}{n} \in\left[1+\frac{1}{e}, 2\right)
$$

Thus, the limit of $E(T) / n$ is unlformly bounded over all such f. In other words, double bucketing has the effect of ellminating all peaks in densities with $\int f^{2}<\infty$. Let us also note in passing that the lower bound for $E(T) / n$ is reached for the unlform density on $[0,1]$, and that the upper bound can be approached by considering densitles that are uniform on $[0,1]$, and that the upper bound can be approached by considering densitles that are uniform on
$\left[0, \frac{1}{K}\right]\left(\int_{0}^{1} e^{-f}=1-\frac{1}{K}+\frac{1}{K} e^{-K}\right)$ and letting $K \rightarrow \infty$. The fact that the properties of the double bucketing structure are basically Independent of the density f was observed independently by Tamminen (1985). The same is a fortlorl true for N-trees (Ehrich (1981), Van Dam, Frenk and Rinnooy Kan (1983), Tamminen (1983))

Proof of Theorem 1.5.

In the proof, all summations $\sum_{j=1}^{N_{1}}$ for which $N_{i}=0$ should be omitted, to avold trivialltles. We start with a lower bound for $E(T)$.

$$
\begin{aligned}
& E(T)=\sum_{i=1}^{n} E\left(I_{N_{i} \geq 1} \sum_{j=1}^{N_{i}}\left[\left(N_{i}^{2}-N_{i}\right)\left(p_{i j} / p_{i}\right)^{2}+N_{i} p_{i j} / p_{i}\right]\right) \\
& =\sum_{i=1}^{n} E\left(N_{i}\right)+\sum_{i=1}^{n} E\left(\left(N_{i}{ }^{2}-N_{i}\right) \sum_{j=1}^{N_{i}}\left(p_{i j} / p_{i}\right)^{2}\right) \\
& \geq n+\sum_{i=1}^{n} E\left(\left(N_{i}^{2}-N_{i}\right) \sum_{j=1}^{N_{i}}\left(\frac{1}{N_{i}}\right)^{2}\right) \\
& =n+\sum_{i=1}^{n} E\left(\left(N_{i}-1\right)_{+}\right)\left(\text {where } u_{+}=\max (u, 0)\right) \\
& =n+\sum_{i=1}^{n} E\left(N_{i}-1\right)+\sum_{i=1}^{n} P\left(N_{i}=0\right) \\
& =n+\sum_{i=1}^{n} P\left(N_{i}=0\right) \\
& =n+\sum_{i=1}^{n}\left(1-p_{i}\right)^{n}\left(\text { where } p_{i}=\int_{A,} f\right) \\
& \geq n+\sum_{i=1}^{n} \exp \left(-n p_{i} /\left(1-p_{i}\right)\right)(\text { because } 1-u \geq \exp (-u /(1-u)), 0 \leq u<1) \\
& =n+n \int_{0}^{1} \exp \left(-f_{n} /\left(1-f_{n} / n\right)\right)\left(w h e r e f_{n}(x)=n p_{i}, x \in A_{i}\right) \\
& =n+n \int_{0}^{1} e^{-f}
\end{aligned}
$$

by the Lebesgue dominated convergence theorem and Lemma 5.10.
We now derlve an upper bound for $E(T)$. For any integer K, we have

$$
E(T)=n+\sum_{i=1}^{n} E\left(V_{i}^{\prime}\right)+\sum_{i=1}^{n} E\left(V_{i}^{\prime \prime}\right)
$$

where

$$
V_{i}^{\prime}=\left(N_{i}^{2}-N_{i}\right) \sum_{j=1}^{N_{i}}\left(p_{i j} / p_{i}\right)^{2} I_{N_{i} \leq K}
$$

and

$$
V_{i}^{\prime \prime}=\left(N_{i}^{2}-N_{i}\right) \sum_{j=1}^{N_{i}}\left(p_{i j} / p_{i}\right)^{2} I_{N_{i}>K}
$$

The statements about $E(T), E(C)$ and $E\left(D_{S}\right)$ in Theorem 1.5 are proved if we can show that

$$
\begin{aligned}
& \lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left(V_{i}^{\prime}\right)=\int_{0}^{1} e^{-f} ; \\
& \lim _{K \rightarrow \infty} \operatorname{llm}_{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left(V_{i}^{\prime \prime}\right)=0 .
\end{aligned}
$$

We wlll use the function $g_{n}(x)=E\left(V_{i}^{\prime}\right), x \in A_{i}$. Clearly,

$$
\begin{aligned}
& g_{n}(x) \leq K E\left(N_{i}\right)=K n p_{i}=K f_{n}(x), x \in A_{i} \\
& \int f_{n}=1, \text { all } n ; f_{n} \rightarrow f \text { almost all } x
\end{aligned}
$$

Thus, by an extended version of the Lebesgue dominated convergence theorem (see e.g. Royden (1988, p. 89)), we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left(V_{i}^{\prime}\right)=\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}=\int_{0}^{1} \lim _{n \rightarrow \infty} g_{n}
$$

provided that the llmit of g_{n} exlsts almost everywhere. Consider now a sequence of couples (i, j) such that $x \in A_{i j} \subseteq A_{i}$ for all n. We have by Lemma 5.11 , $n N_{i} p_{i j} \rightarrow f(x)$ for almost all x, unlformly $\ln N_{i}, 1 \leq N_{i} \leq K$. From this, we conclude that

$$
g_{n}(x) \sim E\left(\left(N_{i}-1\right)_{+} I_{N_{i} \leq K}\right), \text { almost all } x .
$$

Consider only those $x^{\prime} s$ for which $f(x)>0$, and Lemma 5.11 applles. Clearly, N_{i} tends in distribution to Z where Z is a Polsson ($f(x)$) random variable (this follows from $n p_{i} \rightarrow f(x)$ (Chow and Telcher (1978, p. 36-37))). Since $\left(N_{i}-1\right)_{+} I_{N_{1} \leq K}$ forms a sequence of bounded random varlables, we also have convergence of the moments, and thus,

$$
g_{n}(x) \sim E\left((Z-1)_{+} I_{Z \leq K}\right)=f(x)^{-1}+e^{-f(x)}-E\left((Z-1)_{+} I_{Z>K}\right)
$$

for all such x, i.e. for almost all $x(f)$. Thus,

$$
\begin{aligned}
& \lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{n} E\left(V_{i}^{\prime}\right)=\lim _{K \rightarrow \infty} \int_{0}^{1}\left(f(x)-1+e^{-f(x)}-E\left((Z-1)_{+} I_{Z>K}\right)\right) d x \\
& \quad=\int_{0}^{1} e^{-f}
\end{aligned}
$$

Here we needed the fact that $\operatorname{llm}_{K \rightarrow \infty_{0}}^{1} E\left((Z-1)_{+} I_{Z>K}\right) d x=0$, which is a simple consequence of the Lebesgue dominated convergence theorem (note that $\left.\int_{0}^{1} E(Z) d x=1\right)$. Also,

$$
\frac{1}{n} \sum_{i=1}^{n} E\left(V_{i}^{\prime \prime}\right) \leq \sum_{i=1}^{n} E\left(N_{i}^{2} I_{N,}>K\right)
$$

Deflne the function $h_{n}(x)=E\left(N_{i}{ }^{2} I_{N_{i}>K}\right), \quad x \in A_{i}$, and the function $h(x)=E\left(Z^{2} I_{Z>K}\right)$ where Z is Polsson $(f(x))$ distributed. We know that $h_{n}(x) \leq E\left(N_{i}{ }^{2}>{ }^{2} \leq n p_{i}+\left(n p_{i}\right)^{2}=f_{n}(x)+f_{n}{ }^{2}(x) \rightarrow f(x)+f^{2}(x)\right.$, almost all x; and that $\int f_{n}+f_{n}^{2} \rightarrow \int f+f^{2}$. Thus, by an extension of the Lebesgue dominated convergence theorem, we have

$$
\frac{1}{n} \sum_{i=1}^{n} E\left(V_{i}^{\prime \prime}\right) \leq \int_{0}^{1} h_{n} \rightarrow \int_{0}^{1} \operatorname{llm}_{n \rightarrow \infty} h_{n}
$$

Chapter 2

provided that the almost everywhere llmat or h_{n} exists. For almost all x, N_{i} tends in distribution to Z. Thus, for such x,

$$
\left|h_{n}-h\right| \leq \sum_{j=1}^{\infty} j^{2}\left|P\left(N_{i}=j\right)-P(Z=j)\right| \rightarrow 0
$$

(see e.g. Slmons and Johnson, 1871). But $\int_{0}^{1} h \rightarrow 0$ as $K \rightarrow \infty$ since $\int_{0}^{1} E$
$\int_{0}^{1} E\left(Z^{2}\right)=\int_{0}^{1} f+f^{2}<\infty$, and $E\left(Z^{2} I_{Z>K}\right) \rightarrow 0$ for almost all x. Thls concludes
the proof of

$$
\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left(V_{i}^{\prime \prime}\right)=0
$$

We will only sketch the proof for

$$
E\left(D_{U}\right)=E\left(\sum_{i=1}^{n} \sum_{j=1}^{N_{1}} p_{i j} N_{i j}\right)=E\left(\sum_{i=1}^{n} p_{i} N_{i} \sum_{j=1}^{N_{i}}\left(p_{i j} / p_{i}\right)^{2}\right)
$$

First, it is easily seen that

$$
E\left(D_{U}\right) \geq E\left(\sum_{i=1}^{n} p_{i} N_{i} / N_{i}\right)=\sum_{i=1}^{n} p_{i}=1
$$

Also, if we follow the treatment to obtain an upper bound for $E(T)$, we come across terms V_{i}^{\prime} and V_{i}^{\prime}, in which $\left(N_{i}{ }^{2}-N_{i}\right)$ is now replaced by $p_{i} N_{i}$. Mlmlcking the Polsson approximation arguments for $E(T)$, we obtain $\lim _{n \rightarrow \infty} E\left(D_{U}\right) \leq 1$ when $\int f^{2}<\infty$. This concludes the proof of Theorem 1.5.

DENSITIES WITH UNBOUNDED SUPPORT

2.1. MAIN RESULTS.

In chapter 1, we have analyzed in some detall what happens when f is known to have support contalned in $[0,1]$. In first approximation, the maln term In the asymptotic expressions for $E(T) / n$ and $E\left(D_{U}\right)$ contaln the factor $\int f^{2}$, which is scale-dependent. If we were to divide the interval $\left[M_{n}, M_{n}{ }^{*}\right]=$ $\left[m \ln X_{i}, \max X_{i}\right]$ into m equal-sized sub-Intervals, these expected values would obviously not be scale-dependent because the distribution of N_{1}, \ldots, N_{m} is scale invariant.

We could repeat all of chapter 1 for thls more general setting if tedium was no deterrent. There is a new ingredlent however when f has infinite talls because M_{n} and / or $M_{n}{ }^{*}$ diverges in those cases. The results in thls chapter rely heavily on some results from the theory of order statistics. The technicalitles are deferred to section 2.2. The following notation will be introduced:

$$
\begin{aligned}
& M_{n}=\min _{1 \leq i \leq n} X_{i}, \\
& M_{n}^{*}=\max _{1 \leq i \leq n} X_{i}, \\
& R_{n}=\operatorname{range}\left(\mathrm{X}_{1}, \ldots, X_{n}\right)=M_{n}^{*}-M_{n}, \\
& x_{i}=M_{n}+\frac{i-1}{m}\left(M_{n}^{*}-M_{n}\right), 1 \leq i \leq m+1, \\
& p_{i}=\int_{x_{1}}^{x_{i+1}} f, 1 \leq i \leq m, \\
& p=\int_{M_{n}} f,
\end{aligned}
$$

$s=$ ess sup $X_{1}-$ ess $\operatorname{lnf} X_{1}=$ width of support of f.

Figure 2.1.

Theorem 2.1.

Let f be a density on R^{1} with $\int f^{2}<\infty$. Then
(1) $\lim _{\delta \mid 0} \operatorname{lnf} \lim \operatorname{lnf}_{n \rightarrow \infty} \frac{E(T)}{\left(n\left(1+E\left(\min \left(R_{n} c_{n}{ }^{-1} \int f^{2}, \delta n\right)\right)\right)\right.} \geq 1$
and
(i1) $\underset{n \rightarrow \infty}{\lim \sup } \frac{E(T)}{n\left(1+E\left(\min \left(R_{n} c_{n}^{-1} \int f^{2}, n\right)\right)\right)} \leq 1$

In particular, if $s<\infty$, we have

$$
\underset{n \rightarrow \infty}{\operatorname{lm} \operatorname{lnf}} \frac{E(T)}{n}=\underset{n \rightarrow \infty}{\lim \sup } \frac{E(T)}{n}=1+s \frac{1}{c} \iint^{2} .
$$

Theorem 2.1 shows that there is a close relation between $E(T)$ and the range R_{n}. For densities with no talls, we have a generallzation of Theorem 1.1. It is noteworthy that $1+\frac{s}{c} \int f^{2}$, the llmit value of $E(T) / n$, is scale invariant. When $s=\infty$, it is not clear at all how $E\left(\min \left(R_{n} c_{n}{ }^{-1} \int f^{2}, n\right)\right)$ varles with n. For example, is this quantity close to $E\left(R_{n}\right) c_{n}^{-1} \int f^{2}$ (which is easier to handle)? Thus, to apply Theorem 2.1 in concrete examples, some results are needed for R_{n}. Some of these are stated in Lemma 2.1.

We will work with the following quantitles: $X=X_{1}$ has density f and distribution function $F(x)=P(X \leq x)=1-G(x)$; the integrals

$$
\bar{F}(x)=\int_{-\infty}^{x} F(t) d t ; \bar{G}(x)=\int_{x}^{\infty} G(t) d t
$$

will also be useful. We recall that

$$
E(|X|)=\tilde{G}(0)+\tilde{F}(0)=\int_{0}^{\infty} G(t) d t+\int_{-\infty}^{0} F(t) d t
$$

Lemma 2.1

Let $\delta>0$ be arbltrary. Then:
(1) $E\left(m \ln \left(R_{n}, \delta n\right)\right) \dagger$.
(11) $\quad \lim \sup E\left(\min \left(R_{n}, \delta n\right)\right)<\infty$ If and only if $s<\infty$
(III) $\lim _{n \rightarrow \infty}^{n \rightarrow \infty} \sup \left(R_{n}\right)<\infty$ If and only if $s<\infty$.
(Iv) $E\left(R_{n}\right)=\infty$ for all $n \geq 2$ if and only if $E\left(R_{n}\right)=\infty$ for some $n>2$ If and only if $E(|X|)=\infty$.
(v) $E(|X|)<\infty$ implles $E\left(R_{n}\right)=o(n)$.
(vi) $E(|X|)<\infty$,

$$
\lim _{a \not 0} \lim _{x \rightarrow \infty} \frac{\tilde{G}(a x)}{\tilde{G}(x)}=\infty\left(\frac{0}{0}=\infty\right)
$$

and
$\lim _{a \downarrow 0} \lim _{x \rightarrow \infty} \operatorname{lnf} \frac{\tilde{F}(-a x)}{\tilde{F}(-x)}=\infty$
Imply
$E\left(\operatorname{mln}\left(R_{n}, \delta n\right)\right) \sim E\left(R_{n}\right)$ for all $\delta>0$.
(vil) Are equivalent:
$\operatorname{llm}_{n \rightarrow \infty} E\left(\operatorname{mln}\left(R_{n}, \delta n\right)\right) / n>0$ for all $\delta>0 ;$
$\operatorname{llm} \sup _{n \rightarrow \infty} E\left(\min \left(R_{n}, \delta n\right)\right) / n>0$ for some $\delta>0 ;$
$\lim _{x \rightarrow \infty}|x| P(|X|>x)>0$.
(vili) Are equivalent:
$\underset{n \rightarrow \infty}{\lim \operatorname{lnf}} E\left(\operatorname{mln}\left(R_{n}, \delta n\right)\right) / n>0$ for all $\delta>0 ;$
$\operatorname{llm} \operatorname{lnf} E\left(\min \left(R_{n}, \delta n\right)\right) / n>0$ for some $\delta>0 ;$
$\underset{x \rightarrow \infty}{\lim \operatorname{lnf}}|x| P(|X|>x)>0$.

Lemma 2.1 In conjunction with Theorem 2.1 gives us quite a blt of informatlon about $E(T)$. For example, we have

Theorem 2.2.

If $\int f^{2}<\infty$, then are equivalent:

$$
\begin{gathered}
\lim \operatorname{lnf}_{n \rightarrow \infty} E(T) / n<\infty ; \\
\lim _{n \rightarrow \infty} E(T) / n<\infty ; \\
s<\infty
\end{gathered}
$$

(And if $s<\infty$, this lim inf is equal to this llm sup. Its value $1+\frac{s}{c} \int f^{4}$.)

Theorem 2.2 follows from Lemma 2.1 (1), (II) and Theorem 2.1. In Devroye and Kllncsek (1980), one finds a slightly stronger result: $E(T)=0(n)$ If and only If $s<\infty$ and $\iint^{2}<\infty$. In the next chapter, this will be generallzed to R^{d}, so we don't have to bother with an R^{1} verslon of it here.

We also have

Theorem 2.3.

If $\int f^{2}<\infty$, then condition (vi) of Lemma 2.1 Implles that

$$
E(T) \sim n\left(1+\frac{1}{c} E\left(R_{n}\right) \int f^{2}\right)
$$

Theorems 2.2 and 2.3 cover all the small-talled distributions with little osclllation In the talls. In Akl and Meljer (1982) the upper bound part of Theorem 2.3 was obtalned for bounded densitles. The actual llmiting expression of $E(T)$ shows the Interaction between the effect of the peaks $\left(\int f^{2}\right)$ and the effect of the talls $\left(E\left(R_{n}\right)\right.$). Note that $E\left(R_{n}\right) \int f^{2}$ is a scale-Invariant and translationinvarlant quantity: it is solely determined by the shape of the density. It is perhaps interesting to see when condition (vi) of Lemma 2.1 is valld.

Example 2.1. (Relatively stable distributions.)

A relatively stable distribution is one for whlch

$$
\text { (1) } \lim _{x \rightarrow \infty} \frac{G(a x)}{G(x)}=\infty \text {, all } a \in(0,1) ;\left(\frac{0}{0}=\infty\right) \text {; }
$$

and
(1i) $\lim _{x \rightarrow \infty} \frac{F(-a x)}{F(-x)}=\infty$, all $a \in(0,1)$.

If we use the notation $M_{n}{ }^{*}=\max \left(X_{1}{ }^{+}, \ldots, X_{n}{ }^{+}\right)$where $u^{+}=\max (u, 0)$ then it should be noted that if $P(X>0)>0$, (1) is equivalent to
(III) $M_{n}{ }^{*} \rightarrow 1$ In probabllity for some sequence a_{n}
(Gnedenko, 1943). In that case we can take $a_{n}=\operatorname{lnf}\left(x: G(x) \leq \frac{1}{n}\right.$) where $G(x)=P(X \geq x)$, or In short, $a_{n}=G^{-1}\left(\frac{1}{n}\right)$ (Dehaan, 1975, pp. 117). We note that (1) is equivalent to $\bar{G}(0)<\infty, \bar{G}(x) /(x G(x)) \rightarrow 0$ as $x \rightarrow \infty$; or to $\bar{G}(0)<\infty, \int_{x}^{\infty} t d F(t) /(x G(x)) \rightarrow 1$ as $x \rightarrow \infty$.

For relatively stable distributions, we have $E\left(R_{n}\right) \sim F^{-1}\left(\frac{1}{n}\right)+G^{-1}\left(\frac{1}{n}\right)$ (Plckands, 1988). It is very easy to check that condition (vi) follows from the relative stabllity of the distribution of X. When

$$
\text { (Iv) } \lim _{x \rightarrow \infty} \frac{x f(x)}{G(x)}=\infty
$$

we know that (III) holds (Geffroy, 1958; Dehaan, 1975, Theorem 2.9.2). condition (iv) comes close to belng best posslble because if f is nonincreasing and positive for all x, then (III) Implles (Iv) (Dehaan, 1975, Theorem 2.9.2).

Example 2.2. (Normal distribution.)

For the normal distribution with density $(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right)$, we have relative stabllity and square integrabllity. In particular, $\left.E\left(R_{n}\right) \sim 2 G^{-1} \frac{(1}{n}\right) \sim 2 \sqrt{2 \log n}$ (see e.g. Galambos, 1978, pp. 65), and thus
$E(T) \sim n\left(1+2 \sqrt{2 \log n} \int f^{2}\right)=n\left(1+\sqrt{\frac{2}{\pi} \log n}\right) \sim \sqrt{\frac{2}{\pi}} n \sqrt{\log n}$

Example 2.3. (Exponential distribution.)

For denslty $f(x)=e^{-x}, x>0$, we have relative stability and square Integrabillty. Thus, because $E\left(R_{n}\right) \sim \log n$,

$$
E(T) \sim n\left(1+\log n \int f^{2}\right) \sim \frac{1}{2} n \log n
$$

Example 2.4. (Regularly varying distribution functions.)

Condition (vi) of Lemma 2.1 is satisfled for all distributions for which
(1) $\tilde{G}(x)=0$ for all x large enough; or \bar{G} is regularly varying with coefflecient $\rho<0$ (l.e., $G(a x) / G(x) \rightarrow a^{\rho}$ for all $a>0$ as $x \rightarrow \infty$).
(11) $\tilde{F}(x)=0$ for all x large enough; or \tilde{F} is regularly varylng with coefflent $\rho<0$ (1.e., $\bar{F}(a x) / \bar{F}(x) \rightarrow a^{\rho}$ for all $a>0$ as $x \rightarrow \infty$).
In (1) and (11) we can replace the functions \bar{G} and \tilde{F} by G and F if we wish provided that we add the condition that the coefficlent of regular varlation be $\rho<-1$. The latter fact follows from the observation that as $x \rightarrow \infty$, $\bar{G}(x) \sim x G(x) /(-\rho-1)$ (Dehaan, 1975, Theorem 1.2.1).

Example 2.5. (Upper bounds for $E\left(R_{n}\right)$.)
One of the by-products of Theorem 2.1 is that

$$
\lim _{n \rightarrow \infty} \frac{E(T)}{n E\left(R_{n}\right) \frac{1}{c} \int f^{2}} \leq 1
$$

Thus, good upper bounds for $E\left(R_{n}\right)$ glve us good upper bounds for $E(T) / n$. For example, we have

$$
\begin{aligned}
& E\left(R_{n}\right) \leq E\left(\max _{i} X_{i}^{+}-\min _{i} X_{i}^{-}\right) \\
& \leq E^{1 / r}\left(\max _{i} X_{i}^{+^{\prime}}\right)+E^{1 / r}\left(\left(-\min _{i} X_{i}^{-}\right)^{r}\right) \text {, all } r \geq 1 \\
& \leq 2 n^{1 / r} E^{\frac{1}{r}}\left(|X|^{r}\right)
\end{aligned}
$$

Thus, depending upon the heaviness of the tall of X, we obtaln upper bounds for $E(T)$ that Increase as $n^{1+1 / r}$. We can do better when the moment generating function of X is finlte in a nelghborhood of the origin, i.e.

$$
E\left(e^{t|X|}\right)<\infty, \text { for all } t \ln \text { some Interval }[0, \epsilon)
$$

Since $u^{r} \leq\left(\frac{r}{e t}\right) e^{t u}, u \geq 0$, we have

$$
\begin{aligned}
& E\left(R_{n}\right) \leq \frac{2 r}{e t} n^{1 / r} E^{1 / r}\left(e^{t|X|}\right) \\
& =2 \frac{\log n}{t} \exp \left(\frac{\log \left(E\left(e^{t|X|}\right)\right)}{\log n}\right), \text { for such } t, \text { and all } n \geq e
\end{aligned}
$$

where we took $r=\log n$. For the $t^{\prime} s$ in the Interval $[0, \epsilon$), we have a: $n \rightarrow \infty$,

$$
E\left(R_{n}\right) \leq(2+o(1)) \frac{\log n}{t}
$$

Thus, the best result is obtalned by setting t equal to ϵ. In particular, 1 $E\left(e^{t|X|}\right)<\infty$ for all $t>0$ (such as for the normal density), then

$$
E\left(R_{n}\right)=o(\log n)
$$

and thus

$$
E(T)=o(n \log n)
$$

Theorem 2.2 treats densitles with compact support, whlle Theorem 2.3 cov ers quite a few densitles with finlte moment. We will now sklp over some dens: tles in a gray area: some have a finlte first moment but do not satisfy (vi) c Lemma 2.1, and some have inflnite first moment $E(|X|)$, but have relativel small talls. The worst densitles are described in Theorem 2.4:

Theorem 2.4.

Let $\iint^{2}<\infty$. Then
(1) $\operatorname{um~}_{n \rightarrow \infty} E(T) / n^{2}>0$ if and only $\operatorname{If} \operatorname{umm} \sup _{x \rightarrow \infty}|x| P(|X|>x)>0$;
(ii) $\lim _{n \rightarrow \infty} \operatorname{lnf} E(T) / n^{2}>0$ if and only if $\lim _{z \rightarrow \infty} \operatorname{lnf}|x| P(|X|>x)>0$;
(iil) $E(T)=o\left(n^{2}\right)$ if and only if $\underset{x \rightarrow \infty}{\lim \sup }|x| P(|X|>x)=0$;
(Note that $T \leq n^{2}$ for all densitles, and that statement (1) implles
$E(|X|)=\infty$.)

Thus, the Cauchy density $f(x)=\frac{1}{\pi}\left(1+x^{2}\right)^{-1}$, which satisfles (II), must have $E(T) \geq c n^{2}$ for some positive constant c. If we compare Theorem 2.4 with the results of chapter 1 , we notice that heavy talls are much more of a nulsance than Infinite peaks: indeed, regardless of which f is chosen on $[0,1]$, we have $E(T)=o\left(n^{2}\right)$; but even moderately talled densitles can lead to a lower bound for $E(T)$ of the form cn^{2}. Let us also point out that there are densitles with $E(|X|)=\infty$ for all n, but $E\left(\operatorname{mln}\left(R_{n}, \delta n\right)\right)=o(n)$ for all $\delta>0$: Just take $F(x)=1-1 /((1+x) \log (x+e)), x>0$.

We conclude thls section by noting that

$$
\begin{gathered}
E\left(D_{S}\right) \sim E(T) /(2 n)+1 / 2 \\
E(C) \sim \frac{E(T)-n}{2} \sim \frac{1}{2} n^{2} \sum_{i=1}^{m}\left(p_{i} / p\right)^{2}
\end{gathered}
$$

and

$$
E\left(D_{U}\right) \sim E\left(n \sum_{i=1}^{m} p_{i}^{2} / p\right)
$$

Nearly all that was sald about $E(T)$ remalns easlly extendible to $E(C), E\left(D_{S}\right)$ and $E\left(D_{U}\right)$. For example, if $s<\infty$,

$$
E\left(D_{S}\right) \sim 1+\frac{s}{2 c} \int f^{2}
$$

$$
E\left(D_{U}\right) \sim \frac{s}{c} \int f^{2}
$$

and

$$
E(C) \sim n \frac{s}{2 c} \int f^{2}
$$

If $s=\infty$, we have $\left.E(C) \sim \frac{1}{E\left(D_{S}\right.}\right) \sim E(T) /(2 n)$ and $E\left(D_{U}\right) \sim E(T) / n$.
We finally note that the quantity $s \int f^{2}$ is scale invarlant and that for all densitles it is at least equal to 1 , in view of

$$
1=\left(\int_{\text {support of } f} f\right)^{2} \leq \int f^{2} \int_{\text {support ot } f} d x=s \int f^{2}
$$

2.2. PROOFS.

Proof of Lemma 2.1.

Fact (1) is trivial. For fact (11), we note that if $s=\infty$, we have $R_{n} \rightarrow \infty$ almost surely, and thus, $\lim _{n \rightarrow \infty} \operatorname{lnf} E\left(\min \left(R_{n}, \delta n\right)\right) \geq E\left(\lim _{n \rightarrow \infty} \operatorname{lnf} \min \left(R_{n}, \delta n\right)\right)=\infty$. Also, In all cases, $s \geq R_{n}$, and we are done. Fact (ili) is proved as (II).

For item (iv), we note that $E\left(R_{n}\right) \leq 2 n E(|X|)$, that $E\left(R_{n}\right) \uparrow$ and that $E\left(R_{2}\right)=E\left(\left|X_{1}-X_{2}\right|\right) \geq \operatorname{lnf}_{x} E(|X-x|)=\infty$ when $E(|X|)=\infty$.

To show (v), it suffices to prove that $E\left(\max \left(\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right)\right)=o(n)$. Let $\left|X_{1}\right|$ have distributed function F on $[0, \infty)$. Then for all $\epsilon>0$,

$$
\begin{aligned}
& E\left(\max \left(\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right)\right)=\int_{0}^{\infty} 1-(1-F(x))^{n} d x \\
& \leq n \epsilon+\int_{n \epsilon}^{\infty}\left(1-(1-F(x))^{n}\right) d x \leq n \epsilon+n \int_{n \epsilon}^{\infty} F(x) d x=n \epsilon+o(n),
\end{aligned}
$$

and we are done.

We will now prove (v1). Since $\min \left(R_{n}, \delta n\right) \leq R_{n}$, we need only show that $\operatorname{llm} \ln \rho E\left(\operatorname{mln}\left(R_{n}, \delta n\right)\right) / E\left(R_{n}\right) \geq 1$ for all $\delta>0$. Let us define $x^{+}=\max (x, 0)$, $x^{n \rightarrow \infty}=\min (x, 0), R^{+}=\max \left(X_{1}{ }^{+}, \ldots, X_{n}{ }^{+}\right), R^{-}=\min \left(X_{1}^{-}, \ldots, X_{n}{ }^{-}\right)$. We will show that $E\left(R_{n}-\min \left(R_{n}, \delta n\right)\right) / E\left(R_{n}\right) \rightarrow 0$ for all $\delta>0$ and all nondegenerate distribution with $s=\infty$ (for otherwise, the statement is trivially true). Clearly, It suffices to show that for all $\delta>0, E\left(R^{+}-\operatorname{mln}\left(R^{+}, \delta n\right)\right) / E\left(R_{n}\right) \rightarrow 0$. If X^{+} has finlte support, we see that thls follows from (11). Thus, we need only consider the case that X^{+}has infinite support. Now, $E\left(R_{n}\right) \geq E\left(\left(R^{+}-X\right) I_{R^{+}>0}\right)$ $\geq E\left(R^{+} I_{R^{+}>0}\right)-E(|X|)=E\left(R^{+}\right)-E(|X|)=\int_{\infty}^{\infty} 1-(1-G(t))^{n} d t-E(|X|)$ $\sim \int_{0}^{\infty} 1-(1-G(t))^{n} d t$. Also, $E\left(R^{+}-\min \left(R^{+}, \delta n\right)\right)=\int_{\delta n}^{\infty} 1-(1-G(t))^{n} d t$. We have reduced the problem to that of showing that for all $\delta^{\boldsymbol{0} n}>0$,

$$
\int_{\delta n}^{\infty} 1-(1-G(t))^{n} d t / \int_{0}^{\infty} 1-(1-G(t))^{n} d t \rightarrow 0 .
$$

We will need the following Inequallty:
$\frac{1}{2} \min (n u, 1) \leq 1-(1-u)^{n} \leq \min (n u, 1)$, all $n \geq 1, u \in[0,1]$.

Thls follows from $1-n u \leq(1-u)^{n} \leq e^{-n x} ; e^{-t} \leq \frac{1}{2}$ for $t \geq 1$; and $e^{-t} \leq 1-\frac{t}{2}$ for $t \in[0,1]$. Thus, if $a_{n}=\operatorname{lnf}\left(x: G(x) \leq \frac{1}{n}\right)$ and n is so large that $a_{n}>0$, we have

$$
\frac{1}{2} \leq \int_{0}^{\infty} 1-(1-G(t))^{n} d t /\left(a_{n}+n \int_{a_{*}}^{\infty} G(t) d t\right) \leq 1
$$

Thus, we need only show that

$$
n \int_{\delta n}^{\infty} G(t) d t /\left(a_{n}+n \int_{a_{e}}^{\infty} G(t) d t\right) \rightarrow 0, \text { all } \delta>0 .
$$

By our assumption in (vl), we have $\int_{a_{n}}^{\infty} G(t) d t / \int_{\delta \pi}^{\infty} G(t) d t \rightarrow \infty$ when $a_{n} / n \hookrightarrow 0$ (and thls in turn follows of course from the fact that $\int_{0}^{\infty} G(t) d t<\infty$ implies $t G(t) \rightarrow 0$ as $t \rightarrow \infty)$. This concludes the proof of (vt).

We will now prove (vil) and (vill) for R^{+}and $\limsup _{x \rightarrow \infty}$ (or $\lim _{x \rightarrow \infty} \operatorname{lnf}$) $x G(x)>0$. The extension or the result to R_{n} is left as an exerclse. For $\in \in(0, \delta)$ we have the following chalns of inequalities:

$$
\begin{aligned}
& \frac{1}{n} E\left(\min \left(R^{+}, \delta n\right)\right)=\frac{1}{n} \int_{0}^{\delta n} 1-(1-G(t))^{n} d t=\frac{1}{n}\left(\int_{0}^{\epsilon n}+\int_{\epsilon n}^{\delta n}\right) \\
& \leq \frac{1}{n}\left(\epsilon n+n \int_{\epsilon n}^{\delta n} G(t) d t\right) \leq \epsilon+\delta n G(\epsilon n)=\epsilon+\frac{\delta}{\epsilon} \epsilon n G(\epsilon n) ;
\end{aligned}
$$

and

$$
\frac{1}{n} E\left(\min \left(R^{+}, \delta n\right)\right) \geq \frac{1}{n} \int_{0}^{\delta n} 1-e^{-n G(t)} d t \geq\left(1-e^{-n G(\delta n)}\right)
$$

This proves that $\underset{x \rightarrow \infty}{\lim \sup } x G(x)>0$ is equivalent to $\operatorname{llm} \sup _{n \rightarrow \infty} E\left(\min \left(R^{+}, \delta n\right)\right) / n>\underset{0}{x \rightarrow \infty}$ for all $\delta>0$ or for some $\delta>0$; and that stmllar $n \rightarrow \infty$
statements are true for the limit inflmum. This concludes the proof of Lemma 2.1.

We are left with the proof of Theorem 2.1. This will be taken care of in small steps. From the observation that conditional on $M_{n}, M_{n}{ }^{*}$, the N_{i} 's are blnomlally distributed with parameters $n-2, p_{i} / p$, we deduce the following:

Lemma 2.2.

$$
\text { (1) } T \leq n^{2} \text {. }
$$

(11) $E\left(T \mid M_{n}, M_{n}{ }^{*}\right) \leq n\left(1+\frac{R_{n}}{c_{n} p^{2}} \int_{M_{n}}^{M_{n}} f^{2}\right)$.
(iii) $E\left(T \mid M_{n}, M_{n}{ }^{*}\right) \geq(n-2)^{2} \sum_{i=1}^{m} p_{i}{ }^{2}$.

Proof of Lemma 2.2.

Part (1) is obviously true. Parts (11) and (i11) follow from

$$
\begin{aligned}
& E\left(T \mid M_{n}, M_{n}^{*}\right)=\sum_{i=1}^{m}\left[\left(\frac{(n-2) p_{i}}{p}\right)^{2}+\frac{(n-2) p_{i}}{p}\left(1-\frac{p_{i}}{p}\right)\right] \\
& =n-2+\left[(n-2)^{2}-(n-2)\right] \sum_{i=1}^{m}\left(p_{i} / p\right)^{2}
\end{aligned}
$$

and the fact that

$$
\sum_{i=1}^{m} p_{i}^{2}=\sum_{i=1}^{m}\left(\int_{x_{i}}^{x_{i+1}} f /\left(R_{n} / m\right)\right)^{2}\left(R_{n} / m\right)^{2} \leq\left(R_{n} / m\right) \int_{M_{n}}^{M_{n}^{*}} f^{2}
$$

Proof of Theorem 2.1 (i)

We start from Lemma 2.2 (ili). Let $\delta>0$ be a sufficlently small number. Then

$$
\sum_{i=1}^{m} p_{i}^{2}=\sum_{i=1}^{m}\left(x_{i+1}-x_{i}\right)\left(\int_{x_{i}}^{x_{i+1}} f /\left(x_{i+1}-x_{i}\right)\right)^{2}
$$

$$
\geq \sum_{i=1}^{m} \frac{1}{m} R_{n} \int_{x_{i}}^{x_{i+1}} f^{2}\left(R_{n} / m, x\right) d x
$$

$$
\text { (where } f(a, x)=\operatorname{lif}_{z \leq x \leq y} \int_{z}^{y} f /|y-z| \text {) }
$$

$$
=\frac{1}{m} R_{n} \int_{M_{n}}^{M_{n}^{*}} f^{2}\left(R_{n} / m, x\right)
$$

Find values $A(\delta)$ and $A^{*}(\delta)$ such that $\int_{-\infty}^{A(\delta)} f^{2}=\frac{\delta}{3} f^{2} \int_{A^{*}(\delta)}^{\infty} f^{2}=\frac{\delta}{3} f^{2}$, and a value $B(\delta)$ such that

$$
\int f^{2}(a, x)>\left(1-\frac{\delta}{3}\right) \int f^{2}, \text { all } 0<a \leq B(\delta)
$$

Thus, if A is the event $\left[M_{n}<A(\delta), M_{n}^{*}>A^{*}(\delta)\right]$ and B is the event $\left[R_{n} / m \leq B(\delta)\right]$, we have on $A \cap B$, for $a=R_{n} / m$,

$$
\begin{aligned}
& \int_{M_{*}}^{M_{n}^{\prime}} f^{2}(a, x) \geq \int f^{2}(a, x)-\int_{M_{\pi}}^{\infty} f^{2}(a, x)-\int_{\infty}^{M_{n}} f^{2}(a, x) \\
& \geq\left(1-\frac{\delta}{3}\right) \int f^{2}-2 \frac{\delta}{3} \int f^{2}=(1-\delta) \int f^{2}
\end{aligned}
$$

Thus,

$$
\sum_{i=1}^{m} p_{i}^{2} \geq I_{A \cap B}(1-\delta) \frac{1}{m} R_{n} \int f^{2}
$$

We also have

$$
\sum_{i=1}^{m} p_{i}^{2} \geq I_{A \cap B^{c}} C(\delta)
$$

where

Note that as $\delta \downarrow 0$, we have $B(\delta) \rightarrow 0$ and thus $C(\delta) \rightarrow 0$. Combining these bounds gives

$$
\sum_{i=1}^{m} p_{i}^{2} \geq I_{A} \operatorname{mln}\left((1-\delta) \frac{1}{m} R_{n} \int f^{2}, C(\delta)\right)=I_{A} Z\left(R_{n}\right)
$$

where $Z\left(R_{n}\right)$ is an Increasing function of R_{n}. By Gurland's inequalitles (Gurland, 1988) we have $E\left(I_{A} Z\left(R_{n}\right)\right) \geq P(A) E\left(Z\left(R_{n}\right)\right)$. We also know that $P(A) \rightarrow 1$ for all $\delta \in(0,1)$. Thus, with a little extra manipulation we obtaln the following bound:

$$
\begin{aligned}
& E(T) / n \geq(1+o(1))\left(1+E\left(m \ln \left(\frac{1}{c_{n}} R_{n}(1-\delta) \int f^{2}, n C(\delta)\right)\right)\right) \\
& \geq(1+o(1))\left(1+(1-\delta) E\left(\operatorname{mln}\left(\frac{1}{c_{n}} R_{n} \int f^{2}, n C(\delta)\right)\right)\right)
\end{aligned}
$$

Thls concludes the proof of Theorem 2.1 (1).

Proof of Theorem 2.1 (ii).

From Lemma 2.2, we have

$$
\begin{aligned}
& E\left(T \mid M_{n}, M_{n}^{*}\right) / n \leq \min \left(n, 1+\left(R_{n} /\left(c_{n} p^{2}\right)\right) \int f^{2}\right) \\
& \leq 1+\min \left(n,\left(R_{n} /\left(c_{n} p^{2}\right)\right) \int f^{2}\right)
\end{aligned}
$$

Let us take expectations on both sides of thls inequality. For arbitrary $\epsilon>0$ we have
$E(T) / n \leq 1+E\left(\min \left(n,\left(R_{n} /\left(c_{n} p^{2}\right)\right) \int f^{2}\right.\right.$
$\leq E\left(\operatorname{mln}\left(n,\left(R_{n}(1+\epsilon) / c_{n}\right) \int f^{2}\right)\right)+1+n P\left(\frac{1}{p^{2}}>1+\epsilon\right)$
$\leq E\left(\min \left(n,\left(R_{n} / c_{n}\right) \iint^{2}\right)\right)+\frac{\epsilon}{c_{n}} \int f^{2}+n P(p<1 / \sqrt{1+\epsilon})+1$

The proof is complete if we can show that the last probabillty is o (1) for every $\epsilon>0$. Let U_{1}, U_{2} be independent unlform [0,1$]$ random vartables, and note that p is distributed as $U_{1}^{1 / n} U_{2}^{1 /(n-1)}$. Thus,

$$
\begin{aligned}
& P(p<1 / \sqrt{1+\epsilon}) \leq P\left(U_{1}^{1 / n}<(1+\epsilon)^{-1 / 4}\right)+P\left(U_{2}^{1 /(n-1)}<(1+\epsilon)^{-1 / 4}\right) \\
& \leq 2(1+\epsilon)^{-(n-1) / 4},
\end{aligned}
$$

and we are done.

2.3. A SUPERLINEAR NUMBER OF BUCKETS.

For many Infinte-talled distributions, we know precisely how $E(T)$ varles asymptotically. For example, for densitles covered by Theorem 2.3,

$$
E(T) \sim n\left(1+\frac{1}{c} E\left(R_{n}\right) \int f^{2}\right)
$$

when $m \sim c n$. We also have in those cases, by the proof of Theorem 2.1 (II),

$$
E(T) \leq n\left(1+2 \frac{1}{(1+\epsilon)^{(n-1) / 4}}+\frac{\epsilon}{c_{n}} \int f^{2}+\frac{E\left(R_{n}\right)}{c_{n}} \int f^{2}\right),
$$

for arbitrary $\epsilon>0$. Here $c_{n}=m / n$. When we sort, there is an additional cost of the form $A m$ for some constant $A>0$ due to the time needed to Inttillize and concatenate the buckets. If $E\left(R_{n}\right) \rightarrow \infty$, it is easy to see that in the upper bound,

$$
E(T) \leq n \frac{E\left(R_{n}\right)}{c_{n}} \int f^{2}(1+o(1))
$$

provided that $E\left(R_{n}\right) / c_{n} \rightarrow \infty$. If we balance the two contributions to the cost of searching with respect to m, then we will find that it is best to let m increase at a raster-than-linear pace. For example, consider the minimization of the cost function

$$
A m+\frac{n E\left(R_{n}\right)}{\left(\frac{m}{n}\right)} \int f^{2}
$$

The minimum is attalned at

$$
m=n \sqrt{\frac{E\left(R_{n}\right)}{A} \int f^{2}},
$$

and the minimal value of the cost function is

$$
2 n \sqrt{A E\left(R_{n}\right) \int f^{2}} .
$$

If we had plcked $m \sim c n$, then the maln contribution to the sorting tlme would have come from the selection sort, and it would have increased as a constant tlmes $n E\left(R_{n}\right)$. The balancing act reduces this to about $n \sqrt{E\left(R_{n}\right)}$, albelt at some cost: the space requirements increase at a superllnear rate too. Futhermore, for the balanclng to be useful, one has to have a priorl information about $E\left(R_{n}\right)$.

Let us consider a few examples. For the normal distribution, we would optimally need

$$
m \sim n \sqrt{\frac{1}{A} \sqrt{\frac{2}{\pi} \log n}}
$$

and obtain

$$
A m \sim E(T) \sim n \sqrt{A \sqrt{\frac{2}{\pi} \log n}}
$$

For the exponential distribution, we have

$$
\begin{gathered}
m \sim n \sqrt{\frac{1}{2 A} \log n}, \\
A m \sim E(T) \sim n \sqrt{\frac{A}{2} \log n} .
\end{gathered}
$$

Similarly, for all distributions with finlte $\int|x|^{r} f(x) d x, \int f^{2}(x) d x$, we can choose m such that

$$
A m \sim E(T) \leq C n^{1+\frac{1}{2 r}}
$$

for some constant C.
The Idea of a superlinear number of buckets to reduce the expected time can also be used advantageously when $\int f^{2}=\infty$ and f has compact support. When preprocessing is allowed, as in the case of searching, and space requirements are no obstacle, we could choose m so large that $E\left(D_{S}\right)$ and $E\left(D_{U}\right)$ are both O (1). To Illustrate thls polnt, we use the bound for $E(T)$ used in the proof of Theorem 2.1 (II), and the fact that

$$
D_{S}=\frac{T}{2 n}+\frac{1}{2}
$$

Thus, when $\int f^{2}<\infty, E\left(R_{n}\right) \rightarrow \infty$, we can choose

$$
m \sim n E\left(R_{n}\right) \int f^{2}
$$

and conclude that

$$
\begin{aligned}
& \lim \sup _{n \rightarrow \infty} \frac{E(T)}{n} \leq 2 \\
& \limsup _{n \rightarrow \infty} E\left(D_{S}\right) \leq \frac{3}{2}
\end{aligned}
$$

We stress agaln that the Idea of a superlinear number of buckets seems more useful in problems in which a lot of preprocessing is allowed, such as in ordinary searching and in data base query problems.

Chapter 3

MULTIDIMENSIONAL BUCKETING.

3.1. MAIN THEOREM.

Several algorithms in computer sclence operate on points in R^{d} by first storing the polnts in equal-slzed cells, and then travellng from cell to cell, to obtain some solution. Often these algorithms have good expected time behavior when the polnts are sufficiently smoothly distributed over R^{d}. This will be lllustrated here by exhibiting necessary and suffictent conditions on the distribution of the polnts for llnear expected tlme behavior.

Our model is as follows: X_{1}, \ldots, X_{n} are independent random vectors from R^{d} with common density f. We let C_{n} be the smallest closed rectangle cover$\operatorname{lng} X_{1}, \ldots, X_{n}$. Each slde of C_{n} is divided Into $n^{\prime}=\left\lfloor n^{1 / d}\right\rfloor$ equal-length intervals of the type $[a, b$); the rightmost intervals are of the type $[a, b]$. Let A be the collection of all rectangles (cells) generated by taking d-fold products of intervals. Clearly, A has m cells where

$$
n \geq m \geq\left(n^{1 / d}-1\right)^{d} \geq n\left(1-d n^{-1 / d}\right) .
$$

The cells will be called A_{1}, \ldots, A_{m}, and N_{i} will denote the number of $X_{j}{ }^{\prime} s$ in cell A_{i}. Thus, to determine all the cell memberships takes time proportional to n. Within each cell, the data are stored in a linked list for the time being.

Figure 3.1.

The cell structure has been used with some success in computational geometry (see for example, Shamos (1978), Welde (1978), Bentley, Welde and Yao (1980), and Asano, Edahiro, Imal, Irl and Murota (1985)). Often It suffices to travel to each cell once and to do some work in the 1 -th cell that takes tlme $g\left(N_{i}\right)$ for some function g (or at least, is bounded from above by $a g\left(N_{i}\right)$ and from below by $b g\left(N_{i}\right)$ for some approprlate constants a, b : thls slightly more general formulation will not be pursued here for the sake of simplicity).

For example, one heuristic for the travelling salesman problem would be as follows: sort the points within each cell according to their y-coordinate, Joln these points, then Joln all the cells that have the same x-coordinate, and finally join all the long strips at the ends to obtaln a travellng salesman path (see e.g. Christofldes (1976) or Papadimitriou and Stelgiltz (1978)). It is clear that the work here is $O(n)+\sum_{i=1}^{m} g\left(N_{i}\right)$ for $g(u)=u^{2}$ or $g(u)=u \log (u+1)$ dependlng
upon the type of sorting algorithm that is used. The same serpentine path construction is of use in minlmum-welght perfect planar matching heuristics (see e.g. Irl, Murota, and Matsul 1981, 1983).

If we need to find the two closest polnts among X_{1}, \ldots, X_{n} in $[0,1]^{d}$, it clearly suffices to consider all palrwise distances $d\left(X_{i}, X_{j}\right)$ for X_{i} and X_{j} at most a_{d} (a constant depending upon d only) cells apart, provided that the grld is constructed by cutting each slde of $[0,1]^{d}$ Into $n^{\prime}=\left\lfloor n^{1 / d}\right\rfloor$ equal pleces. Using the Inequality $\left(u_{1}+u_{2}+\ldots+u_{k}\right)^{2} \leq 2^{k-1}\left(u_{1}{ }^{2}+\ldots+u_{k}{ }^{2}\right)$, it is not hard to see that the total work here is bounded from above by $O(n)$ plus a constant times $\sum_{i=1}^{m} N_{i}{ }^{2}$.

8 by 8 grid 64 points

Figure 3.2.

Range search problem: report all points in the intersection of A and B. Grid to be used in solution is also shown.

For multidmenstonal sorting and searching, we refer to section 3.2. In secthon 3.2, a few brlef remarks about the polnt-location and polnt enclosure problems will be included. The polnt enclosure problem can be considered as a spectal case of range searching, i.e. the problem of retrieving all points satisfying certaln
characteristics. If for example we want to retrleve all polnts for whlch the coorc nates are between certaln threshold values, then we can speak of an orthogon range query. In the survey articles of Bentley and Friedman (1979) and Asan Edahiro, Imal, Irl and Murota (1985), some comparisons between cell structur, and other structures for the range search problem are made. The range searc problem has one additional parameter, namely the number of points retrleve, Query time is usually measured in terms of the number of retrieved points plus function of n. If most querles are large, then it makes sense to consider lark cells. In other words, the cell slze should not only depend upon n and f, bi also on the expected slze of the query rectangle (see e.g. Bentley, Stanat and WI llams, 1977). In addition, new distributions must be Introduced for the locatlic and slze of the query rectangle, thus complicating matters even further. Fc these reasons, the range search problem will not be dealt with any further in th collection of notes. The traveling salesman problem is briefly dealt with in ser tion 3.3, and in section 3.4, we will look at some closest polnt problems in compi tational geometry. The latter problems differ in that the time taken by the alge rithm is no longer a simple sum of an unlvariate function of cell cardinalities, bi a sum of a multivarlate function of cell cardinalltes (usually of the cardinality c a central cell and the cardinalltles of some neighboring cells). In the enth chapter, we will deal with a work function g. Inltially, the time of an algorlthi is glven by

Theorem 3.1.

Let f be an arbitrary density on R^{d}. Then are equivalent:
(1) $\lim \ln ^{\ln } E(T) / n<\infty$;
(ii) $\operatorname{llm} \sup E(T) / n<\infty$;
$n \rightarrow \infty$
(III) $\int g(f(x)) d x<\infty$.

Proof of Theorem 3.1.

The proof is in three parts:
A. f compact support, $\int g(f)=\infty=>\lim \operatorname{lnf}_{n \rightarrow \infty} E(T) / n=\infty$.
B. f compact support, $\int g(f)<\infty=>\lim _{n \rightarrow \infty} \operatorname{Inf} E(T) / n<\infty$.
C. f does not have compact support, $\lim _{n \rightarrow \infty} \operatorname{lnf} E(T) / n=\infty$.

In the proof, we will use the symbols $p_{i}=\int_{A_{i}} f, C=\bigcup_{i=1}^{m} A_{i}, p=\int_{C} f$. The following fact will be needed a few times: given C,

$$
Y_{i}<N_{i}<W_{i}+2 d, 1 \leq i \leq m, n>2 d
$$

where Y_{i} is a binomlal ($n-2 d, p_{i}$) random variable, W_{i} is a binomial ($n, p_{i} / p$) random variable, and " $<$ " denotes "is stochastically smaller than", i.e.

$$
P\left(Y_{i} \geq x\right) \leq P\left(N_{i} \geq x\right) \leq P\left(W_{i}+2 d \geq x\right), \text { all } x
$$

Proof of A.

Let C_{0} be the smallest closed rectangle covering the support of f, and let $f_{n}(x)$ be the functlon deflined by the relations: $f_{n}(x)=0, x \notin C$ $f_{n}(x)=(n-2 d) p_{i}, x \in A_{i}$. We have

$$
\begin{aligned}
& E(T)=\sum_{i=1}^{m} E\left(g\left(N_{i}\right)\right)=\sum_{i=1}^{m} E\left(E\left(g\left(N_{i}\right) \mid C\right)\right) \\
& \geq \sum_{i=1}^{m} E\left(E\left(g\left(Y_{i}\right) \mid C\right)\right) \\
& \geq \sum_{i=1}^{m} E\left(\frac{1}{2} g\left((n-2 d) p_{i}-\sqrt{(n-2 d) p_{i}}\right)\right) \\
& \quad \quad(\text { by Lemma } 5.4, \text { If we agree to let } g(u)=0 \text { for } u \leq 0) \\
& =E\left(\int \frac{m}{2 \lambda(C)} g\left(f_{n}-\sqrt{f_{n}}\right)\right) .(\lambda \text { denotes Lebesgue measure })
\end{aligned}
$$

Figure 3.3.

Thus, by Fatou's lemma,

$$
\lim _{n \rightarrow \infty} \operatorname{lnf} E(T) / n \geq E\left(\int \lim \ln f_{n \rightarrow \infty}\left(\frac{1}{2 \lambda(C)} g\left(f_{n}-\sqrt{f_{n}}\right)\right)\right)
$$

where the Inner limit Inflmum is with respect to a.e. convergence. Now, for almost all $\omega \in \Omega$ (where ($\Omega, \mathbf{F}, \mathrm{P}$) is our probabllity space with probabllty element ω), we have $C \rightarrow C_{0}$ and thus $\lambda(C) \rightarrow \lambda\left(C_{0}\right)$. But then, by Lemma 5.11, for almost all $(x, \omega) \in R^{d} \times \Omega$, we have $f_{n}(x) \rightarrow f(x)$. Thus, the Fatou lower bound glven above is

$$
\begin{gathered}
\qquad \int\left(2 \lambda\left(C_{0}\right)\right)^{-1} g(f-\sqrt{f}) \\
\geq \int_{f \geq 4}\left(2 \lambda\left(C_{0}\right)\right)^{-1} g(f / 2) \geq \int_{f \geq 4}\left(2 \lambda\left(C_{0}\right)\right)^{-1} g(f) / 2^{k}=\infty \\
\text { when } \int g(f)=\infty\left(\text { for } \int_{f \leq 4} g(f) \leq g(4) \lambda\left(C_{0}\right)<\infty\right) .
\end{gathered}
$$

Proof of B

$$
\begin{aligned}
& E(T) \leq \sum_{i=1}^{m} E\left(E\left(g\left(W_{i}+2 d \mid C\right)\right) \leq \sum_{i=1}^{m} E\left(E\left(g\left(2 W_{i}\right) \mid C\right)+g(4 d)\right)\right. \\
& \leq m g(4 d)+2^{k} \sum_{i=1}^{m} E\left(E\left(g\left(W_{i}\right) \mid C\right)\right) \\
& \leq m g(4 d)+2^{k} \sum_{i=1}^{m}\left(a E\left(g\left(n p_{i} / p\right)\right)+a g(1)\right)
\end{aligned}
$$

where a is the constant of Lemma 5.4 (and depends upon k only). Thus, to show that $E(T)=O(n)$, we need only show that $\sum_{i=1}^{m} E\left(g\left(n p_{i} / p\right)\right)=O(n)$. Now,

$$
E\left(g\left(n p_{i} / p\right)\right) \leq E\left(g\left(2 n p_{i}\right)\right)+g(n) P(p<1 / 2)
$$

The last term is uniformly bounded $\ln n$ as we will now prove. First, we have $g(n) \leq n^{k} g(1)$. We will show that $P(p<1 / 2) \leq 2 d \exp (-n /(4 d))$ for all n. Because the function $u^{k} e^{-u}, u>0$, is uniformly bounded, we see that $\sup _{n} g(n) P(p<1 / 2)<\infty$. Indeed,

$$
[p<1 / 2] \subseteq \bigcup_{j=1}^{d}\left[p_{j}^{\prime}<1-1 /(2 d)\right]
$$

where p_{j}^{\prime} is the integral of f over all $x^{\prime} s$ whose J -th component lies between the minimal and maximal J -th components of all the $X_{i}{ }^{\prime} s$. But by the probabillty integral transform, when U_{1}, \ldots, U_{n} are independent uniform $[0,1]$ random varlables,

$$
\begin{aligned}
& P\left(p_{j}^{\prime}<1-1 /(2 d)\right) \leq 2 P\left(\min \left(U_{1}, \ldots, U_{n}>1 /(4 d)\right)=2(1-1 /(4 d))^{n}\right. \\
& \leq 2 \exp (-n /(4 d))
\end{aligned}
$$

Finally, by Jensen's inequallty,

$$
\begin{aligned}
& \sum_{i=1}^{m} E\left(g\left(2 n p_{i}\right)\right)=\sum_{i=1}^{m} E\left(g\left(2 n \lambda\left(A_{i}\right) \int_{A_{i}} f / \lambda\left(A_{i}\right)\right)\right) \\
& \leq \sum_{i=1}^{m} E\left(\int_{A_{i}} g\left(2 n \lambda\left(A_{i}\right) f\right) / \lambda\left(A_{i}\right)\right) \\
& \leq E\left(\frac{m}{\lambda(C)} \int_{C} g(f) \max \left(2 n \lambda(C) / m,(2 n \lambda(C) / m)^{k}\right)\right) \\
& \leq m \int g(f) \max \left(2 \frac{n}{m},\left(2 \frac{n}{m}\right)^{k} \lambda\left(C_{0}\right)^{k-1}\right)
\end{aligned}
$$

and B follows since $m \sim n$.

Proof of C.

By a bound derived in the proof of A and by the second Inequality of Lemma 5.4, we need only show that

$$
\frac{1}{m} \sum_{i=1}^{m} E\left(g\left(\left\lfloor(n-2 d) p_{i}\right\rfloor\right)=\infty\right.
$$

when f does not have compact support. By our assumptions on $g,(n-2 d)$ can be replaced by n. We may assume without loss of generallity that the first component of X_{1} has unbounded support. Let $\left(a_{1}, b_{1}\right), \ldots,\left(a_{d}, b_{d}\right)$ be ϵ and 1- ϵ quantlles of all the marginal distributions where $\epsilon \in(0,1 / 2)$ is chosen such that $B=X_{j=1}\left(a_{j}, b_{j}\right)$ satisfies $\int_{B} f=\frac{1}{2}$. Let Q be the collection of $A_{j}^{\prime \prime} s$ intersectlng with B, and let q be the cardinallty of Q. Set $p_{j}^{\prime}=\int_{A, \cap B} f$, and let Z be the indicator of the event $B \subseteq C$. Cleariy,

$$
\begin{aligned}
& \frac{1}{m} \sum_{i=1}^{m} E\left(g\left\lfloor n p_{i}\right\rfloor\right) \geq \frac{1}{m} E\left(\sum_{A, \in Q} g\left\lfloor n p_{i}{ }^{\prime}\right\rfloor\right) \\
& \geq E\left(\frac{q}{m} \frac{Z}{q} \sum_{A, \in Q} g\left\lfloor n p_{i}^{\prime}\right\rfloor\right) \geq E\left(\frac{q}{m} Z g\left(\frac{1}{q} \sum_{A_{j} \in Q}\left\lfloor n p_{i}^{\prime}\right\rfloor\right)\right) \\
& \geq E\left(\frac{q}{m} Z g\left(\frac{n}{2 q}-1\right)\right) \geq E\left(Z\left(\frac{1}{2}-\frac{q}{n}\right) g\left(\frac{n}{2 q}-1\right) /\left(\frac{n}{2 q}-1\right)\right) .
\end{aligned}
$$

where we used Jensen's inequallty. Since $g(u) / u \uparrow \infty$, we need only show that for any constant M, however large,

$$
\underset{n \rightarrow \infty}{\lim \operatorname{lnf}} P(Z=1, n / 2 q-1 \geq M)>0
$$

Now, let U, V be the minimum and the maximum of the first components of X_{1}, \ldots, X_{n}. When $Z=1$, we have

$$
q \leq m^{\frac{d-1}{d}}\left(\frac{b_{1}-a_{1}}{\frac{V-U}{m^{1 / d}}}+2\right)
$$

and thus

$$
\begin{aligned}
& P(Z=1, n \geq 2 q(M+1)) \\
& \geq P\left(Z=1,\left(b_{1}-a_{1}\right) m /(V-U)+2 m^{\frac{d-1}{d}} \leq n /(2(M+1))\right) \\
& \geq 1-P(Z=0)-P\left(\left(b_{1}-a_{1}\right) m /(V-U) \geq \frac{n}{4(M+1)}\right) \\
& -P\left(2 m^{\frac{d-1}{d}} \geq \frac{n}{4(M+1)}\right) .
\end{aligned}
$$

The second term of the last expression is $o(1)$ for obvlous reasons. The third term is o (1) since $m \sim n$ and $V-U \rightarrow \infty$ in probabllity as $n \rightarrow \infty$. The last term is $o(1)$ since $m \sim n$. This concludes the proof of C.

3.2. SORTING AND SEARCHING.

When $d=1$, and elements within each bucket A_{i} are sorted by an n^{2} sortlng algorithm (such as selection sort, or insertion sort), Theorem 3.1 applies with $g(u)=u^{2}$. The data can be sorted in expected tlme $O(n)$ if and only if f has compact support and

$$
\int f^{2}<\infty
$$

If however we employ an expected time $n \log n$ sorting algorithm based upon comparisons only (such as heapsort, quicksort or tree insertion sort), the data can be sorted in expected time $O(n)$ if and only if f has compact support and

$$
\int f \log ^{+} f<\infty
$$

The latter condition is only violated for all but the most peaked densities. These results generallze those of Devroye and Klincsek (1981). We should mention here that if we first transform arbltrary data by a mapping $h: R^{1} \rightarrow[0,1]$ that is contlnuous and monotone, construct buckets on $[0,1]$, and then carry out a subsequent sort withln each bucket as descrlbed above, then often $E(T)=O(n)$ in other words, with ittle extra effort, we gain a lot in expected time. The ideal
transformation h uniformizes, i.e. we should try to use $F(x)$ where F is the distrlbution function of the data. In general, we can take h in such a way that it is equal to $F\left(\frac{x-\mu}{\sigma}\right)$ where F is a fixed distribution function, μ is a sample estimate of location (mean, median, etc.) and σ is a sample estimate of scale (standard deviation, etc.). This should in many cases give satisfactory results. It is probably advantageous to take robust estimates of location and scale, i.e. estlmates that are based upon the sample quantlles. Meljer and Akl (1980) and Welde (1878) give varlations of a slmllar idea. For example, In the former reference, F is plecewise linear with cut-points at the extrema and a few sample quantlles. One should of course investigate if the theoretical results remaln valld for transformations F that are data-dependent.

Figure 3.4.

The conditions on f mentioned above are satisfled for all bounded densities f. It is nice exercise to verify that if a transformation

$$
h(x)=x /(1+|x|)
$$

Is used and $f(x) \leq a \exp \left(-b|x|^{c}\right)$ for some $a, b, c>0$, then the density of the transformed density remalns bounded. Thus, for the large class of densitles with exponentlally dominated tall, we can sort the transformed data in average time $O(n)$ by any of the bucket-based methods dlscussed above.

For the expected number of comparisons in a successful or unsuccessful search of linked list based buckets, we obtain without effort from Theorem 3.1 the value $O(1)$ (even when $d \neq 1$) when f has compact support and $\int f^{2}<\infty$. These conditions are necessary too. If within each bucket the $X_{i}{ }^{\prime} s$ are ordered according to thelr first component, and are stored in a blnary search tree or a balanced blnary tree such as a $2-3$ tree, condition $\int f^{2}<\infty$ can be replaced by $\int f \log ^{+} f<\infty$. Just apply the Theorem with $g(u)=u \log (u+1)$, and note that $\int f \log (f+1)<\infty$ is equivalent to $\int f \log ^{+} f<\infty$ because $\log ^{+} u \leq \log (1+u) \leq \log ^{+} u+\log 2$. For a more detalled analysis, the quantity $T=\sum_{i=1}^{m} N_{i}^{2}$ of chapter 1 must be replaced now by $T=\sum_{i=1}^{m} N_{i} \log \left(N_{i}+1\right)$. Most of chapters 1 and 2 can be repeated for this new quantity. We leave it as
an exercise to show that

$$
\begin{aligned}
& E(T) \leq a+b n+n E\left(\log \left(1+\operatorname{mln}\left(n, R_{n}\right)\right)\right) \\
& \leq a+b n+n \log \left(1+E\left(R_{n}\right)\right)
\end{aligned}
$$

for some constants $a, b>0$ when $\int f \log (f+1)<\infty$. Hence, if f is any density with a finlte moment generating function In a small nelghborhood of the orlgin, we obtain $E(T)=O(n \log \log n)$. Examples of such densities are the exponentlal and normal densities. This extends an interesting observation reported in Akl and Meljer (1982).

Figure 3.6.
The planar graph point location problem: return the set in the partition to which the query point belongs.

Remark. [Polnt location problems.]

In the planar polnt-location problem, a stralght-line planar graph with η vertices is given, and one is asked to find the set in the partition of the plane to which a query point x belongs. In many applicatlons, a large number of querles are raised for one fixed planar partition. We won't be concerned here with worstcase complexittes. It suffices to mention that each query can be answered in worst-case time $O(\log (n))$ provided that up to $O(n \log (n))$ time is spent in settling up an approprlate data structure (Lipton and TarJan, 1977 ; Klrkpatrick, 1983). See also Lee and Preparata (1977) for an algorlthm with $O\left((\log (n))^{2}\right)$ worst-case search tlme, and Shamos and Bentley (1977) for the polnt-location problem when the space is partitloned Into nonoverlapplng rectangles. It was pointed out in Asano, Edahiro, Imal, Irl and Murota (1985) that these algorithms can be very slow in practice. In particular, they compare infavorably with a bucket-based algorithm of Edahlro, Kokubo and Asano (1883).

Figure 3.7.
The rectangular point location problem.

Assume for example the following probabllistic model : the n polnts X_{1}, \ldots, X_{n} and the query point are ild random vectors uniformly distributed in the unit square, and the graph is constructed by connecting points in an as yet unspecifled manner. In first instance, we will be Interested in the expected worstcase time, where "worst-case" is with respect to all possible planar graphs given the data. Let us construct an m-grid where for each bucket the following information is stored : the list of vertices sorted by y-coordinates, the collections of
edges Intersecting the north, south east and west boundarles (sorted), and the region of the partition containing the north-west corner vertex of the bucket. This assumes that all regions are numbered beforehand, and that we are to return a region number. Partition each bucket In a number of horizontal slabs, where the slab boundarles are deflned by the locations of the vertices and the points where the edges cut the east and west boundarles. For each slab, set up a llnked llst of conditions and region numbers, corresponding to the reglons visited when the slab is traversed from left to right. (Note that no two edges cross in our graph.) It is important to recall that the number of edges in a planar graph is $O(n)$, and that the number of regions in the partition is thus also $O(n)$. One can verify that the data structure described above can be set up in worst case tlme $O\left(n^{3 / 2}\right)$ when $m \sim c n$ for some constant c. The expected set-up time is $O(n)$ in many cases. This statement uses techniques similar to those needed to analyze the expected search time. We are of course malnly interested in the expected search time. It should come as no surprise that the expected search time decreases with increasing values of m. If $m \operatorname{lncreases}$ linearly in n, the expected search time is O (1) for many distributions. Those are the cases of Interest to us. If m increases faster than n, the expected search time, whlle stlll $O(1)$, has a smaller constant. Unfortunately, the space requirements become Inacceptable because $\Omega(\max (m, n))$ space is needed for the given data structure. On the posltive side, note that the space requirements are $O(n)$ when m increases at most as $O(n)$.

Figure 3.8.

The slab method described above is due to Dobkin and Lipton (1978), and differs sllghtly from the method described in Edahlro, Kokubo and Asano (1983). The time taken to find the region number for a query polnt X in a given bucket Is bounded by the number of slabs. To see this, note that we need to find the slab first, and then travel through the slab from left to rlght. Thus, the expected
time is bounded by $\sum_{i=1}^{m} p_{i} S_{i}$, where S_{i} denotes the number of slabs in the i-th bucket, p_{i} is the probabillty that X belongs to the i th bucket, and the expected time is with respect to the distribution of X, but is conditional on the data. But $E\left(S_{i}\right) \leq n p_{i}+E\left(C_{i}\right)$, where C_{i} is the number of edges crossing the boundary of the i-th bucket. Without further assumptions about the distribution of the data points and the edges, any further analysis seems difficult, because $E\left(C_{i}\right)$ is not necessarlly a quantly with propertles determined by the behavior of f in or near the i-th bucket. Assume next that X is unlformly distributed. Then, the expected tlme is bounded by

$$
\begin{aligned}
& \sum_{i=1}^{m} \frac{1}{m}\left(n p_{i}+E\left(C_{i}\right)\right) \\
& =\frac{n}{m}+\frac{E(C)}{m}
\end{aligned}
$$

where $E(C)$ is the expected value of the overall number of edge-bucket boundary crossings. $E(C)$ can grow much faster than m : just consider a unlform density on $[0,1]^{2}$. Sort the points from left to right, and connect consecutive polnts by edges. Thls ylelds about n edges of expected length close to $1 / 3$ each. $E(C)$ should be close to a constant tlmes $n \sqrt{m}$. Also, for any planar graph, $C \leq i n \sqrt{m}$ where γ is a unlversal constant. Thus, it is not hard to check that the conditional expected search time is in the worst-case bounded by

$$
\frac{n}{m}+\gamma \frac{n}{\sqrt{m}}
$$

This is O (1) when m increases as $\Omega\left(n^{2}\right)$. Often, we cannot afford this because of space or set-up time limltations. Nevertheless, it is true that even if m increases linearly with n, then the expected search time is $O(1)$ for certaln probabllistle models for putting in the edges. Help can be obtalned if we observe that an edge of length L cuts at most $2(2+L \sqrt{m})$ buckets, and thus leads to at most twice that number of edge-boundary crossings. Thus, the expected time is bounded by
where e is the total number of edges and L_{j} is the length of the j-th edge. Since $e=O(n)$, and $m \sim c n$ (by assumption), thls glves O (1) provided that

$$
\sum_{j=1}^{e} E\left(L_{j}\right)=O(\sqrt{m})
$$

In other words, we have obtained a condltion which depends upon the expected lengths of the edges only. For example, the condition is satisfled if the data polnts have an arbitrary density f on $[0,1]^{2}$, and each polnt is connected to its nearest neighbor : this is because the expected lengths of the edges grow roughly as $1 / \sqrt{n}$. The condition is also satisfled if the polnts are all connected to points that are close to it in the ordinary sense, such as for example in a road map.

Figure 3.9.
The point enclosure problem:report all rectangles to which query point belongs.

$$
\frac{n}{m}+\frac{1}{m} \sum_{j=1}^{e} 4\left(2+E\left(L_{j}\right) \sqrt{m}\right)
$$

Remark. [Polnt enclosure problems.]
In point-enclosure problems, one is given n rectangles in R^{d}. For one query point X, one is then asked to report all the rectangles to whlch X belongs. Since a rectangle can be considered as a point in $R^{2 d}$, it is clear that this problem is equivalent to an orthogonal range search query in $R^{2 d}$. Thus, orthogonal range search algorithms can be used to solve this problem. There have been several direct attempts at solving the problem too, based mainly on the segment or interval tree (Bentley (1977), Bentley and Wood (1980), Valshnavl and Wood (1980), Vaishnavl (1882)). For example, on the real llne, the algorthm of Bentley and Wood (1980) takes preprocessing tlme $O(n \log (n))$, space $O(n \log (n))$, and worst-case query time $O(\log (n)+k)$ where k is the number of segments (1.e., one-dimenslonal rectangles) reported. We will briefly look into the propertles of the bucket structure for the one-dlmensional polnt-enclosure problem.

First, we need a good probabllistlc model. To this end, assume that (L, R), the endpolnts of a segment form a random vector with a density f on the north-west triangle or $[0,1]^{2}$ (this is because $L \leq R$ in all cases). The n intervals are ind, and the query point has a density g on $[0,1]$. The segment $[0,1]$ is partitioned Into m buckets, where typlcally $m \sim c n$ for some constant c (which we assume from here onwards). For each bucket, keep two llnked lists : one llnked list of segments completely covering the bucket, and one of intervals only partlally covering the bucket. Note that the entire structure can be set up in time proportional to n plus n times the total length of the segments (because a segment of length l can be found in at least 1 and about $n l$ Inked lists). The space requirements are formally slmilar. Under the probabillstlc model consldered here, it is easy to see that the expected space and expected preprocessing time are both proportional to n times the expected value of the total length. SInce the expected value of the total length is n times the expected value of the length of the first segment, and slace this is a constant, the expected space and preprocessing requirements increase quadratically in n. The expected search time is small. Indeed, we first report all segments of the first llnked list in the bucket of X. Then, we traverse the second llnked list, and report those segments that contaln X. Thus, the search time is equal to $k+1$ plus the cardinality of the second linked list, i.e. the number of endpoints in the bucket. With the standard notathon for buckets and bucket probabilltes, we observe that the latter contribution to the expected search time is

$$
\sum_{i=1}^{m} P\left(X \in A_{i}\right) n\left(P\left(L \in A_{i}\right)+P\left(R \in A_{i}\right)\right) .
$$

In particular, if X is uniformly distributed, then this expression is stmply $2 n / m$ This can be made as small as desired by the approprlate cholce of m. If, however, X is with equal probability distributed as L and R respectively, which seems to be a more reallstic model, then the expression is

$$
\sum_{i=1}^{m} 2 n p_{i}^{2} \leq \frac{2 n}{m} \int h^{2}
$$

where h is the density of X (1.e. it is the average of the densities of L and R), and $p_{i}=\int_{A_{i}} h$. Here we used Lemma 1.1.

There are other probabillstlc models with totally different results. For example, in the car parking model, we assume that the midpolnts of the segments have density f on $[0,1]$, and that the lengths of the segments are random and Independent of the location of the segment : the distribution of the lengths however is allowed to vary with n to allow for the fact that as more segments are avallable, the segments are more likely to be smaller. For example, if the lengths are all the same and equal to r_{n} where r_{n} tends to 0 at the rate $1 / n$, the overlap among intervals is quite small. In fact, the preprocessing and set-up times are both $O(n)$ In the worst case. If X has density f as well, then the expected search time is $O(1)$ when $\int f^{2}<\infty$.

3.3. THE TRAVELING SALESMAN PROBLEM.

The travelling salesman problem is perhaps the most celebrated of all discrete optimization problems. A travellng salesman tour or X_{1}, \ldots, X_{n} is a permutation $\sigma_{1}, \ldots, \sigma_{n}$ of $1, \ldots, n$: this permutation formally represents the path formed by the edges $\left(X_{\sigma_{1}}, X_{\sigma_{2}}\right),\left(X_{\sigma_{2}}, X_{\sigma_{8}}\right), \ldots,\left(X_{\sigma_{n}}, X_{\sigma_{1}}\right)$. The cost of a travellng salesman tour is the sum of the lengths of the edges. The traveling salesman problem is to find a minimum cost tour. When the lengths of the edges are the Euclldean distances between the endpolnts, the problem is also called the Euclidean travellng salesman problem, or ETSP.

Figure 3.10.
The Euclidean traveling salesman problem: find the shortest path through all cities.

The ETSP is an NP-hard problem (Papadimitriou (1977), Papadimitriou and Stelglitz (1982)), and there has been considerable interest in developing fast heuristlc algorithms (see Papadimltriou and Stelglitz (1982) and Parker and Rardin (1983) for surveys). It should be stressed that these algorithms are nonexact. Nevertheless, they can lead to excellent tours: for example, a heurlstic based upon the minlmal spanning tree for X_{1}, \ldots, X_{n} developed by Christofides (1876) ylelds a tour which is at worst $3 / 2$ tlmes the length of the optimal tour. Other heuristics can be found in Karp (1977) (with additional analysis in Steele (1981)) and Supowit, Relngold and Plalsted (1983). We are not concerned here with the costs of these heuristle tours as compared, for example, to the cost of the optimal tours, but rather with the time needed to construct the tours. For ild polnts in $[0,1]^{2}$, the expected value of the cost of the optimal tour is asymptotic to $\beta \sqrt{n} \int \sqrt{f}$ where $\beta>0$ is a unlversal constant (Steele, 1981). For the uniform distribution, thls result goes back to Beardwood, Halton and Hammersley (1959), where it is shown that $0.81 \leq \beta \leq 0.92$.

For the ETSP in $[0,1]^{2}$, we can capture many bucket-based heurlstics in the following general form. Partition $[0,1]^{2}$ Into m equal cubes of slde $1 / \sqrt{m}$ each. Typlcally, m increases in proportion to n for simple heurlstics, and $m=O(n)$ when the expected cost of the heuristic tour is to be optimal in some sense (see Karp (1977)and Supowit, Relngold and Plalsted (1983)). The bucket data structure is set up (in time $O(n+m)$). The cells are traversed in serpentine fashion,
starting with the leftmost column, the second column, etcetera, without ever lifting the pen or skipping cells. The polnts within the buckets are all connected by a tour which is of one of three possible types:
A. Random tour. The polnts connected as they are stored in the linked lists.
B. Sorted tour. All polnts are sorted according to y coordinates, and then linked up.
C. Optimal tour. The optimal Euclidean traveling salesman tour is found.

Figure 3.11.
Serpentine cell traversal.

Figure 3.12.
A sorted tour.

The time costs of A, B, C for a bucket with N polnts are bounded respectivel by

$C N$,

$C N \log (N+1)$,
and

$$
C N 2^{N}
$$

for constants C. For the optimal tour, a dynamic programming algorithm is use (Bellman, 1962). The m tours are then llnked up by traversing the cells in ser pentine order. We are not concerned here with Just how the Indlvidual tours ar llinked up. It should for example be obvious that two sorted tours are linked ut
by connecting the northernmost point of one tour with the southernmost polnt of the adjacent tour, except when an east-west connection is made at the U-turns in the serpentine. It is easy to see that the total cost of the between-cell connectlons is $O(\sqrt{m})$, and that the total cost of the tours is $O(n / \sqrt{m})$ for all three schemes. For schemes A and B therefore, it seems important to make m proportional to n so that the total cost is $O(\sqrt{n})$, Just as for the optimal tour. In scheme C, as pointed out in Karp (1977) and Supowit, Relngold and Plalsted (1983), if m Increases at a rate that is slightly subllnear ($O(n)$), then we can come very close to the globally optlmal tour cost because withln the buckets small optImal tours are constructed. The expected time taken by the algorthm is bounded by

$$
\begin{aligned}
& O(n+m)+E\left(\sum_{i=1}^{m} C N_{i}\right), \\
& O(n+m)+E\left(\sum_{i=1}^{m} C N_{i} \log \left(N_{i}+1\right)\right),
\end{aligned}
$$

and

$$
O(n+m)+E\left(\sum_{i=1}^{m} C N_{i} 2^{N_{i}}\right)
$$

respectively

Theorem 3.2.

For the methods A, B, C for constructing traveling salesman tours, the expected time required is bounded by $O(n+m)$ plus, respectively
(A) $C n$;
(B) $C n \int f \log \left(2+\frac{n}{m} f\right) \leq C n \int f \log (2+f)+C n \log \left(1+\frac{n}{m}\right)$;
(C) $C 2 n \int f e^{\frac{n}{m} /} \leq 2 C n \psi\left(1+\frac{n}{m}\right)$
where $\psi(u)$ is the functional generating function for the density f on $[0,1]^{2}$.

Remark.

The functional generating function for a density f on $[0,1]^{2}$ is defined by

$$
\psi(u)=\int e^{u f(x)} d x, u \in R
$$

By Taylor's serles expansion, it is seen that

$$
\psi(u)=1+u \int f+\frac{u^{2}}{2!} \int f^{2}+\frac{u^{3}}{3!} \int f^{3}+\cdots,
$$

which explains the name. Note that the Taylor serles is not necessarlly convergent, and that ψ is not necessarlly finte: it is finte for all bounded densitles with compact support, and for a few unbounded densitles with compact support. For example, if $f \leq f^{*}$ on $[0,1]^{2}$, then $\psi(u) \leq \frac{1}{f^{*}} e^{u f^{*},} u>0$. Thus, the bound $\ln (C)$ becomes

$$
2 C n \frac{1}{f^{*}} e^{\left(1+\frac{n}{m}\right) f}
$$

(In fact, by a direct argument, we can obtain the better bound $2 \mathrm{Cn} e^{\frac{n}{m} f^{\circ}}$.) Note that in the paper or Supowit et al. (1983), m is allowed to be pleked arbltrarlly close to n (e.g. $m=n / \log \log \log n$). As a result, the algortthm based on (C; has nearly llnear expected time. Supowit et al. (1083) provide a further modification of algorthm (C) which guarantees that the algorithm runs in nearly llnear time in the worst case.

Proof of Theorem 3.2.

To show (B), we conslder

$$
\begin{aligned}
& E\left(N_{i} \log \left(N_{i}+1\right)\right) \\
& =E\left(\sum_{j=1}^{n} B_{j} \log \left(\sum_{j=1}^{n} B_{j}+1\right)\right)
\end{aligned}
$$

$=n E\left(B_{1} \log \left(B_{1}+\sum_{j=2}^{n} B_{j}+1\right)\right)$
$=n p_{i} E\left(\log \left(2+\sum_{j=2}^{n} B_{j}\right)\right)$
$\leq n p_{i} \log \left(2+(n-1) p_{i}\right)$ (Jensen's inequallty).
where B_{1}, \ldots, B_{n} are ild Bernoullt $\left(p_{i}\right)$ random varlables. Also, since $p_{i} \log \left(2+(n-1) p_{i}\right)$ is a convex function of p_{i}, another application of Jensen's inequallty ylelds the upper bound
$n \int_{A_{1}} f \log \left(2+\frac{n-1}{m} f\right)$,
which is all that is needed to prove the statement for (B). For (C), we argue simllarly, and note that

$$
\begin{aligned}
& E\left(N_{i} 2^{N_{i}}\right) \\
& =E\left(\left(\sum_{j=1}^{n} B_{j}\right)\left(\prod_{j=1}^{n} 2^{B_{j}}\right)\right) \\
& =n E\left(B_{1} 2^{B_{1}} \prod_{j=2}^{n} 2^{B_{j}}\right) \\
& =2 n p_{i}\left(2 p_{i}+\left(1-p_{i}\right)\right)^{n-1} \\
& =2 n p_{i}\left(1+p_{i}\right)^{n-1} \\
& \leq 2 n p_{i} e^{(n-1) p_{i}} \\
& \leq 2 n \int_{A_{i}} f e^{\frac{n-1}{m} f \quad \text { (Jensen's Inequallty). }}
\end{aligned}
$$

Thls concludes the proof of Theorem 3.2.

Remark. [ETSP in higher dimenslons.]

Halton and Terada (1982) describe a heuristlc for the ETSP in d dimensions which is simllar to the heuristlc given above in which within each cell an optlmal tour is found. In partlcular, for points uniformly distributed on the unit hypercube, it is shown that the tour length divided by the optlmal tour length tends with probablitty one to one as $n \rightarrow \infty$. Also, the time taken by the algorithm is in probabllity equal to $o(n \phi(n))$ where ϕ is an arbltrary diverging function pleked beforehand and ϕ is used to determine at which rate m / n tends to 0 . The divergence of ϕ is agaln needed to insure asymptotic optimality of the tour's divergence of ϕ is again needed to insure asymptotic optimality of the tour's
length. The only technical problem in d dimensions is related to the connection of cells to form a travelling salesman tour.

3.4. CLOSEST POINT PROBLEMS.

Local algorithms are algorithms which perform operations on points in given buckets and in nelghboring buckets to construct a solution. Among these, we have algorithms for the following problems:
(1) the close pairs problem: Identify all pairs of polnts within distance r of each other;
(II) the isolated points problem: identify all points at least distance r away of all other polnts;
(III) the Euclidean minimal spanning tree problem;
(iv) the all-nearest-neighbor problem: for each point, find its nearest neighbor;
(v) the closest pair problem: find the minlmum distance between any two polnts.

These problems are sometimes called closest point problems (Shamos and Hoey, 1975; Bentley, Welde and Yao, 1980). What complicates matters here is the fact that the tlme needed to find a solution is not merely a function of the form

$$
\sum_{i=1}^{m} g\left(N_{i}\right)
$$

as in the case of one-dimensional sorting. Usually, the time needed to solve these problems is of the form

$$
\sum_{i=1}^{m} g\left(N_{i}, N_{i}^{*}\right)
$$

where N_{i} * is the number of polnts in the nelghboring buckets; the defintion of a
nelghbor bucket depends upon the problem of course. It is quite impossible to glve a detalled analysls that would cover most Interesting closest point problems. As our prototype problems, we will plick (1) and (11). Our goal is not just to find upper bounds for the expected tlme that are of the correct order but possibly of the wrong constant: these can be obtained by flrst bounding the time by a functlon of the form

$$
\sum_{i=1}^{m} \bar{g}\left(N_{i}+N_{i}^{*}\right)
$$

where g is another function. The overlap between buckets implicit in the terms $N_{i}+N_{i}^{*}$ does not matter because the expected value of a sum is the sum or expected values. Our goal here is to obtaln the correct asymptotic order and constant. Throughout thls section too, X_{1}, \ldots, X_{n} are independent random vectors with density f on $[0,1]^{d}$.

Figure 3.14.
All nearest neighbor graph at left. This graph is a subgraph of the minimal spanning tree, shown at right.

Remark. [Isolated points. Single-llnkage clustering.]

If X_{1}, \ldots, X_{n} are d-dlmensional data points, and $r>0$ is a number depending upon n only, then X_{i} is sald to be isolated point if the closed sphere of radius r around X_{i} contalns no $X_{j}, j \neq i$.

Isolated polnts are important in statistics. They can often be considered as "outllers" to be discarded in order not to destabilize certain computations. In the theory of clustering, the following algorithm is well-known: construct a graph in which X_{i} and X_{j} are Jolned when they are within distance r of each other. The connected components in the graph are the clusters. When r grows, there are fewer and fewer connected components of course. Thus, if we can find all palrs (X_{i}, X_{j}) within distance r of one another very quickly, then the clusterlng algorithm will be fast too, slnce the connected components can be grown by the union-find parentpointer tree algorithm (see e.g. Aho, Hopcroft and Ullman ($1983, \mathrm{pp} .184-188$)). This clustering method is equivalent to the single linkage clustering method (see e.g. Hartigan (1975, chapter 11)). The isolated points algorithms discussed below will all give an exhaustive listing of the palrs (X_{i}, X_{j})
that satlsfy $\left\|X_{i}-X_{j}\right\| \leq r$, and can thus be used for clustering too. The problem of the identification of these pairs is called the close palrs problem.

There are two bucket-based solutions to the close-palrs problem. First, we can define a grid of hypercubes (buckets) with sides dependent upon r. The disadvantage of this is that when r changes, the bucket structure needs to be redeflned. The advantage is that when n changes, no such adjustment is needed. In the second approach, the bucket slze depends upon n only: it is Independent of r.

Figure 3.15.

In the r-dependent grid, it is useful to make the sldes equal to r / \sqrt{d} because any pair of polnts within the same bucket is within distance r of each other. Furthermore, polnts that are not in nelghboring buckets cannot be within distance r of each other. By nelghboring bucket, we do not mean a touching bucket, but merely one which has a vertex at distance r or less of a vertex of the
original bucket. A conservative upper bound for the number of nelghboring buckets is $(2 \sqrt{d}+3)^{d}$. In any case, the number depends upon d only, and will be denoted by γ_{d}. To Identify isolated points, we first mark single polnt buckets, l.e. buckets with $N_{i}=1$, and check for each marked point all γ_{d} nelghboring buckets. The sum of distance computations Involved is

$$
\begin{aligned}
& \sum_{i: N_{i}=1} \sum_{j: A, \text { neighbor of } A_{i}} N_{j} \\
& =\sum_{j} N_{j} \sum_{i: N_{i}=1, \text { and } A_{i} \text { neighbor of } A_{j}} \\
& \leq \gamma_{d} \sum_{j} N_{j} \\
& =\gamma_{d} n .
\end{aligned}
$$

The grld initiallzation takes time $\Omega\left(r^{-d}\right)$ and $O\left(m \ln \left(r^{-d}, 1\right)\right)$. In particular, the entire algorithm is $O(n)$ in the worst-case whenever $r n^{1 / d} \geq c>0$ for some constant c. For r much smaller than $n^{-1 / d}$, the algorithm is not recommended because nearly all the polnts are isolated points - the bucket slze should be made dependent upon n instead.

Figure 3.16.
Finding the maximal gap in a sequence of n points by dividing the range into $n+1$ intervals.

Remark. [The maximal gap.]

The maximal gap in a sequence of points x_{1}, \ldots, x_{n} taking values on $[0,1]$ Is the maximal interval induced by these points on $[0,1]$. As in the case of isolated polnts, the maximal gap can be found in worst-case tlme $O(n)$. For example, thls can be done by observing that the maximal gap is at least $\frac{1}{n+1}$. Thus,

If we organlze the data Into a bucket structure with $n+1$ Intervals, no two points within the same bucket can deflne the maximal gap. Therefore, it is not necessary to store more than two polnts for each bucket, namely the maximum and the minlmum. To find the maximal gap, we travel from left to right through the buckets, and select the maximum of all differences between the minlmum of the current bucket and the last maximum seen untll now. This algorithm is due to Gonzalez (1875).

Let us turn now to the close-palrs problem. The tlme needed for reporting all close palrs is of the order of

$$
V=\sum_{i} N_{i}^{2}+\sum_{i} N_{i} \sum_{j: A, \text { neighbor of } A_{i}} N_{j}
$$

where the first term accounts for llsting all pairs that share the same bucket, and the second term accounts for all distance computations between points In neighboring buckets.

For thls problem, let us consider a grid of m buckets. This at least guarantees that the inltialization or set-up-time is $O(n+m)$. The expected value of our performance measure V is

$$
E(V)=E\left(\sum_{i} N_{i}^{2}+\sum_{i} N_{i} \sum_{j: A_{j} \text { neighbor of } A,} N_{j}\right)
$$

and it is the last term which causes some problems because we do not have a full double sum. Also, when $p_{i}=\int_{A_{i}} f$ is large, p_{j} is likely to be large too since A_{i} and A_{j} are nelghboring buckets. The asymptotics for $E(V)$ are obtalned in the next theorem. There are 3 situations when $m=n$:
A. $n r^{d} \rightarrow \infty$ as $n \rightarrow \infty$: the expected number of close pairs increases roughly speaking faster than n.
B. $n r^{d} \rightarrow 0$ as $n \rightarrow \infty$: the expected number of close pairs is $O(n)$, and the probabillty that any given point is an isolated point tends to 1.
C. $n r^{d} \rightarrow \beta \in(0, \infty)$ as $n \rightarrow \infty$: the expected number of close pairs increases as a constant times n. This is the critical case.

The upper bound in the theorem is valld in all three cases. In fact, Theorem 3.3 also covers the situation that $m \neq n: m$ and / or r are allowed to vay with n In an arbltrary manner.

Theorem 3.3.

Let $\gamma=\gamma(r, d, m)$ be the number of nelghboring buckets of a particular bucket in a grid of size m defined on $[0,1]^{d}$, where r is used in the deflnition of neighbor. Then

$$
E(V) \leq n+\frac{n^{2}}{m}(\gamma+1) \int f^{2}
$$

If $m \rightarrow \infty, n \rightarrow \infty, r \rightarrow 0$,

$$
E(V)=n+\frac{n^{2}}{m}(\gamma+1+o(1)) \int f^{2}
$$

Note that if $m r^{d} \rightarrow \infty r \rightarrow 0, \gamma(r, d, m) \sim m r^{d} V_{d}$ where V_{d} is the value of the unlt sphere in \boldsymbol{R}^{d}. Thus,

$$
E(V)=n+n^{2} r^{d} V_{d}(1+o(1)) \int f^{2}
$$

If $m r^{d} \rightarrow \beta \in(0, \infty)$, then γ osclllates but remalns bounded away from 0 and ∞ In the tall. In that case,

$$
E(V)=O(n)
$$

when $\iint^{2}<\infty, m \sim c n$. Note that $E(V)=\Omega(n)$ in all cases.
Finally, if $m r^{d} \rightarrow 0$, such that $r>0$ for all n, m, then $\gamma \rightarrow 3^{d}-1$, and

$$
E(V)=n+\frac{n^{2}}{m} 3^{d} \iint^{2}(1+o(1))
$$

Proof of Theorem 3.3.

We will use the notation $A(x)$ for the bucket A_{i} to which x belongs. Furthermore, $B(x)$ is the collection of nelghboring buckets of $A(x)$. Deflne the densities

$$
\begin{aligned}
& f_{n}(x)=\frac{1}{|A(x)|} \int_{A(x)} f, x \in[0,1]^{d} \\
& g_{n}(x)=\frac{1}{|B(x)|} \int_{B(x)} f, x \in[0,1]^{d}
\end{aligned}
$$

Note that by the Lebesgue denslty theorem, if $m \rightarrow \infty, r \rightarrow 0$ (and thus $|A(x)| \rightarrow 0,|B(x)| \rightarrow 0), f_{n}(x) \rightarrow f(x)$ and $g_{n}(x) \rightarrow g(x)$ for almost all x. This result can be obtalned without trouble from Lemmas 5.10, 5.11, and the fact that the deflition of neighboring bucket is data independent and depends upon r and m only.

The upper bound will be derived first. The $\operatorname{sum} V$ is split into $V_{1}+V_{2}$. Only V_{2} causes some problems since $E\left(V_{1}\right) \leq n^{2} \sum_{i=1}^{m} p_{i}^{2}+n \leq \frac{n^{2}}{m} \int f^{2}+n$ by Lemma 1.1. Note also for future reference that $E\left(V_{1}\right) \geq n+(1+o(1)) \frac{n^{2}}{m} \int f^{2}$ when $m \rightarrow \infty$. If we apply the Fatou lower bound argument of the proof of Lemma 1.1. Turning to V_{2}, we have, by Lemma 5.1,

$$
\begin{aligned}
& E\left(V_{2}\right)=\sum_{i=1}^{m} \sum_{j: A_{j}} \sum_{\text {neighbor of } A_{i}} p_{i} p_{j} n(n-1) \\
& \left.\leq n^{2} \sum_{i=1}^{m} \lambda\left(A_{i}\right) \lambda\left(B_{i}\right) f_{n}\left(x_{i}\right) g_{n}\left(x_{i}\right) \text { (for any } x_{1} \in A_{1}, \ldots, x_{m} \in A_{m}\right) \\
& =n^{2} \sum_{i=1}^{m} \int_{A_{i}} \lambda\left(B_{i}\right) f_{n}(x) g_{n}(x) d x \\
& =n^{2} \gamma \lambda\left(A_{1}\right) \int f_{n} g_{n}
\end{aligned}
$$

Since f_{n} and g_{n} are probably very close to each other, the Integral in the last expression is probably very close to $\iint_{n}{ }^{2}$. Therefore, little will be lost if the Integral is bounded from above by the Cauchy-Schwartz inequallty:

$$
\begin{aligned}
& \int f_{n} g_{n} \leq \sqrt{\iint_{n}{ }^{2} \int g_{n}{ }^{2}} \\
& \leq \sqrt{\int \frac{1}{\lambda(A(x))}\left(\int_{A(x)} f^{2}\right) d x} \sqrt{\int \frac{1}{\lambda(B(x))}\left(\int_{B(x)} f^{2}\right) d x} \\
& =\sqrt{\sum_{i=1 A_{1}}^{m} \int f^{2}} \sqrt{\sum_{i=1 A_{0}}^{m} \int f^{2}} \\
& =\int f^{2} .
\end{aligned}
$$

To treat $\int g_{n}{ }^{2}$ we have argued as follows:

$$
\begin{aligned}
& \int_{\{0,1]^{4}} g_{n}{ }^{2} \leq \int_{R^{4}} g_{n}{ }^{2} \\
& =\int\left(\frac{1}{\lambda(B(x))} \int_{B(x)} f(y) d y\right)^{2} d x \\
& \text { (where } B(x) \text { now refers to an infnite grid) } \\
& \leq \int \frac{1}{\lambda(B(x))}\left(\int_{B(x)} f^{2}\right) d x \text { (Jensen' } \mathrm{s} \text { Inequallty) } \\
& =\sum_{i=1}^{\infty} \int_{A_{i}} \frac{1}{\gamma \lambda\left(A_{i}\right)} \sum_{j: A_{j} \text { neighbor of } A_{i} A_{j}} f^{2}(y) d y d x \\
& \left.=\left.\sum_{i=1}^{\infty} \frac{1}{\gamma \lambda\left(A_{1}\right)} \int_{A_{2}} f^{2}(y)\right|_{i: A, \text { neighbor of } A,} \int_{A_{1}} d x\right) d y \\
& =\sum_{i=1}^{\infty} \int_{A_{i}} f^{2} \\
& =\iint^{2}
\end{aligned}
$$

Note also that
$\operatorname{llm} \operatorname{lnf} \int f_{n} g_{n} \geq \int \operatorname{llm} \inf f_{n} g_{n}=\int f^{2}$
when $m \rightarrow \infty, r \rightarrow 0$. This concludes the proof of the first two statements o the theorem. The remalnder of the theorem is concerned with the size of γ as function of r and m, and follows from elementary geometric principles.

We note for example that when $m \rightarrow \infty, m r^{d} \rightarrow 0$, the optimal cholce fo m would be a constant times $n \sqrt{3^{d} \int f^{2}}$ - at least, this would minimiz $C m+E(V)$ asymptotically, where C is a glven constant. The minlmizing value is a constant times $n \sqrt{3^{d} \int f^{2}}$. The only situation in which $E(V)$ is not $O(n)$ for $m \sim c n$ is when $n r^{d} \rightarrow \infty$, l.e. each bucket has very many dati points. It can be shown that the expected number of close palrs grows as a constant times $n^{2} r^{d}$, and this provides a lower bound for $E(V)$. Thus, the expected thme for $E(V)$ obtalned in Theorem 3.3 has an optlmal asymptotic rate

Remark. [The all-nearest-neighbor problem.]

All nearest nelghbor palrs can be found $\ln O(n \log n)$ worst-case tlme (Shamos and Hoey, 1975). Welde (1978) proposed a bucketing algorithm in which for a glven X_{i}, a "spiral search" is started in the bucket of X_{i}, and contlnues in nelghboring cells, in a spiraling fashion, untll no data point outside the buckets already checked can be closer to X_{i} than the closest data polnt already found. Bentley, Welde and Yao (1980) showed that Welde's algorithm halts in average time $O(n)$ when there exists a bounded open convex region B such that the density f of X_{1} is 0 outside B and satisfles $0<\operatorname{lnf}_{B} f(x) \leq \sup _{B} f(x)<\infty$. (This condltion will be called the BWY condltlon.)

Figure 3.17.
Spiral search for nearest neighbor.

Remark. [The closest palr problem.]
To find the closest palr $\ln [0,1]^{d}$, one can argue geometrically and deduce an absolute upper bound of the form C_{d} / n^{d} for the smallest distance between any two polnts among X_{1}, \ldots, X_{n} in $[0,1]^{d}$. Here C_{d} is a constant depending upon d only. If we construct a grid with buckets having sldes C_{d} / n^{d}, then we can hope to "catch" the closest pair In the same bucket. Unfortunately, the closest pair can be separated by a bucket boundary. Thls case can be elegantly covered by shifting the grid appropriately a number of tlmes so that for one of the shlfted grids there is a bucket which contalns the closest pair (Yuval, 1978). Ignoring the dependence upon d, we see that with this strategy, the time complexity is of the form $c_{1} n+c_{2} \sum_{i=1}^{n} N_{i}{ }^{2}$ where the square accounts for the computations of all pairwise distances withln the same bucket, and $c_{1}, c_{2}>0$ are constants. It is easy to see that if X_{1}, \ldots, X_{n} are $11 d$ random vectors with density f on $[0,1]^{d}$,
then the shifted grid method takes expected time $O(n)$ if and only if $\int f^{2}<\alpha$ Rabin (1878) chooses a small subset for which the closest pair is found. Tb corresponding minimal distance is then used to obtain the overall closest pair i linear expected time. It is perhaps interesting to note that not much is galne over worst-case time under our computatlonal model, slace there exist algorithm which can find the closest pair in worst case time $O(n \log \log n)$ (Fortune an Hoperoft, 1979).

Remark. [The Euclldean minimal spanning tree.]

For a graph ($V, E)$) Yao (1875) and Chertton and Tarjan (1978) give algc rithms for finding the minimal spanning tree (MST) in worst-case tim $O(|E| \log \log |V|)$. The Euclidean minlmal spanning tree (EMST) of n points E R^{d} can therefore be obtained in $O(n \log \log n)$ time if we can find a super graph of the EMST with $O(n)$ edges in $O(n \log \log n)$ time. Yao (1982) sug gested to find the nearest nelghbor of each point in a critical number of direc tlons; the resulting graph has $O(n)$ edges and contalns the MST. This neares nelghbor search can be done by a sllght modiflation of spiral search (Weld (1978)). Hence, the EMST can be found in expected time $O(n \log \log n)$ fo any d and for all distributions satisfying the BWY condition. The situation is : bit better $\ln R^{2}$. We can find a planar supergraph of the EMST in expected timt $O(n)$ (such as the Delaunay triangulation (the dual of the Voronol diagram), the Gabriel graph, etc.) and then apply Cherlton and Tarjan's (1978) $O(n)$ algorithm for finding the MST of a planar graph. For a linear expected time Vorono dlagram algorithm, see Bentley, Welde and Yao (1980). Thus, in R^{2} and for tht class of BWY distributions, we can find the EMST in Hinear expected time.

Chapter 4

THE MAXIMAL CARDINALITY

The expected value of the worst possible search time for an element in a bucket data structure is equal to the expected value of $M_{n}=\max _{1 \leq i \leq m} N_{i}$ tlmes a constant. This quantity differs from the worst-case search time, which is the largest possible value of max N_{i} over all possible data sets, i.e. n. In a sense, the maximal cardinality $1 \leq i \leq m$ has taken over the role of the height in tree structures. Its maln importance is with respect to searching. Throughout the chapter, it is cruclal to note the dependence of the maximal cardinality upon the density f of the data polnts X_{1}, \ldots, X_{n}, which for the sake of slmplicity are assumed to take values on $[0,1]^{d}$. The grid has $m \sim c n$ cells for some constant $c>0$, unless we specify otherwise.

In section 4.1, we look at the properties of M_{n}, and in particular of $E\left(M_{n}\right)$ following analysts given in Devroye (1885). This is then generallzed to $E\left(g\left(M_{n}\right)\right)$ where g is a nonlinear work function (see section 4.3). Such nonlinear functions of M_{n} are important when one particular bucket is selected for further work, as for example in a bucket-based selection algorithm (section 4.2). Occasionally, the maximal cardinality can be useful in the analysis of bucket algorithms in which certain operations are performed on a few buckets, where buckets are selected by the data points themselves. In section 4.4, we will lllustrate thls on extremal polnt problems in computational geometry.

4.1. EXPECTED VALUE AND INEQUALITIES.

For the unlform distribution on [0,1], Gonnet (1981) has shown that when $m=n$,

$$
E\left(M_{n}\right) \sim \Gamma^{-1}(n)
$$

where Γ is the gamma function. For example, when $n=40320, E\left(M_{n}\right)$ is nea. 7.35 (Gonnet, 1981 , table V). In other words, $E\left(M_{n}\right)$ is very small for all pract1cal values of n. Additional information is given in Larson (1982). The situatior studled by Gonnet pertains malnly to hashing with separate chaining when a perfect hash function is avallable. As we know, order-preserving hash functions lead to non-unlform distributions over the locations, and we will see here how $E\left(M_{n}\right)$ depends upon f. This is done in two steps. First we will handle the case of bounded f, and then that of unbounded f.

Theorem 4.1.

Assume that $f^{*}=$ ess sup $f<\infty \quad$ (note: $\lambda\left\{x: f(x)>f^{*}\right\}$ $=0 ; \lambda\left\{x: f(x)>f^{*}-\epsilon\right\}>0$ for all $\epsilon>0$). Then, if $m \sim c n$ for some $c>0$,

$$
E\left(M_{n}\right) \sim \frac{\log n}{\log \log n}
$$

and, In particular,

$$
E\left(M_{n}\right)=\frac{\log n}{\log \log n}+\frac{\log n}{(\log \log n)^{2}}\left(\log \log \log n+\log \left(\frac{f * e}{c}\right)+o(1)\right)
$$

Proof of Theorem 4.1.

We will use a Polssonization device. Assume first that we have shown the statement of the theorem for $M_{n}{ }^{*}$ where $M_{n}{ }^{*}=\max N_{i}{ }^{*}$ and $N_{i}{ }^{*}$ is the number of $X_{i}^{\prime} s \ln X_{1}, \ldots, X_{N}$ belonglng to A_{i}, where N is a Polsson (n) random varlable independent of X_{1}, X_{2}, \ldots. Now, for all $\epsilon>0$, we have

$$
M_{n}^{*} \leq M_{n(1+\epsilon)}+n I_{N} \geq n(1+\epsilon)
$$

and

$$
M_{n}^{*} \geq M_{n(1-\epsilon)}-n I_{N \leq n(1-\epsilon)}
$$

where I is the indlcator function, and where $n(1+\epsilon)$ and $n(1-\epsilon)$ should be read as "the smallest integer at least equal to ...". By Lemma 5.8,

$$
n P(|N-n| \geq n \epsilon) \leq \frac{4}{n \epsilon^{4}}
$$

Defline

$$
b(n)=1+\log \left(f^{*} / c\right)+\log \log n+\log \log \log n
$$

$c(n)=\frac{(\log \log n)^{2}}{\log n}$. Thus, by assumption,

$$
\begin{aligned}
& o(1)=E\left(M_{n}^{*}\right) c(n)-b(n) \leq E\left(M_{n(1+\epsilon)}\right) c(n)+\frac{4 c(n)}{n \epsilon^{4}}-b(n) \\
& \leq E\left(M_{n(1+\epsilon)}\right) c(n(1+\epsilon)) \frac{c(n)}{c(n(1+\epsilon))} \\
& +o\left(\frac{1}{n}\right)-b(n(1+\epsilon))+(b(n(1+\epsilon))-b(n))
\end{aligned}
$$

Now, $b(n(1+\epsilon))-b(n)=o(1)$, and, for n large enough, $c(n) \geq c(n(1+\epsilon))$ $\geq c(n) \frac{\log n}{\log (n(1+\epsilon))} \geq c(n) /(1+\epsilon / \log n)$.

Thus,

$$
\begin{aligned}
& E\left(M_{n(1+\epsilon)}\right) \geq \frac{b(n(1+\epsilon))+o(1)}{c(n(1+\epsilon))(1+\epsilon / \log n)} \\
& =\frac{b(n(1+\epsilon))+o(1)}{c(n(1+\epsilon))}
\end{aligned}
$$

Similarly, it can be shown that $E\left(M_{n}\right) \leq(b(n)+o(1)) / c(n)$, and combining thls gives us our theorem.

Lower bounds for $M_{n}{ }^{*}$

Let $\eta>0$ be an arbitrary number, and let $\epsilon>0$ be the solution of $\eta=-2 \log \left(1-\frac{2}{f^{*}} \epsilon\right)$ (thls will turn out to be a convenlent cholce for ϵ). Let A be the set $\left\{x: f(x)>f^{*}-\epsilon\right\}$, and let $\delta=\int_{A} d x$ (which is positive by definition of f^{*}). Finally, let $h=h_{n}$ be the integer part of $\frac{b(n)-\eta}{c(n)}$. We let p_{i} keep its meanlag from the introduction, and note that the function f_{n} on [0,1] defined by

$$
f_{n}(x)=m p_{i}, x \in A_{i}
$$

Is a density. Because $N_{1}{ }^{*}, N_{2}{ }^{*}, \ldots, N_{m}{ }^{*}$ are independent Polsson random varlables with parameters $n p_{1}, n p_{2}, \ldots, n p_{m}$ respectlvely, we have the following chain of inequalltles:

$$
\begin{aligned}
& P\left(M_{n}^{*}<h\right)=\prod_{i=1}^{m} P\left(N_{i}^{*}<h\right) \\
& \leq \prod_{i=1}^{m}\left(1-P\left(N_{i}^{*}=h\right)\right) \\
& \leq \exp \left(-\sum_{i=1}^{m} P\left(N_{i}^{*}=h\right)\right) \\
& =\exp \left(-\sum_{i=1}^{m}\left(n p_{i}\right)^{h} \frac{e^{-n p_{i}}}{h!}\right) \\
& =\exp \left(-m \int\left(\frac{n f_{n}}{m}\right)^{h} \frac{e^{-\frac{n}{m} f_{n}}}{h!}\right)
\end{aligned}
$$

By Lemmas 5.10 and 5.12,

$$
\begin{aligned}
& \left.\int_{A}\left(\frac{\frac{n}{m} f_{n}}{\frac{n}{m}\left(f^{*}-2 \epsilon\right)}\right)^{h} e^{-\frac{n}{m} f_{n}} \geq \int_{A, f_{n}>f^{*}-2 \epsilon} d x\right) e^{-\frac{n}{m} f^{*}} \\
& \geq e^{-\frac{n}{m} f^{*}} \int_{A,\left|f_{n}-f\right| \leq \epsilon} d x \\
& =e^{-\frac{n}{m} f^{*}}\left(\delta-\int_{A,\left|f_{n}-f\right|>\epsilon} d x\right) \\
& \geq e^{-\frac{n}{m} f^{*}}\left(\delta-\int_{A} \frac{\left|f_{n}-f\right|}{\epsilon}\right)
\end{aligned}
$$

$$
\geq e^{-\frac{n}{m} f \cdot}(\delta-o(1))
$$

Thus,
$P\left(M_{n}^{*}<h\right) \leq \exp \left(-\frac{m}{h!}\left(\frac{n}{m}\right)^{h}\left(f^{*}-2 \epsilon\right)^{h} e^{-\frac{n}{m} f \cdot}(\delta-o(1))\right)$

Using Stirling's approximation for $h!$, we see that the exponent is $-e^{s}$ where

$$
\begin{aligned}
& s=\log m-h \log h+h-\frac{1}{2} \log (2 \pi h) \\
& +o(1)+h \log \left(\frac{f^{*}-2 \epsilon}{c}\right)-\frac{n}{m} f^{*}+\log \delta \\
& =\log n+\frac{b(n)-\eta}{c(n)}\left(1+\log \left(\frac{f^{*}-2 \epsilon}{c}\right)\right) \\
& -\frac{b(n)-\eta}{c(n)} \log \left(\frac{b(n)-\eta}{c(n)}-\frac{1}{2} \log \left(\frac{b(n)-\eta}{c(n)}+t\right.\right. \\
& \text { (where } t=\log \delta-\frac{1}{2} \log (2 \pi)-\frac{f^{*}}{c}+\log c+o(1) \text {) } \\
& =\log n+\frac{b(n)-\eta}{(\log \log n)^{2}} \log n\left(1+\log \left(\frac{f^{*}-2 \epsilon}{c}\right)\right. \\
& -\log \log n+\log \log \log n+o(1)) \\
& -\frac{1}{2} \log \log n+\frac{1}{2} \log \log \log n+t+o(1) \\
& =\frac{\log n}{\log \log n}\left(o(1)+\left(1+\frac{\log \log \log n}{\log \log n}+\frac{1+\log \left(f^{*} / c\right)-\eta}{\log \log n}\right)\right. \\
& \left.\left(1+\log \left(\frac{f^{*}-2 \epsilon}{c}\right)-\log \log n+\log \log \log n+o(1)\right)+\log \log n\right) \\
& =\frac{\log n}{\log \log n}\left(\log \left(\frac{f^{*}-2 \epsilon}{c}\right)-\log \left(\frac{f^{*}}{c}\right)+\eta+o(1)\right)
\end{aligned}
$$

$$
\geq \frac{\eta}{3} \frac{\log n}{\log \log n}(\text { all } n \text { large enough })
$$

because $\log \left(f^{*}-2 \epsilon\right)-\log \left(f^{*}\right)=-\frac{\eta}{2}$.
Thus, for all n large enough,

$$
\begin{aligned}
& E\left(M_{n}^{*}\right) \geq h P\left(M_{n}^{*} \geq h\right)=h\left(1-P\left(M_{n}^{*}<h\right)\right) \\
& \geq h\left(1-\exp \left(-\exp \left(\frac{\eta}{3} \frac{\log n}{\log \log n}\right)\right)\right) \geq h(1-\exp (-\exp (\log \log n))) \\
& =h\left(1-\frac{1}{n}\right) \geq\left(\frac{b(n)-\eta}{c(n)}-1\right)\left(1-\frac{1}{n}\right)=\frac{b(n)-\eta-o(1)}{c(n)} .
\end{aligned}
$$

This concludes the proof of the lower bound, since $\eta>0$ is arbitrary.

Upper bounds for M_{n}^{*}.

Again, we let η be an arbitrary positive number, and choose $h=h_{n}$ as the Integer part of $\frac{b(n)+\eta}{c(n)}$. Let $k \geq h$ be some integer. Then, for $h \geq c$, by Lemma 5.9,

$$
\begin{aligned}
& P\left(M_{n}^{*} \geq k\right) \leq \sum_{i=1}^{n} P\left(N_{i}^{*} \geq k\right) \leq n \sum_{j \geq k} c^{j} \frac{e^{-c}}{j!} \\
& \leq n c^{k} \frac{e^{-c}}{k!} \frac{k+1}{k+1-c}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& E\left(M_{n}^{*}\right) \leq h+\sum_{k=h}^{\infty} P\left(M_{n}^{*} \geq k\right) \leq h+\sum_{k=h}^{\infty} n c^{k} \frac{e^{-c}}{k!} \frac{k+1}{k+1-c} \\
& \leq h+n c^{h} \frac{e^{-c}}{h!}\left(\frac{h+1}{h+1-c}\right)^{2}
\end{aligned}
$$

By some stralghtforward analysis, one can show that

$$
\log \left(n c^{h} \frac{e^{-c}}{h!}\right) \geq-(\eta+o(1)) \frac{\log n}{\log \log n}
$$

and that

$$
\left(\frac{h+1}{h+1-c}\right)^{2}=1+\frac{2 c}{h+1}+o\left(\frac{1}{h}\right)
$$

Therefore,

$$
\begin{aligned}
& E\left(M_{n}^{*} \leq h+\left(1+\frac{2 c}{h}+o\left(\frac{1}{h}\right)\right) \exp \left(-(\eta+o(1)) \frac{\log n}{\log \log n}\right)\right. \\
& \leq h+\left(\frac{1+o(1)}{\log n}\right)\left(1+\frac{2 c}{h}+o\left(\frac{1}{h}\right)\right) \leq \frac{b(n)+\eta}{c(n)}+\frac{1+o(1)}{\log n} \\
& =\frac{b(n)+\eta+o(1)}{c(n)}
\end{aligned}
$$

But η was arbitrary. This concludes the proof of the theorem.

For all bounded f, we have

$$
E\left(M_{n}\right) \sim \frac{\log n}{\log \log n}
$$

whenever $m \sim c n$. In first approximation, the density does not influence $E\left(M_{n}\right)$. The explanation is due to the fact that the expected value of the maxImum of n independent Poisson (λ) random varlables is asymptotic to $\log n / \log \log n$ for any constant λ. The Influence of f^{*} on $E\left(M_{n}\right)$ is in the third largest asymptotic expansion term only. The proof of Theorem 4.1 is long and tedious because we want to obtain rather reflned Information. From here onwards, we will content ourselves with maln asymptotic terms only.

Theorem 4.1 remains valld when the minlmum and the maximum of the $X_{:}^{\prime} s$ are used to determine an inltial interval, and the buckets are defined by dividing this interval into n equal sub-Intervals. The density f is assumed to
have support contained $\ln [0,1]$ but not $\ln [0,1-\epsilon]$ or $[\epsilon, 1]$ for any $\epsilon>0$.
When f is unbounded, the theorem gives very little information about $E\left(M_{n}\right)$. Actually, the behavior of $E\left(M_{n}\right)$ depends upon a number of quantitles that make a general statement all but impossible. In fact, any slow rate of convergence that is $o(n)$ is achlevable for $E\left(M_{n}\right)$. Since N_{i} is blnomial (n, p_{i}) where p_{i} is the integral of f over the 1-th bucket, we have

$$
\max _{i} n p_{i} \leq E\left(\max _{i} N_{i}\right)=E\left(M_{n}\right)
$$

When f is monotone nonincreasing, the left-hand-side of this inequallty is equal to $n F\left(\frac{1}{n}\right)$ where F is the distribution function corresponding to f. Thus, since any slow rate of decrease to 0 is possible for F, when $n \rightarrow \infty$, any slow rate $o(n)$ is achlevable for $E\left(M_{n}\right)$. The rate $\log n / \log \log n$, achleved by all bounded densities, is also a lower bound for $E\left(M_{n}\right)$ for all densitles.

Thls note would not be complete if we did not mention how $E\left(M_{n}\right)$ varles when $\max _{i} n p_{i}$ diverges. Most of this information can be deduced from the inequalities given in Theorem 4.2 below. For example, we will see that $E\left(M_{n}\right) \sim \log n / \log \log n$ (the optimal rate achlevable) when q diverges very slowly, and that $E\left(M_{n}\right) \sim \frac{n}{m} q$ when q diverges rapidly.

Theorem 4.2.

Let $q=\max _{1 \leq i \leq m} m p_{i}$. Then

$$
\begin{aligned}
& \frac{n}{m} q \leq E\left(M_{n)} \leq \frac{n}{m} q+\frac{1}{t}\left(\log m+\frac{n}{m} q\left(e^{t}-t-1\right)\right)\right. \\
& =\frac{\log m}{t}+\frac{n}{m} q\left(\frac{e^{t}-1}{t}\right), \text { all } t>0, m \geq 3
\end{aligned}
$$

Proof of Theorem 4.2.

The lower bound follows directly from Jensen's inequallty. To derive the upper bound, we let $U_{i}=N_{i}-n p_{i}, U=\max U_{i}$. Note that U is a nonnegatlve random varlable. We have

For $r \geq 1$, we can apply Jensen's inequallty again:

$$
\begin{aligned}
& E^{r}(U) \leq E\left(U^{\tau}\right)=E\left(\max _{i} U_{i}^{r}\right)\left(u^{r} \text { is considered slgn-preserving }\right) \\
& \leq m \max _{i} E\left(\left(U_{i}^{r}\right)_{+}\right) \leq m \max _{i} E\left(\left(\frac{r}{e t}\right)^{r} e^{t U_{i}}\right), \text { all } t>0
\end{aligned}
$$

Here we used the inequallty $u_{+}^{r} \leq\left(\frac{r}{e t}\right)^{r} e^{t u}, t>0$, where $u_{+}=\max (u, 0)$. Also,

$$
\begin{aligned}
& E\left(e^{t U_{i}}\right)=E\left(e^{-t n p_{i}} e^{t N_{i}}\right)=e^{-t n p_{i}}\left(e^{t} p_{i}+1-p_{i}\right)^{n} \leq e^{n p_{i}\left(e^{t}-t-1\right)} \\
\leq & e^{\frac{n}{m} q\left(e^{t}-t-1\right)}
\end{aligned}
$$

Thus,
$E\left(M_{n}\right) \leq \frac{n}{m} q+\frac{r}{e t} m^{\frac{1}{r}} \exp \left(\frac{n}{m} \frac{q}{r}\left(e^{t}-t-1\right)\right)$.

This bound is minimal with respect to r when $r=\log m+\frac{n}{m} q\left(e^{t}-t-1\right)$ (Just set the derivation of the logarithm of the second term in the bound equal to 0). Resubstitution give the desired result. The restriction $r \geq 1$ forces us to choose $m \geq 3$.

Theorem 4.2 shows that there are many possible cases to be considered with respect to the rates of Increase of q and m. Assume that $m \sim c n$, which is the standard case. Then

$$
E\left(M_{n}\right) \sim \frac{n}{m} q \sim \frac{q}{c}
$$

when $q / \log n \rightarrow \infty$. To see this, observe that

$$
M_{n} \leq \max _{i} n p_{i}+\max _{i} U_{i}=\frac{n}{m} q+U
$$

$$
e^{t}-t-1 \leq \frac{t^{2}}{2} e^{t}
$$

so that

$$
E\left(M_{n}\right) \leq \frac{n}{m} q \frac{1}{t} \log m+\frac{n}{m} q \frac{t}{2} e^{t}, t>0
$$

Take $t=\sqrt{\frac{2 m}{n q} \log m}$ (this minimizes the upper bound when e^{t} is neglected), and note that

$$
E\left(M_{n}\right) \leq \frac{n}{m} q+\sqrt{2 \frac{n}{m} q \log m}(1+o(1)) \sim \frac{n}{m} q
$$

In this case, the bound of Theorem 4.2 is tight.
Consider a second case at the other end of the spectrum, the very small $q: q=(\log n)^{o(1)}$ (or: $\left.\log q=o(\log \log n)\right)$. Then the upper bound is

$$
E\left(M_{n}\right) \leq(1+o(1)) \frac{\log m}{\log \left(\frac{\log m}{\frac{n}{m} q}\right)} \sim \frac{\log n}{\log \log n}
$$

when we take $t=\log \left(\frac{\log m}{\frac{n}{m} q}\right)-\log \log \left(\frac{\log m}{\frac{n}{m} q}\right)$
(note that this choice of t almost minimizes the upper bound). Thus, Theorem 4.2 provides a considerable short-cut over Theorem 4.1 If one is only interested in first terms.

A third case occurs when $q=o(\log n)$, but q is not necessarlly very small. In that case, for the same cholce of t suggested above, we have

$$
E\left(M_{n}\right) \leq(1+o(1)) \frac{\log m}{\log \left(\frac{\log m}{\frac{n}{m} q}\right)} \sim \frac{\log n}{\log \left(\frac{\log n}{q}\right)}
$$

The only case not covered yet is when $q \sim \alpha \log n$ for some constant $\alpha>0$. It Is easy to see that by taking t constant, both the upper and lower bound, for $E\left(M_{n}\right)$ vary in proportion to q. Since obvlously the bounds impllcit in Theorem 4.1 remain valld when $q \rightarrow \infty$, we see that the only case in whlch there might be a discrepancy between the rate of increase of upper and lower bounds is our "third" case.

Remark 4.1. [The behavior of $\max _{1 \leq i \leq m} m p_{i}$.]

The behavior of M_{n} for unbounded densitles depends rather heavily on the behavior of $q=\max m p_{i}$. It is useful to relate thls maximum to f. In particular, we need to be able to bound the maximum in terms of f. One possible polynomial bound is obtalned as follows: for any set A_{i}, and any $r \geq 1$,

$$
\left(\frac{\int_{A_{i}} f}{\lambda\left(A_{i}\right)}\right)^{r} \leq \frac{1}{\lambda\left(A_{i}\right)} \int_{A_{i}} f^{r} \text { (Jensen's Inequallty). }
$$

Thus,

$$
q=\max _{\mathrm{l} \leq i \leq m} m p_{i} \leq m^{\frac{1}{r}}\left(\int f^{r}\right)^{\frac{1}{r}}
$$

The less outspoken the peakedness of f is (1.e. the smaller $\int f^{\tau}$), the smaller the bound. For densities f with extremely small inflnite peaks, the functional generating function is finite: $\psi(u)=\int e^{t f}<\infty$, some $u>0$. For such densitles, even better bounds are obtainable as follows:

$$
\exp \left(u \frac{\int_{A_{i}} f}{\lambda\left(A_{i}\right)}\right) \leq \frac{1}{\lambda\left(A_{i}\right)} \int_{A_{i}} \exp (u f)
$$

$$
\leq m \psi(u)
$$

Thus,

$$
\max _{1 \leq i \leq m} m p_{i} \leq \frac{\log m+\log \psi(u)}{u}
$$

The value of u for which the upper bound is minimal is typically unknown. If
we keep u flxed, then the upper bound is $O(\log (m))$, and we are almost in the domain in which $E\left(M_{n}\right) \sim \log n / \log \log n$. If $\psi(u)<\infty$ for all $u>0$ then we can find a subsequence $u_{m} \dagger \infty$ such that $\psi\left(u_{m}\right) \leq m$ for all m. It is easy to see that the maximum of the $m p_{i}^{\prime} s$ is $o(\log m)$, so that $E\left(M_{n}\right) \leq \frac{\log n}{\log ((\log n) / q)}(1+o(1)) . \quad$ If $\quad \psi(\log \log m) \leq m^{\circ(1)}$, then $E\left(M_{n}\right)=O\left(\frac{\log n}{\log \log \log n}\right)$. Thus, the functional generating function aids in the establlshment of simple verlfable conditions for different domains of behavior of $E\left(M_{n}\right)$.

Remark 4.2. [Double bucketing.

It is a rather stralghtforward exerclse to show that for bounded f on $[0,1]^{d}$, If all buckets are further subdivided lnto grids of sizes N_{1}, \ldots, N_{m}, as is done In section 1.5 for example, then, when $m \sim c n$,

$$
E\left(M_{n}\right) \sim \frac{\log \log n}{\log \log \log n}
$$

Here M_{n} is the maximal cardinallty in any of the buckets in the small grids. Intultively, this can be seen as follows: for the original grid, M_{n} is very close to $\log n / \log \log n$. For the buckets containing about $\log n / \log \log n$ elements, we obtaln an estlmate of $E\left(M_{n}\right)$ for the maximal cardinality in its sub-buckets by applying the results of this section after replacement of n by $\log n / \log \log n$. Thus, as a tool for reducing the maximal cardinallty in the bucket data structure, double bucketing is quite efficient although not perfect (because $\left.E\left(M_{n}\right) \rightarrow \infty\right)$.

Remark 4.3. [Poissonization.]

The proof of Theorem 4.1 is based upon Polssonization of the sample size. The technical advantage is that M_{n}, a maximum of dependent binomial random varlables, is replaced by M_{n}^{*}, a maximum of independent Poisson random variables. In fact, we can do without the Polssonization by using special properties of the multinomial distribution. To lllustrate this, we could have used Mallows' inequality:

$$
P\left(\max _{1 \leq i \leq m} N_{i} \leq x\right) \leq \prod_{i=1}^{m} P\left(N_{i} \leq x\right) \leq \exp \left(-\sum_{i=1}^{m} P\left(N_{i}>x\right)\right), x \geq 0
$$

(Mallows, 1988), from which one deduces without work that

$$
E\left(\max _{1 \leq i \leq m} N_{i}\right) \geq E\left(\max _{1 \leq i \leq m} N_{i}^{*}\right)
$$

where, $N_{1}^{*}, \ldots, N_{m}^{*}$ are independent binomial random varlables, distributed Individually as N_{1}, \ldots, N_{m}. This can be used as a starting polnt for developIng a lower bound.

Remark 4.4. [Historlcal remark.]

Kolchln, Sevast'yanov and Chlstyakov (1978, pp. 94-111) have studied in some detall how M_{n} behaves asymptotically for different rates of increase of m, and for the unlform denslty on $[0,1]$. Thelr results can be summarlzed quite slmply. A critical parameter is $\frac{n}{m}$, the average occupancy of a cell. There are three cases:

Case 1. If $\frac{n}{m \log m} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left(M_{n}=r-1\right)=e^{-\lambda}, \\
& \lim _{n \rightarrow \infty} P\left(M_{n}=r\right)=1-e^{-\lambda},
\end{aligned}
$$

where λ is a positive constant, and $r=r_{n}$ is chosen in such a way that $r>\frac{n}{m}, m \frac{\left(\frac{n}{m}\right)^{r} e^{-\frac{n}{m}}}{r!} \rightarrow \lambda$. (Thus, asymptotically, M_{n} puts all its mass on two polnts.)

Case 2. $\frac{n}{m \log m} \rightarrow x \in(0, \infty)$.
Case 3. If $\frac{n}{m \log m} \rightarrow \infty$, then $M_{n} /\left(\frac{n}{m}\right) \rightarrow 1 \ln$ probabllity.
Case 1 is by far the most lmportant case because usually $m \sim c n$. In cases 2 and 3, the asymptotic distribution of M_{n} is no longer bl-atomic because M_{n} spreads its mass more out. In fact, in case $3, M_{n}$ is with high probability equal to the value of the maximal cardinality if we were to distribute the n points evenly (not randomly!) over the m buckets! The difference $M_{n}-\frac{n}{m}$ is $\sim \sqrt{2 \frac{n}{m} \log m}$ in probabillty provided that $m>n^{\epsilon}$ for some $\epsilon>0$.

4.2. AN EXAMPLE : THE SELECTION PROBLEM.

Assume that a bucket structure is used to flnd the k-th smallest of X_{1}, \ldots, X_{n}, independent random variables with density f on $[0,1]$. The m buckets are of size $\frac{1}{m}$ each, but what will be said below remalns valld if the m buckets are defined on $\left[\mathrm{min} X_{i}, \max X_{i}\right]$. In the algorlthm, we keep a count for each bucket, so that in one additional pass, it is possible to determine in which bucket the k-th smallest point lles. Within the bucket, this element can be found In several ways, e.g. via a linear worst-case comparison-based algorithm (Schonhage, Paterson and Plppenger, 1876; Blum, Floyd, Pratt, Rivest and Tarjan, 1973), via a linear expected tlme comparlson-based algorithm (Floyd and Rlvest, 1975; Hoare, 1981), or via a comparison-based sorting method. In the former two cases, we obtaln llnear worst-case time and linear expected time respectively, regardless of how large or small m is - we might as well choose $m=1$. The constant in the time complexity might be smaller though for $m>1$. If the buckets have cardinallites N_{1}, \ldots, N_{m}, then the time taken by the linear worst-case algorithm is bounded by

$$
V=\alpha n+\beta \max _{1 \leq i \leq m} N_{i}+\gamma m
$$

where $\alpha, \beta, \gamma>0$ are constants, and the middle term describes the contrlbution of the llnear worst-case comparison-based selection algorlthm. While we can obviously bound all of this by $(\alpha+\beta) n+\gamma m$ (which would lead us to the choice $m=1$), it is instructive to minimize $E(V)$. As we will see, it will be to our advantage to take m proportlonal to \sqrt{n}, so that $E(V)=\alpha n+O(\sqrt{n})$ as $n \rightarrow \infty$.

The suggestion to take m proportional to \sqrt{n} was also made by Allison and Noga (1980), but their algorithm is different, in that within a selected bucket, the algorithm is applled recursively. Note that the algorithm suggested here is more space efficient (since it is not recursive) but far less elegant (since it is a hybrid of a bucket algorithm and a fairly complicated Hnear comparison-based selection algorithm).

We note here that $\max N_{i}$ is used in the deflnition of V because we do not know beforehand which order statistic is needed. For example, the situation would be quite different if we were to ask for an average time, where the average is taken over all n possible values for k - in that case, the middle term would have to be replaced by $\beta \sum N_{i}{ }^{2}$, and we can apply some of the analysts of chapter 1.

If sorting is used within a bucket, then the total time for selection is bounded by

$$
V=\alpha n+\beta \max _{1 \leq i \leq m} N_{i} \log \left(N_{i}+1\right)+\gamma m
$$

or

$$
V=\alpha n+\beta \max _{1 \leq i \leq m} N_{i}^{2}+\gamma m
$$

depending upon whether an $n \log n$ or a quadratle sort is used. To obtain a good estimate for $E(V)$, we need good estlmates for $E\left(M_{n} \log \left(M_{n}+1\right)\right)$ and $E\left(M_{n}^{2}\right)$, i.e. for expected values of nonllnear functions of M_{n}. Thls provides some of the motivation for the analysis of section 4.3. In this section, we will merely apply Theorem 4.2 In the deslgn of a fast selection algorithm when a llnear worst-case algorithm is used within buckets. The main result is given in Theorem 4.3: this theorem applies to all bounded densities on $[0,1]$ without exception. It is for this reason that we have to appeal, once again, to the Lebesgue density theorem in the proof.

Theorem 4.3.

Define for positive α, β, γ,

$$
V=\alpha n+\beta \max _{1 \leq i \leq m} N_{i}+\gamma m
$$

where X_{1}, \ldots, X_{n} are lld random variables with bounded density f on $[0,1]:$ $f(x) \leq f^{*}<\infty$ for all x. Then, for any q, m :

$$
\begin{aligned}
& \alpha n+\gamma m+\beta \frac{n}{m} q \leq E(V) \\
& \leq \alpha n+\gamma m+\beta\left(\frac{n}{m} q+\sqrt{2 \frac{n}{m} q \log m} \sqrt{1+e^{s}}\right) \\
& \text { where } s=\sqrt{2 \frac{m}{n q} \log m}
\end{aligned}
$$

If we choose

$$
m=\left\lfloor\sqrt{\frac{\beta}{\gamma} n f^{*}}\right\rfloor
$$

$$
\geq\left(f^{*}\right)^{r}-\epsilon
$$

$$
E(V) \leq \alpha n+2 \sqrt{\beta \gamma n f^{*}}+O\left(n^{\frac{1}{4}} \log ^{\frac{1}{2}} n\right)
$$

and, in fact

$$
E(V)=\alpha n+2 \sqrt{\beta \gamma n f^{*}}(1+o(1))
$$

Proof of Theorem 4.3.

The proof of Theorem 4.3 is based upon a crucial lemma.

Lemma 4.1.

For any bounded density f on $[0,1]^{d}$, and for any sequence $m \rightarrow \infty$, $q=\max _{1 \leq i \leq m} m p_{i} \rightarrow f^{*}=$ ess sup f.

Proof of Lemma 4.1.

We will use the fact that for such $f, \lim _{r \rightarrow \infty}\left(\int|f|^{r}\right)^{1 / r}=f^{*}$ (see Wheeden and Zygmund (1977, pp. 125-128)). Defining the denslty

$$
f_{m}(x)=m p_{i}, x \in A_{i}
$$

on $[0,1]^{d}$, we note that

$$
f^{*} \geq q=\max _{x} f_{m}(x)=\text { ess sup } f_{m} \geq\left(\int f_{m}^{r}\right)^{1 / r} \quad(\text { any } r)
$$

and thus
by cholce of $r=r(\epsilon)$, for arbltrary $\epsilon>0$. Thls concludes the proof of the Lemma.

We continue now with the proof of Theorem 4.3. The starting point is the bound given Immediately following the proof of Theorem 4.2. The cholce of t is asymptotically optlmal when $n q / m \log m \rightarrow \infty$. Since $q \geq 1 \ln$ all cases, thls follows if $n / m \log m \rightarrow \infty$, which is for example satisfled when $m \sim \sqrt{n}$, a cholce that will be convenlent in this proof. The upper and lower bounds for $E(V)$, ignoring lower order terms, are thus roughly $\alpha n+\gamma m+\beta \frac{n}{m} q$. Because $q \rightarrow f^{*}$ (Lemma 4.1), the cholce $m=\left\lfloor\sqrt{\frac{\beta}{\gamma} n f^{*}}\right\rfloor$ is again asymptotlcally optlmal. Resubtitution of this cholce for m glves us our result.

Remark 4.5. [Cholce of m.]

With the optimal cholce for m, we notlce that $E(V) \sim \alpha n$, l.e. the expected value of the tlme taken by the algorithm has only one maln contrlbutor - the set-up of the data structure. The other components, l.e. the traversal of the buckets. and the selection within one partlcular bucket, take expected time $\sim \sqrt{\beta \gamma n f^{*}}$ each. Since f^{*} is unknown, one could use $m \sim \sqrt{n}$ instead, without upsetting the expected time structure: we will still have $E(V)=\alpha n+0(\sqrt{n})$.

When f is not bounded, and / or m is not of the order of \sqrt{n}, the upper bound of Theorem 4.3 should stlll be useful In the majority of the cases. Recall the inequalities for q obtalned in Remark 4.1.

4.3. NONLINEAR FUNCTIONS OF THE MAXIMAL CARDINALITY.

As we have seen In the study of the selection problem, and as we will see in section 4.4 (extremal point problems), it is important to derive the asymptotic behavior of

$$
E\left(g\left(\alpha_{n} M_{n}\right)\right)
$$

where $\alpha_{n} \uparrow$ is a given sequence of positive integers (most often $\alpha_{n} \equiv 1$). $M_{n}=\max _{1 \leq i \leq m} N_{i}$, and $g($.$) is a work function satlsfying some regularity condi-$ tlons. The following condltions will be assumed throughout this section:
(1) g is nonnegative and nondecreasing on $[0, \infty)$.
(ii) $g(x)>0$ for $x>0$
(III) $g^{\prime}(x) \leq a+b x^{s}$ for some $a, b, s>0$, all $x \geq 0$.
(Iv) $\lim _{x \rightarrow \infty} g(x)=\infty$
(v) g is convex.
(vi) g is regularly varylng at infinlty, l.e. there exlsts a constant $\rho \geq 0$ such that for all $u \in R$,

$$
\lim _{x \rightarrow \infty} \frac{g(u x)}{g(x)}=u^{\rho}
$$

Examples of such functions lnclude

$$
\begin{aligned}
& g(x)=x^{2} \\
& g(x)=x^{r}, r \geq 1 \\
& g(x)=1+x \log (1+x)
\end{aligned}
$$

For the properties of regularly varying functions, see Seneta (1976) and Dehaan (1975) for example.

The main result of this section is:

Theorem 4.4.

Let g be a work function satisfying ($1-\mathrm{iv}$, vi), let X_{1}, \ldots, X_{n} be ild random vectors with bounded denslty f on $[0,1]^{d}$, and let the grid have $m \sim c n$ buckets as $n \rightarrow \infty$ for some constant $c>0$. Then, for α_{n} as given above,

$$
\begin{aligned}
& E\left(g\left(\alpha_{n} M_{n}\right)\right) \leq(1+o(1)) g\left(\alpha_{n} \frac{\log \left(\alpha_{n}^{s+1} m\right)}{\log \log \left(\alpha_{n}^{s+1} m\right)}\right) \\
& \sim g\left(\alpha_{n} \frac{\log \left(\alpha_{n}^{s+1} n\right)}{\log \log \left(\alpha_{n}^{s+1} n\right)}\right)
\end{aligned}
$$

If in addition, $g(u) \geq b^{*} u^{s+1}$ for some $b^{*}>0$, and all $u>0$, then

$$
E\left(g\left(\alpha_{n} M_{n}\right)\right) \leq(1+o(1)) g\left(\alpha_{n} \frac{\log n}{\log \log n}\right)
$$

as $n \rightarrow \infty$.
If the work function satifies ($1-11,1 v-\mathrm{vi})$, then

$$
E\left(g\left(\alpha_{n} M_{n}\right)\right) \geq g\left(\alpha_{n} \frac{\log n}{\log \log n}\right)(1+o(1))
$$

If g satisfles (1-vi), $g(u) \geq b^{*} u^{s+1}$, some $b^{*}>0$, all $u>0$, then

$$
E\left(g\left(\alpha_{n} M_{n}\right)\right) \sim g\left(\alpha_{n} \frac{\log n}{\log \log n}\right)
$$

If the work function satisfles ($1-\mathrm{vi}$), then

$$
E\left(g\left(M_{n}\right)\right) \sim g\left(\frac{\log n}{\log \log n}\right)
$$

Proof of Theorem 4.4.

Let us deflne

$$
u=u_{n}=(1+\epsilon) \alpha_{n} \frac{\log \left(\alpha_{n}^{s+1} m\right)}{\log \log \left(\alpha_{n}^{s+1} m\right)}
$$

where $\epsilon>0$ is arbltrary. We always have

$$
\begin{aligned}
& E\left(g\left(\alpha_{n} M_{n}\right)\right) \leq g(u)+\int_{g(u)}^{\infty} P\left(g\left(\alpha_{n} M_{n}\right)>t\right) d t \\
& =g(u)+\int_{u}^{\infty} P\left(\alpha_{n} M_{n}>v\right) g^{\prime}(v) d v \\
& =g(u)+\int_{u / \alpha_{n}}^{\infty} P\left(M_{n}>v\right) g^{\prime}\left(\alpha_{n} v\right) \alpha_{n} d v \\
& \leq g(u)+\int_{u / \alpha_{n}}^{\infty}\left(a+b \alpha_{n}^{s} v^{s}\right) P\left(M_{n}>v\right) \alpha_{n} d v \\
& \leq g(u)+\int_{u / \alpha_{n}}^{\infty}\left(a+b \alpha_{n}^{s} v^{s}\right) m e^{-\frac{n}{m} q} e^{-v \log \left(\frac{v m}{e n q}\right)} \alpha_{n} d v
\end{aligned}
$$

by Lemma 5.5. If we can show that the Integral is $o(1)$, then we have

$$
\begin{aligned}
& E\left(g\left(\alpha_{n} M_{n}\right)\right) \leq g(u)+o(1) \\
& \sim(1+\epsilon)^{\rho} g\left(\frac{\log \left(\alpha_{n}^{s+1} m\right)}{\log \log \left(\alpha_{n}^{s+1} m\right)}\right)
\end{aligned}
$$

by conditions (iv) and (vi) on g. Since ϵ was arbltrary, we have shown the upper bound in the theorem. By convexity of g, the lower bound follows easily from theorem 4.1, Jensen's inequality and (vi):

$$
\begin{aligned}
& E\left(g\left(\alpha_{n} M_{n}\right)\right) \geq g\left(\alpha_{n} E\left(M_{n}\right)\right) \\
& \sim g\left(\alpha_{n} \frac{\log n}{\log \log n}\right) .
\end{aligned}
$$

This leaves us with the proof of the statement that the second term is o (1) Note that $q \leq f^{*}$, and that the bound of Lemma 5.5 remalns valld if q is for mally replaced by f^{*}. It suffices to show that
because $u / \alpha_{n} \dagger \infty$. But the integral can be viewed as a tall-of-the gamma Integral with respect to $d v$. Use $v^{s} \leq 2^{s-1}\left(\left(\frac{u}{\alpha_{n}}\right)^{s}+\left(v-\left(\frac{u}{\alpha_{n}}\right)\right)^{s}\right)$, and $v=\frac{u}{\alpha_{n}}+\left(v-\frac{u}{\alpha_{n}}\right)$ to obtaln an upper bound of the form

$$
\begin{aligned}
& \alpha_{n} m u^{s} 2^{s-1} e^{-\frac{u}{\alpha_{n}} \log \left(\frac{u m}{e \alpha_{n} n q}\right)} \cdot \frac{e^{-\frac{n}{m} q}}{\log \left(\frac{u m}{e \alpha_{n} n q}\right)} \\
& +m \alpha_{n}^{s+1} \frac{s!2^{s-1}}{\left(\log \left(\frac{u m}{e \alpha_{n} n q}\right)\right)^{s+1}} e^{-\frac{u}{\alpha_{n}} \log \left(\frac{u m}{e \alpha_{n} n q}\right)-\frac{n}{m} q}
\end{aligned}
$$

The first of these two terms is asymptotically dominant. It is easlly seen that the first term is

$$
o\left(e^{\log \left(m \alpha_{n}^{s+1}\right)+s \log \left(\frac{u}{\alpha_{n}}\right)-\frac{n}{m} q-\frac{u}{\alpha_{n}} \log \left(\frac{u m}{e \alpha_{n} n q}\right)}\right) .
$$

Note that $\frac{m}{n q}$ remalns bounded away from 0 and ∞. Trivial calculations show that for our cholce of u, the last expression is o (1).

Consider finally all the statements involving the condition $g(u) \geq b^{*} u^{s+1}$ It is clear that if the upper bounds for the integral are $o(g(u))$ instead of $o(1)$ then we are done. Thus, it suffices that the integrals are $o\left(u^{s+1}\right)$, or $o\left(\alpha_{n}^{s+1}\right)$. This follows if

$$
\log m+s \log \left(\frac{u}{\alpha_{n}}\right)-\frac{n}{m} q-\frac{u}{\alpha_{n}} \log \left(\frac{u m}{e \alpha_{n} n q}\right) \rightarrow-\infty
$$

which is satisfled for $u=(1+\epsilon) \frac{\log n}{\log \log n}$.

$$
\int_{u / \alpha_{\pi}}^{\infty} \alpha_{n}^{s+1} v^{s} m e^{-\frac{n}{m} q} e^{-v \log \left(\frac{u m}{e \alpha_{n} n q}\right)} d v=o(1)
$$

Theorem 4.4 is useful because we can basically take the expected value nside g. Recall that by Jensen's Inequality $E\left(g\left(M_{n}\right)\right) \geq g\left(E\left(M_{n}\right)\right)$ whenever g is convex. The opposite Inequallty is provided in Theorem 4.4, i.e. $E\left(g\left(M_{n}\right)\right)$ is $1+0$ (1) tlmes larger than $g\left(E\left(M_{n}\right)\right.$), malnly because M_{n} concentrates its probablllty mas near $E\left(M_{n}\right)$ as $n \rightarrow \infty$.

The conditions on g may appear to be a blt restrictive. Note however that all conditions are satisfled for most work functions found in practice. Furthermore, if g is sufficiently smooth, then $g^{\prime}(x) \leq a+b x^{s}$ and $g(x) \geq b^{*} x^{s+1}$ can both be satisfled simultaneously.

A last word about Theorem 4.4. We have only treated bounded densitles and grids of slze $m \sim c n$. The reader should have no diffculty at all to generalize the techniques for use In other cases. For lower bounds, apply Jensen's inequality and lower bounds for $E\left(M_{n}\right)$, and for upper bounds, use the inequalities given in the proof of Theorem 4.4.

4.4. EXTREMAL POINT PROBLEMS.

Extremal point problems are problems that are concerned with the identiflcation of a subset of X_{1}, \ldots, X_{n} which in some sense deflnes the outer boundary of the "cloud" of points. The outer boundary is important in many application, such as:
(1) pattern recognition: discrimination rules can be based upon the relative position of a point with respect to the outer boundaries of the different classes (see e.g. Toussalnt (1980, 1982))
(II) image processing and computer vision: objects are often characterized (stored) via the outer boundary.
(iII) statistics: points on the outer boundary of a collection of d-dimenslonal points can be considered as outllers, which need to be discarded before further analysis is carrled out on the data.
(Iv) computational geometry: The convex hull, one particularly simple outer boundary, plays a key role in varlous contexts in computational geometry. Often, Information about the polnts can be derived from the convex hull (such as the diameter of the collection of points).

Figure 4.1.
The convex hull and the outer layer of a cloud of points.
We will refer in thls short section to only two outer boundaries: the convex hull (the collection of all $X_{i}^{\prime} s$ having the property that at least one hyperplane through X_{i} puts all $n-1$ remalning points at the same side of the hyperplane), and the outer layer, also called the set of maximal vectors (the collection of all $X_{i}{ }^{\prime} s$ having the property that at least one quadrant centered at X_{i} contalns no $X_{j}, j \neq i$). Once agaln, we will assume that X_{1}, \ldots, X_{n} have a common density f on $[0,1]^{d}$. A grid of size m is constructed in one of two ways, elther by partitioning $[0,1]^{d}$ or by partitioning the smallest closed rectangle covering X_{1}, \ldots, X_{n}. The second grld is of course a data-dependent grid. We will go through the mechanles of reduclng the analysts for the second grid to that of the first grid. The reduction is that given in Devroye (1981). For slmplicity, we will consider only $d=2$.

Figure 4.2.
Cell marking procedure.

For the outer layer in R^{2}, we flnd the leftmost nonempty column of rectangles, and mark the northernmost occupled rectangle in this column. Let its row number be j (row numbers Increase when we go north). Having marked one or more cells in column i, we mark one or more cells in column $i+1$ as follows: (1) mark the cell at row number j, the highest row number marked up to that polnt; (11) mark all rectangles between row number j and the northernmost occupled rectangle in column $i+1$ provided that its row number is at least $j+1$. In this manner a "stalrcase" of at most $2 \sqrt{m}$ rectangles is marked. Also, any point that is a maxlmal vector for the north-west quadrant must be in a marked rectangle. We repeat this procedure for the three other quadrants so that eventually at most $8 \sqrt{m}$ cells are marked. Collect all points in the marked cells, and find the outer layer by using standard algorithms. The nalve method for example takes quadratic tlme (compare each polnt with all other polnts). One can do better by first sorting according to y-coordinates. In an extra pass through the sorted array, the outer layer is found by keeplng oniy partlal extrema in the x direction. If heapsort or mergesort is used, the time taken to find the outer layer of n elements is $O(n \log n)$ in the worst-case.

Figure 4.3.
Finding the outer layer points for the north-west quadrant.

Thus, returning to the data-independent grid, we see that the outer layer can be found in time bounded by

$$
\begin{aligned}
& c_{0} m+c_{1} n+c_{2}\left(\sum_{i \in B} N_{i}\right)^{2} \\
& c_{0} m+c_{1} n+c_{3} \sum_{i \in B} N_{i} \log \left(\sum_{i \in B} N_{i}+1\right)
\end{aligned}
$$

where $c_{0}, c_{1}, c_{2}, c_{3}>0$ are constants and B is the collection of indices of marked cells. The random component does not exceed $c_{2}\left(8 \sqrt{m} M_{n}\right)^{2}$ and $c_{3} 8 \sqrt{m} M_{n} \log \left(1+8 \sqrt{m} M_{n}\right)$ respectively. Clearly, these bounds are extremely crude. From Theorem 4.4, we recall that when $m \sim c n, f$ is bounded, $E\left(M_{n}^{2}\right) \sim\left(\frac{\log n}{\log \log n}\right)^{2}$, and $E\left(M_{n} \log \left(1+M_{n}\right)\right) \sim \log n$. Thus, the expected time is $O\left(n\left(\frac{\log n}{\log \log n}\right)^{2}\right)$ In the former case, and $c_{0} m+c_{1} n+O(\sqrt{n} \log n)$

In the latter case. In the latter case, we observe that the contribution of the outer layer algorithm is asymptotically negliglble compared to the contribution of the bucket data structure set-up. When we try to get rid of the boundedness condition on f, we could argue as follows: first of all, not much is lost by replacing $\log \left(\sum_{i \in B} N_{i}+1\right)$ by $\log (n+1)$ because $\sum_{i \in B} N_{i}=\Omega(\sqrt{m})$ and $m \sim c n$ Thus.

$$
\begin{aligned}
& E\left(\sum_{i \in B} N_{i} \log \left(\sum_{i \in B} N_{i}+1\right)\right) \\
& \leq E\left(\sum_{i \in B} N_{i}\right) \log (n+1) \\
& \leq 8 \sqrt{m} \log (n+1) E\left(M_{n}\right) \\
& \leq 8 \sqrt{m} \log (n+1)\left(\frac{\log m}{t}+\frac{n}{m} q\left(\frac{e^{t}-1}{t}\right)\right) \quad(\text { all } t>0)
\end{aligned}
$$

where $q=\max \left(m p_{1}, \ldots, m p_{m}\right)$ (Theorem 4.2). For constant t, we see that the upper bound is $o(n)+8 n \log (n+1) \frac{q}{\sqrt{m}} \frac{e^{t}-1}{t}$. This is $O(n)$ for example when $q=O\left(\frac{\sqrt{n}}{\log n}\right), m \sim c n$. This is the case when

$$
\int f^{2+\epsilon}<\infty
$$

for some $\epsilon>0$ (Remark 4.1). See however the important remark below.

Remark 4.6 [Optimization with respect fo m.]
We can once again tallor our grld to the problem by choosing m. Recall that an upper bound for the expected time complexity is $c_{1} n+c_{2} m+c_{3} \sqrt{m} \log (n+1)\left(\frac{\log m}{t}+\frac{n}{m} q\left(\frac{e^{t}-1}{t}\right)\right)$ where $c_{1}, c_{2}, c_{3}, t>0$ are constants. We can first choose t to approximately minimize the bound: for example, minimization of

$$
\frac{\log m}{t}+\frac{n}{m} q \frac{t}{2}
$$

suggests the value $t=\sqrt{\frac{2 m \log m}{n q}}$, and we obtain

$$
\begin{aligned}
& c_{1} n+c_{2} m+c_{3} \sqrt{m} \log (n+1)\left(\left(2+o(1) \sqrt{\frac{n q \log m}{2 m}}+\frac{n}{m} q\right)\right. \\
& =c_{1} n+c_{2} m+c_{3} \log (n+1)(\sqrt{2}+o(1)) \sqrt{n q \log m} \\
& +c_{3} \frac{n}{\sqrt{m}} q \log (n+1)
\end{aligned}
$$

If $\frac{m \log m}{n q} \rightarrow 0$. If we now minlmize $c_{2} m+c_{3} \frac{n}{\sqrt{m}} q \log (n+1)$, we obtain the recipe

$$
m=\left(\frac{c_{3}}{2 c_{2}} \cdot n q \log (n+1)\right)^{2 / 3}
$$

Plugging this back into our condition for the use of the bound, we note that it is satisfled in all cases since $n q \rightarrow \infty$. The bound becomes

$$
\begin{aligned}
& c_{1} n+c_{2}^{1 / 3} c_{3}^{2 / 3}\left(\frac{1}{2^{2 / 3}}+2^{1 / 3}\right)(n q \log (n+1))^{2 / 3} \\
& +c_{3}\left(\sqrt{\frac{4}{3}}+o(1)\right) \log n \sqrt{n q \log (n q)}
\end{aligned}
$$

Which term is asymptotically dominant depends upon the density f. If f is bounded, then the upper bound is $c_{1} n+(K+o(1)) f^{* 2 / 3}(n \log n)^{2 / 3}$ where K does not depend upon f and f^{*} is the bound for f. We can also design the grid for a partlcular class of densities. For bounded densitles, we can take

$$
m=\left(\frac{c_{3}}{2 c_{2}} n f^{*} \log n\right)^{2 / 3}
$$

and for densities with $\mu_{r}=\left(\int f^{\tau}\right)^{1 / \tau}<\infty$, we can take

$$
m=\left(\frac{c_{3}}{2 c_{2}} n m^{\frac{1}{\tau}} \mu_{r} \log n\right)^{2 / 3}
$$

or, solving for m :

$$
m=\left(\frac{c_{3}}{2 c_{2}} n \mu_{r} \log n\right)^{\frac{2 r}{3 r-2}}
$$

This ylelds useful cholces for $r>2$. Using $q \leq \mu_{r} m^{1 / r}$, we obtaln the further bound

$$
c_{1} n+O\left((n \log n)^{\frac{2 r}{3 r-2}}\right)
$$

The main conclusion is that if m is growing slower than n, then for certain large classes of densitles, the asymptotically most important component in the expected time complexity is $c_{1} n$. For example, when $\int f^{4}<\infty$, we have $c_{1} n+\mathrm{O}\left((n \log n)^{4 / 5}\right)$.

Of course, the same algorithm and discussion can be used for finding the convex hull of X_{1}, \ldots, X_{n} because for arbitrary points there exist simple $O(n \log n)$ and $O\left(n^{2}\right)$ worst-case algorithms (see Graham (1972), Shamos (1978), Preparata and Hong (1977) and Jarvis (1973)) and all convex hull points are outer layer polnts. In this form, the algorithm was suggested by Shamos (1879).

Remark 4.7. [Bucket structure in polar coordinates.]

Figure 4.4.
Points are ordered according to angular coordinates for use in Graham's convex hull algorithm , bucket algorithm.

The bucket data structure can be employed in unexpected ways. For example, to find the convex hulls in R^{2}, it suffices to transform $X_{1}-x, \ldots, X_{n}-x$ into polar coordinates where x is a point known to belong to the Interior of convex hull of X_{1}, \ldots, X_{n} (note: we can always take $X=X_{1}$). The points are sorted according to polar angles by a bucket sort as described in chapter 2 . This ytelds a polygon P. All vertices of P are vistted in clockwlse fashion and pushed on a stack. The stack is popped when a non-convex-hull point is identifled. In thls manner, we can construct the convex hull from P in linear time. The stack algorithm is based upon ldeas first developed by Graham (1972). It is clear that the expected time of the convex hull algorithm is $O(n)$ if $\int g^{2}<\infty$ or $\int g \log _{+} g<\infty$ where g is the density of the polar angle of $X_{i}-x, i \geq 1$. For example, when X_{1}, \ldots, X_{n} have a radially symmetric density f, and x is taken to be the orlgin, the g is the unlform density on $[0,2 \pi]$, and the algorithm takes $O(n)$ expected time. When x itself is a random vector, one must be careful before concluding anything about the finiteness of $\int g^{2}$. In any case, g is bounded whenever f is bounded and has compact support.

The results about $E\left(M_{n}\right)$, albeit very helpful, lead sometlmes to rather crude upper bounds. Some Improvement is possible along the llnes of Theorem 4.5 (Devroye, 1985).

Theorem 4.5.

Let X_{1}, \ldots, X_{n} be Independent random vectors with common density f on $[0,1]^{2}$, let the grld have m cells, and let $q=\max \left(m p_{1}, \ldots, m p_{m}\right)$. Then, if B is the collection of Indices of marked cell in the extremal cell marking algorithm,

$$
E\left(\sum_{i \in B} N_{i}\right) \leq 8 \sqrt{m} \frac{\frac{n}{m} q}{1-e^{-\frac{n}{m} q}}
$$

In particular, if $m \sim c n$ (for some constant $c>0$),

$$
E\left(\sum_{i \in B} N_{i}\right) \leq(8+o(1)) \frac{\sqrt{\frac{n}{c} q}}{1-e^{-\frac{1}{c}}}
$$

and

$$
E\left(\sum_{i \in B} N_{i}\right) \leq \frac{(8+o(1))}{1-e^{-\frac{1}{\varepsilon}}} n^{\frac{1}{2}+\frac{1}{r}} c^{\frac{1}{r}+\frac{1}{2}}\left(\int f^{r}\right)^{\frac{1}{r}}
$$

for all $r \geq 1$.

Proof of Theorem 4.5.

We note that each N_{i} is stochastically smaller than a binomial (n, p_{i}) random varlable conditloned on the varlable belng at least 1 . Thus,

The first inequallty follows trivially from this. The second inequailty is obvious, and the third inequality is based upon the fact that $q \leq m^{1 / r}\left(\int f^{r}\right)^{1 / r}$.

In the proof of Theorem 4.5, we have not used the obvious inequallty $\sum_{i} N_{i} \leq 8 \sqrt{m} M_{n}$. If we find the outer layer or the convex hull by an $\sum_{i \in B}$ $O(n \log n)$ worst-case tlme method, then under the conditions of Theorem 4.5, with $m \sim c n$, the expected time is bounded by

$$
O(n)+O(\sqrt{n} q) \log n
$$

and this does not improve over the bound obtained when the crude inequallty was used. For example, we cannot guarantee llnear expected tlme behavlor when $\int f^{2}<\infty$, but only when a stronger condition such as $\int f^{2+\epsilon}<\infty$ (some $\epsilon>0$) holds. (We can of course always work on m, see remark 4.8).

There is, however, a further possible improvement along the lines of an outer layer algorthm of Machll and Igarashl (1984). Here we elther find the outer layers in all cells $A_{i}, i \in B$, or sort all points in the individual cells. Then, in another step, the outer layer can be found in time linear in the number of polnts to be processed. Thus, there are three components in the time complexity: $n+m$ (set-up), $\sum_{i \in B} N_{i} \log \left(N_{i}+1\right.$) (or $\sum_{i \in B} N_{i}{ }^{2}$) (sortlng), and $\sum_{i \in B} N_{i}$ (flnal outer layer).
It should be clear that a slmilar strategy works too for the convex hull. The principle is well-known: divide-and-conquer. It is better to delegate the work to the individual buckets, in other words. For example, we always have

$$
\begin{aligned}
& E\left(\sum_{i \in B} N_{i} \log \left(N_{i}+1\right)\right) \\
& \leq 8 \sqrt{m} E\left(M_{n} \log \left(M_{n}+1\right)\right) \\
& \leq 8 \sqrt{m} \log (n+1) E\left(M_{n}\right),
\end{aligned}
$$

and, if we use a more refined bound from the proof of Theorem 4.5 comblned with Lemma 5.8,

$$
E\left(N_{i}\right) \leq \frac{n p_{i}}{1-\left(1-p_{i}\right)^{n}} \leq \frac{n p_{i}}{1-e^{-n p_{i}}} \leq \frac{\frac{n}{m} q}{1-e^{-\frac{n}{m} q}} .
$$

$$
E\left(\sum_{i \in B} N_{i} \log \left(N_{i} \div 1\right)\right)
$$

$$
\leq 8 \sqrt{m} \frac{\frac{n}{m} q \log \left(2+\frac{n}{m} q\right)}{1-e^{-\frac{n}{m} q}}
$$

For example, when $m \rightarrow \infty, n / m \rightarrow \infty, f \leq f^{*}<\infty$, the bound is

$$
\sim \frac{8 n}{\sqrt{m}} f^{*} \log \left(\frac{n}{m}\right) .
$$

The optimal choice for m is proportional to $\left(f^{*} n \log n\right)^{2 / 3}$, so that the expected tlme complexity for the algorithm is $c_{1} n$ (for the set-up) $+O\left((n \log n)^{2 / 3}\right)$. In another example, if $m \sim c n, q \rightarrow \infty$, the upper bound is

$$
\sim \sqrt{n} \frac{8}{\sqrt{c}} q \log q
$$

which in turn is $O(n)$ when $q=O(\sqrt{n} / \log n)$.

We turn now to the problem of data-dependent grids, and in particular grids of size m formed by partitioning the smallest closed rectangle covering all the polnts. For the convex hull and outer layer algorithms considered here, the random terms are elther

$$
\sum_{i \in B} N_{i} \log \left(N_{i}+1\right)
$$

or

$$
\sum_{i \in B} N_{i}^{2}
$$

or

$$
\left(\sum_{i \in B} N_{i}\right)^{2}
$$

otherwise. All these terms are bounded from above by $g\left(\alpha_{n} M_{n}\right)$ where α_{n} is an Integer, g is a work function and $M_{n}=\max _{i \leq i \leq m} N_{i}$. Unfortunately, our analysls of M_{n} and $g\left(M_{n}\right)$ does not apply here because the grld is data-dependent. The dependence is very weak though, and nearly all the results given in this section remaln valld if f has rectangular support $[0,1]^{2}$. (Note: the rectangular support of f is the smallest rectangle R with the property that $\int_{R} f=1$.) To keep thlngs slmple, we will only be concerned with an upper bound for $E\left(g\left(\alpha_{n} M_{n}\right)\right)$ that is of the correct order of increase in n - in other words, we will not be concerned with the asymptotic constant. This case can easily be dealt with via a "shifted grid" argument (Devroye, 1981). Partition $[0,1]^{2}$ (or $[0,1]^{d}$ for that matter) into a grid of slze $m / 2^{d}$ with member cells B_{i}. Then consider for each $\left(j_{1}, \ldots, j_{d}\right) \in\{0,1\}^{d}$ the shifted grid with member cells $B_{i}\left(j_{1}, \ldots, j_{d}\right)$, $1 \leq i \leq \frac{m}{2 d}$, where the shift vector is

$$
\left(\frac{j_{1}}{m^{1 / d}}, \frac{j_{2}}{m^{1 / d}}, \ldots, \frac{j_{d}}{m^{1 / d}}\right)
$$

If divide-and-conquer is used, and

$$
\left(\sum_{i \in B} N_{i}\right) \log \left(\sum_{i \in B} N_{i}+1\right)
$$

The key observation is that every A_{i} in the original data-dependent grid is contalned in some $B_{k}\left(j_{1}, \ldots, j_{d}\right)$. Thus,

$$
M_{n} \leq \max _{j_{1}, \ldots, j_{d}} M_{n}^{*}\left(j_{1}, \ldots, j_{d}\right)
$$

where $M_{n}{ }^{*}\left(j_{1}, \ldots, j_{d}\right)$ is the maximal cardinallty for the $\left(j_{1}, \ldots, j_{d}\right)$ grid. Thus,

$$
g\left(\alpha_{n} M_{n}\right) \leq \sum_{j_{\mathrm{L}}, \ldots, j_{d}} g\left(\alpha_{n} M_{n}^{*}\left(j_{1}, \ldots, j_{d}\right)\right)
$$

Each individual term on the right hand side is for a data-independent grid, for which we can derive several types of inequallties. Thus, typically, the expected value of the right hand side is about 2^{d} times the expected value of one term. For example, if f is bounded and $m \sim c n$, then for α_{n}, g as In Theorem 4.4, the expected value of the right hand side is $\leq(1+o(1)) 2^{d} g\left(\alpha_{n} \frac{\log n}{\log \log n}\right)$.

Chapter 5

AUXILIARY RESULTS FROM PROBABILITY THEORY

5.1. PROPERTIES OF THE MULTINOMIAL DISTRIBU-

 TION.A random vector $\left(Y_{1}, \ldots, Y_{k}\right)$ is multhomalal $\left(n ; p_{1}, \ldots, p_{k}\right)$ when

$$
\begin{gathered}
P\left(Y_{1}=i_{1}, \cdots, Y_{k}=i_{k}\right)=n!\prod_{j=1}^{k} \frac{p_{j}^{i^{\prime}}}{i_{j}!} \\
i_{1}+\cdots+i_{k}=n, i_{j} \geq 0, \text { all } j
\end{gathered}
$$

where $\sum_{j=1}^{k} p_{j}=1$ and all $p_{j}^{\prime} s$ are nonnegative. Y_{1} is said to be binomial $\left(n, p_{1}\right)$.

Lemma 5.1. Moments of the multinomlal distribution; see e.g. Johnson and Kotz, 1969]

For integer $r, s \geq 1$:

$$
\begin{aligned}
& E\left(Y_{i}\left(Y_{i}-1\right) \cdots\left(Y_{i}-r+1\right)\right)=p_{i}^{r} n(n-1) \cdots(n-r+1) \\
& E\left(Y_{i}\left(Y_{i}-1\right) \cdots\left(Y_{i}-r+1\right) Y_{j}\left(Y_{j}-1\right) \ldots\left(Y_{j}-s+1\right)\right) \\
= & p_{i}^{r} p_{j}^{s} n(n-1) \cdots(n-r-s+1), i \neq j
\end{aligned}
$$

$$
\begin{aligned}
& E\left(Y_{i}\right)=n p_{i}, E\left(Y_{i}^{2}\right)=n p_{i}+n(n-1) p_{i}^{2}, \\
& E\left(Y_{i}^{3}\right)=n p_{i}+3 n(n-1) p_{i}^{2}+n(n-1)(n-2) p_{i}^{3}, \\
& E\left(Y_{i}^{4}\right)=n p_{i}+7 n(n-1) p_{i}^{2}+6 n(n-1)(n-2) p_{i}^{2}+n(n-1)(n-2)(n-3) p_{i}^{4},
\end{aligned}
$$

and for $i \neq j$,

$$
\begin{aligned}
& E\left(Y_{i} Y_{j}\right)=n(n-1) p_{i} p_{j} \\
& E\left(Y_{i}\left(Y_{i}-1\right) Y_{j}\left(Y_{j}-1\right)\right)=n(n-1)(n-2)(n-3) p_{i}^{2} p_{j}^{2}
\end{aligned}
$$

and

$$
\begin{gathered}
E\left(Y_{i}^{2} Y_{j}^{2}\right)=n(n-1)(n-2)(n-3) p_{i}^{2} p_{j}^{2} \\
+n(n-1)(n-2)\left(p_{i} p_{j}^{2}+p_{i}^{2} p_{j}\right)+n(n-1) p_{i} p_{j}
\end{gathered}
$$

Lemma 5.2. [Moment generating function of the multinomial distribution.]
The random vector Y_{1}, \ldots, Y_{k} has moment generating function

$$
E\left(\exp \left(\sum_{j=1}^{k} t_{j} Y_{j}\right)\right)=\left(\sum_{j=1}^{k} p_{j} \exp \left(t_{j}\right)\right)^{n}
$$

Lemma 5.3. [Unlform bounds for the moments of a binomial random variable.!

If Y is blnomial (n, p) and $r>0$ is a constant, then there extst $a, b>0$ only depending upon r such that

$$
E\left(Y^{r}\right) \leq a(n p)^{r}+b
$$

Proof of Lemma 5.3.

When $r \leq 1$, we have $E\left(Y^{T}\right) \leq(n p)^{r}$, by Jensen's Inequallty. We wlll thus assume that $r>1$. Anderson and Samuels (1985) have shown that for all $k \geq n p+1, P(Y \geq k) \leq P(Z \geq k)$ where Z is a Poisson ($n p$) random varlable. Thus,

$$
\begin{aligned}
& E\left(Y^{r}\right) \leq(n p+1)^{r}+E\left(Y^{r} I_{Y \geq n p+1}\right) \leq(n p+1)^{r}+E\left(Z^{r} I_{Z \geq n p+1}\right) \\
& \leq(n p+1)^{r}+(n p+r)^{r}+\sum_{k>n p+r} k^{r} \frac{(n p)^{k}}{k!} e^{-n p} .
\end{aligned}
$$

Because $(u+v)^{r} \leq 2^{r-1}\left(u^{r}+v^{r}\right)$, the first two terms in the last sum are not greater than $a(n \bar{p})^{r}+b$ for some constants a, b only depending upon r. The last sum can be bounded from above by

$$
\sum_{k>n p+r}\left(\frac{k}{k-r}\right)^{r} \frac{(n p)^{k-r}}{(k-r)!} e^{-n p}(n p)^{r}
$$

Assume that $n p \geq 1$. Then this 1 s not greater than

$$
(n p)^{r}\left(1+\frac{r}{n p}\right)^{r} \leq(1+r)^{r}(n p)^{r}
$$

For $n p \leq 1$, we have $E\left(Y^{r}\right) \leq 2^{r}+E\left(Z^{r}\right)$ where Z is Polsson (1). Thls concludes the proof of Lemma 5.3.

Lemma 5.4.

Let $g(u)$ be a nonnegative nondecreasing function on $[0, \infty)$, and let Y be binomlal (n, p). Then if $g(u)=0$ on $(-\infty, 0)$,

$$
E(g(Y)) \geq \frac{1}{2} g(n p-\sqrt{n p})
$$

If $p \in\left\{0, \frac{1}{4}\right\}$, we have $E(g(Y)) \geq \frac{1}{2} g(\lfloor n p\rfloor)$.

If also $g(u) / u^{k} \downarrow$ as $u \rightarrow \infty$ for some finlte constant k, then

$$
E(g(Y)) \leq a \max (g(n p), g(1))
$$

for some finite constant a depending upon k only.

Proof of Lemma 5.4.

For any $t \geq 0$, we have $E(g(Y)) \geq g(t) P(Y \geq t)$. Now, by the Chebyshev-Cantell Inequallty,

$$
P(Y \leq n p-\sqrt{n p(1-p)})=P\left(\frac{Y-n p}{\sqrt{n p(1-p)}} \leq-1\right) \leq \frac{1}{1+1}=\frac{1}{2}
$$

Thus,

$$
E(g(Y)) \geq \frac{1}{2} g(n p-\sqrt{n p(1-p)}) \geq \frac{1}{2} g(n p-\sqrt{n p})
$$

The second inequality follows directly from Theorem 2.1 in Slud (1977). Next,

$$
\begin{aligned}
& E(g(Y))=E\left(g(Y) I_{Y \leq n p}\right)+E\left(g(Y) I_{Y>n p}\right) \\
& \leq g(n p)+E\left(\left(g(Y) / Y^{k}\right) Y^{k} I_{Y>n p}\right) \\
& \leq g(n p)+\frac{g(n p)}{(n p)^{k}} E\left(Y^{k}\right) \\
& \leq g(n p)+g(n p) a+b g(n p) /(n p)^{k}
\end{aligned}
$$

where a, b are the constants of Lemma 5.3. If $n p \geq 1$, the last sum is not greater than $g(n p)(1+a+b)$. If $n p \leq 1$, we have $E(g(Y)) \leq E(g(Z))$ $\leq g(1)(1+a+b)$ where Z is a binomial $\left(n, \frac{1}{n}\right)$ random varlable. This concludes the proof of Lemma 5.4.

Lemma 5.5. Maximum of a multinomial random vector.]
Let B be a binomial (n, p) random variable. Then, for arbitrary $x>0$,

$$
P(B \geq x) \leq e^{-n p}\left(\frac{e n p}{x}\right)^{x}
$$

If $\quad N_{1}, \ldots, N_{m}$ is mutnomlal $\left(n ; p_{1}, \ldots, p_{m}\right)$, and $x \geq q$
$=\max \left(m p_{1}, \ldots, m p_{m}\right)$, then

$$
P\left(\max _{1 \leq i \leq m} N_{i} \geq x\right) \leq m e^{-\frac{n}{m} q}\left(\frac{e n q}{m x}\right)^{x}
$$

Proof of Lemma 5.5.

For the first part, we use Chernoffs bounding method (Chernoff, 1952) and note that for any $t>0$:

$$
\begin{aligned}
& P(B \geq x) \leq e^{-t x} E\left(e^{t B}\right)=\left(e^{t} p+1-p\right)^{n} e^{-t x} \\
& \leq e^{-t x+n p\left(e^{t}-1\right)} \\
& =e^{-\log \left(\frac{x}{n p}\right) x+n p\left(\frac{x}{n p}-1\right)}
\end{aligned}
$$

where we took $e^{t}=\frac{x}{n p}$, slnce this chotce minimizes the upper bound. Note that the upper bound remalns valld when B is binomial (n, p^{\prime}), $p^{\prime} \leq p$. For the multinomial distribution, we apply Bonferronl's inequallty.

Lemma 5.6. [Logarithmic moment of the binomial distribution.]
Let Y be binomlal (n, p). Then

$$
E(Y \log (1+Y)) \leq n p \log (2+n p)
$$

Proof of Lemma 5.6.

Let Z be a binomlal ($n-1, p$) random variable. Then, by Jensen's inequal1ty,
$E(Y \log (1+Y))=\sum_{i=1}^{n}\binom{n}{i} i \log (i+1) p^{i}(1-p)^{n-i}$
$=\sum_{i=1}^{n}(n p)\binom{n-1}{i-1} p^{i-1}(1-p)^{(n-1)-(i-1)} \log (i+1)$
$=n p E(\log (Z+2))$
$\leq n p \log (E(Z)+2)$
$\leq n p \log (n p+2)$.

5.2. PROPERTIES OF THE POISSON DISTRIBUTION.

Lemma 5.7. [Exponential Inequality for the Polsson tall.]
If Y is Polsson (λ) distributed, then

$$
P(|Y-\lambda| \geq \lambda \epsilon) \leq 2 \exp \left(-\lambda \epsilon^{2} / 2(1+\epsilon)\right), \text { all } \epsilon>0
$$

Proof of Lemma 5.7.

By Chernoff's bounding technique, we have

$$
\begin{aligned}
& P(|Y-\lambda| \geq \lambda \epsilon) \leq E\left(e^{t(Y-\lambda)}+e^{-t(Y-\lambda)}\right) e^{-t \lambda \epsilon}, \text { all } t>0, \\
& =e\left(e^{\lambda\left(e^{t}-1-t\right)}+e^{\lambda\left(e^{-t}-1+t\right)}\right) e^{-t \lambda \epsilon} \\
& =e^{\lambda\left(e^{t}-1-t\right)} e^{-t \lambda \epsilon}\left(1+e^{\lambda\left(e^{-t}-1+t-e^{t}+1+t\right)}\right) \\
& \leq 2 e^{\lambda\left(e^{t}-1-t-t \epsilon\right)}
\end{aligned}
$$

where we used the fact that $e^{-t} \leq e^{t}-2 t$. The exponent $e^{t}-1-t(1+\epsilon)$ is
minlmal if we take $t=\log (1+\varepsilon)$, and thls glves the bound

$$
2 \exp (\lambda(\epsilon-(1+\epsilon) \log (1+\epsilon))) \leq 2 \exp \left(-\lambda \epsilon^{2} / 2(1+\epsilon)\right)
$$

Here we used the Taylor's serles with remalnder term to obtaln the last inequal lty.

Lemma 5.8. [Fourth moment Inequallty for the Polsson tall.]

If Y is Polsson (λ) distributed, then

$$
P(|Y-\lambda| \geq \lambda \epsilon) \leq \frac{4}{\lambda^{2} \epsilon^{4}}, \text { all } \epsilon>0
$$

Proof of Lemma 5.8.

By Chebyshev's Inequallty,

$$
\begin{aligned}
& P(|Y-\lambda| \geq \lambda \epsilon) \leq \frac{E\left(|Y-\lambda|^{4}\right)}{(\lambda \epsilon)^{4}} \\
& =\frac{\lambda+3 \lambda^{2}}{\lambda^{4} \epsilon^{4}} \leq \frac{4}{\lambda^{2} \epsilon^{4}}
\end{aligned}
$$

Lemma 5.9. [Precise estimates of the Poisson tall.]

Let Y be a Polsson (λ) random varlable, and let k be a fixed integer. Then, for $k+1>\lambda$.

$$
1 \leq \frac{P(Y \geq k)}{P(Y=k)} \leq \frac{k+1}{k+1-\lambda}
$$

Proof of Lemma 5.9.

Observe that

$$
\sum_{j \geq k} \lambda^{j} \frac{e^{-\lambda}}{j!} \leq \lambda^{k} \frac{e^{-\lambda}}{\lambda!} \sum_{j=0}^{\infty}\left(\frac{\lambda}{k+1}\right)^{j}
$$

5.3. THE LEBESGUE DENSITY THEOREM.

In this section we give several forms of the Lebesgue density theorem, that will enable us to obtain theorems without continulty conditions on f. For proofs and additional detalls, we refer to Wheeden and Zygmund (1977) and to de Guzman (1975, 1981).

Lemma 5.10.

Let \mathbf{A} be the class of all rectangles containing the origin of R^{d}, and with sides s_{1}, \ldots, s_{d} satisfying $a_{i} \leq s_{i} \leq b_{i}$ for some fixed positive numbers $a_{i} \leq b_{i}, 1 \leq i \leq d$.

There exists a set $D \subseteq R^{d}$ such that $\lambda\left(D^{c}\right)=0\left(D^{c}\right.$ is the complement of D) and

$$
\sup _{A \in \mathrm{~A}}\left|\int_{x+r A} f / \lambda(x+r A)-f(x)\right| \rightarrow 0 \text { as } r \rightarrow 0 \text {, all } x \in D
$$

Proof of Lemma 5.10

See Wheeden and Zygmund (1977) or de Guzman (1975, 1981).

Lemma 5.11.

Let C be a fixed rectangle of R^{d} with sides c_{1}, \ldots, c_{d}. Let $\left\{A_{n}\right\}$ be a sequence of rectangles tending to C as $n \rightarrow \infty$. Let A_{n} be the collection of all translates of A_{n} that cover the orlgin. Then, for any sequence of positive numbers $r_{n} \downarrow 0$,

$$
\lim _{n \rightarrow \infty} \sup _{A \in \mathrm{~A}_{\mathrm{n}}}\left|\int_{x+r_{n} A} f / \lambda\left(x+r_{n} A\right)-f(x)\right|=0 \text {, almost all } x
$$

The set on which the convergence takes place does not depend upon the cholce of the sequences A_{n} and r_{n}.

Lemma 5.12. [Scheffe's theorem (1947).]
Let f_{n} be a sequence of densitles converging almost everywhere to a density f on R^{d}. Then

$$
\int\left|f_{n}-f\right| \rightarrow 0
$$

as $n \rightarrow \infty$.

Proof of Lemma 5.12..

Note that

$$
\int\left|f_{n}-f\right|=2 \int\left(f-f_{n}\right)_{+} \rightarrow 0
$$

where we used the almost everywhere convergence of f_{n} to f and the Lebesgue dominated convergence theorem.

REFERENCES

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading, Mass. (1983).
S.G. Akl and H. Meljer, "Recent advances in hybrid sorting algorithms," Utilitas Mathematica 21 pp. 325-343 (1982).
S.G. Akl and H. Meljer, "On the average-case complexity of bucketing algo rlthms," Journal of Algorithms 3 pp. 9-13 (1982).
D.C.S. Allison and M.T. Noga, "Selection by distributive partitioning," In formation Processing Letters 11 pp. 7-8 (1980).
T.W. Anderson and S.M. Samuels, "Some inequallites among binomlal and Polsson probabllitles," pp. 1-12 in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Unlverslty of Callfornla Press (1985).
T. Asano, M. Edahlro, H. Imal, M. Irl, and K. Murota, "Practical use of bucketing technlques in computational geometry," pp. O-0 In Computational Geometry, ed. G.T. Toussalnt,North-Holland (1985).
J. Beardwood, J.H. Haiton, and J.M. Hammersley, "The shortest path through many polnts." Proceedings of the Cambridge Philosophical Society $55 \mathrm{pp} .289-327$ (1958).
. R. Bellman, "Dynamic programming treatment of the travelling salesman problem," Journal of the ACM $9 \mathrm{pp}$. 61-83 (1982).
J.L. Bentley, "Solutions to Klee's rectangle problems," Technical Report, Department of Computer Sclence, Carnegle-Mellon University, Plttsburgh, PA. (1977).
J.L. Bentley, D.F. Stanat, and E.H. WIllams, "The complexity of flxedradlus near nelghbor searching," Information Processing Letters 6 pp . 209212 (1977).
J.L. Bentley and J.H. Frledman, "Data structures for range searching," ACM Computing Surveys 11 pp. 397-409 (1979).
J.L. Bentley, B.W. Welde, and A.C. Yao, "Optlmal expected-time algorithms for closest point problems," ACM Transactions on Mathematical Software 6 pp. 583-580 (1980).
J.L. Bentley and D. Wood, "An optlmal worst-case algorithm for reporting intersections of rectangles," IEEE Transactions on Computers C-29 pp. 571-577 (1980).
M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. TarJan, "Time bounds for selection," Journal of Computers and System Sciences 7 pp. 448481 (1873).

- D. Cheriton and R.E. Tarjan, "Finding minimum spanning trees," SLAM Journal on Computing 5 pp. 724-742 (1978).
- H. Chernoff, "A measure of asymptotic efflecency for tests of a hypothesis based on the sum of observatlons," Annals of Mathematical Statistics 23 pp. 493-507 (1852).
Y.S. Chow and H. Telcher, Probability Theory, Springer-Verlag, New York, N.Y. (1978).
N. Christofides, "Worst-case analysts of a new heuristle for the travelling salesman problem," Symposlum on Algorithms and Complexity, Department of Computer Science, Carnegle-Mellon Unlversity (1976).
. L. Dehaan, "On Regular Varlation and its Application to the Weak Convergence of Sample Extremes," Mathematical Centre Tracts 32, Mathematisch Centrum, Amsterdam (1975).
. L. Devroye and T. Klincsek, "Average time behavior of distributive sorting algorthms," Computing 26 pp. 1-7 (1981).
- L. Devroye, "On the average complexity of some bucketing algorithms," Computers and Mathematics with Applications 7 pp. 407-412 (1981).
. L. Devroye, "On the expected time required to construct the outer layer of a set of polnts," Information Processing Letters 0 pp . 0-0 (1985).
L. Devroye, "Expected tlme analysis of algorithms in computational geometry : a survey," pp. 0-0 in Computational Geometry, ed. G.T. Toussalnt,North-Holland (1885).
L. Devroye, "The expected length of the longest probe sequence when the distribution is not uniform," Journal of Algorithms 6 pp. 1-9 (1985).
. L. Devroye and F. Machell, "Data structures in kernel density estimation," IEEE Transactions on Pattern Analysis and Machine Intelligence $7 \mathrm{pp} .380-$ 38 (1985).
. D. Dobkin and R.J. Lipton, "Multidimensional searching problems," SIAM Journal on Computing 5 pp. 181-186 (1978).
. W. Doboslewlcz, "Sortlng by distributlve partitioning," Information Processing Letters 7 pp. 1-8 (1978).
M. Edahiro, I. Kokubo, and T. Asano, "A new polnt-locatlon algorlthm and its practical efficlency -- comparison with existing algorithms," Research memorandum RMI 83-04, Department of Mathematical Engineering and Instrumentation Physics, University of Tokyo (1983).
G. Ehrilch, "Searching and sorting real numbers," Journal of Algorithms 2 pp. 1-12 (1982).
. J.D. Esary, F. Proschan, and D.W. Walkup, "Assoclation of random varlables, with appllcations," Annals of Mathematical Statistics 38 pp. 14681474 (1987).
R. Fagin, J. Nlevergelt, N. Plppenger, and H.R. Strong, "Extendible hashlng - a fast access method for dynamic flles," ACM Transactions on Database Systems 4 pp. 315-344 (1979).
. P. Flajolet, "On the performance evaluation of extendible hashing and trle search," Acta Informatica 20 pp. 345-389 (1983).
. R.W. Floyd and R.L. Rivest, "Expected tlme bounds for selection," Communications of the ACM 18 pp . 185-172 (1975).
. S. Fortune and J. Hopcroft, "A note on Rabln's nearest-nelghbor algorlthm," Information Processing Letters 8 pp. 20-23 (1979).
J. Galambos, The Asymptotic Theory of Extreme Order Statistics, John W1ley, New York, N.Y. (1978).
J. Geffroy, "Contributions a la theorle des valeurs extremes," Publications de l'ISUP 7 pp. 37-185 (1958).
- B.V. Gnedenko, "Sur la dlstribution du terme maximum d'une serle aleatolre," Annals of Mathematics 44 pp. 423-453 (1843).
G.H. Gonnet, "Expected length of the longest probe sequence in hash code searching," Journal of the ACM 28 pp. 289-304 (1981).
G.H. Gonnet, A Handbook of Algorithms and Data Structures, AddisonWesley, Reading, Mass. (1984).
T. Gonzalez, "Algorithms on sets and related problems," Technical Report, Department of Computer Science, Unlversity of Oklahoma (1975).
R. Graham, "An efflclent algorlthm for determining the convex hull of a filte planar set," Information Processing Letters 1 pp. 132-133 (1972).
J. Gurland, "Inequalities for expectations of random varlables derived by monotonlclty or convexlty," The American Statistician 22 pp. 26-27 (1988).
M. de Guzman, "Differentiation of Integrals in R^{n}, \cdots Springer Lecture Notes In Mathematlcs \# 481, Springer-Verlag, Berlln (1975).
M. de Guzman, "Real Varlable Methods in Fourler Analysis," North-Holland Mathematical Studies \#48, North-Holland, Amsterdam (1981).
J.H. Halton and R. Terada, "A fast algorithm for the Euclidean traveling salesman problem, optimal with probabllty one," SIAM Journal on Computing 11 pp. 28-46 (1982).
- J.A. Hartigan, Clustering Algorithms, John Wlley, New York, N.Y. (1975).
C.A.R. Hoare, "Flnd (algorithm 65)," Communications of the ACM 4 pp . 321-322 (1961).
. M. Irl, K. Murota, and S. Matsui, "Linear-tlme approximation algorithms for finding the minimum-welght perfect matching on a plane," Information Processing Letters 12 pp. 206-209 (1981).
. M. Irl, K. Murota, and S. Matsul, "Heurlstlcs for planar minlmum-welght perfect matching," Networks 13 pp. 87-92 (1983).
- R.A. Jarvis, "On the identification of the convex hull of a finite set of points In the plane," Information Processing Letters 2 pp. 18-21 (1973).
. N.L. Johnson and S. Kotz, Urn Models and Their Application, John Wlley, New York, N.Y. (1977).
. R.M. Karp, "Probabllistic analysis of partitloning algorithms for the travellng-salesman problem in the plane," Mathematics of Operations Research 2 pp. 209-224 (1977).
D. Klrkpatrick, "Optlmal search in planar subdivisions," SLAM Journal on Computing 12 pp. 28-35 (1983).
- D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley, Reading, Mass. (1973). 2nd Ed.
. D.E. Knuth. The Art of Computer Programming, Vol. 3 : Sorting and Searching, Addison-Wesley, Readlng, Mass. (1973).
. V.F. Kolchin, B.A. Sevastyanov, and V.P. Chistyakov, Random Allocations, V.H. WInston and Sons, Washington, D.C. (1978).
P.-A. Larson, "Expected worst-case performance of hash files," The Computer Journal 25 pp. 347-352 (1982).
. D.T. Lee and F.P. Preparata, "Location of a point in a planar subdivision and its applications," SLAM Journal on Computing 6 pp. 594-808 (1977).
. E.L. Lehmann, "Some concepts of dependence," Annals of Mathematical Statistics 37 pp. 137-1153 (1986).
R.J. LIpton and R.E. TarJan, "Appllcations of a planar separator theorem," pp. 162-170 in Proceedings of the 18th IEEE Symposium on the Foundations of Computer Science, (1977).
- M. Loeve, Probability Theory, Van Nostrand, Princeton, New Jersey (1983).
- M. Machll and Ȳ. Igarashi, "A hashing method of finding the maxima of a set of vectors." Technlcal Report CS-84-2, Department of Computer Sclence, Gunma Unlversity, Gunma, Japan (1984).
. M.D. Maclaren, "Internal sorting by radix plus slfting," Journal of the ACM 13 pp. 404-411 (1986).
. C.L. Mallows, "An Inequality Involving multinomlal probabllitles," Biometrika 55 pp . 422-424 (1988).
. H. Meljer and S.G. Aki, "The deslgn and analysis of a new hybrid sortlng algorlthm," Information Processing Letters 10 pp. 213-218 (1980).
G. Nagy and S. Wagle, "Geographlc data processing," Computing Surveys 11 pp. 139-181 (1979).
- C.H. Papadimitrlou and K. Stelglitz, "Some complexlty results for the travellng salesman problem," pp. 1-9 In Eighth Annual ACM SIGACT Symposi$u m$, (197e).
- C.H. Papadimitriou, "The Euclidean traveling salesman problem is NPcomplete," Theoretical Computer Science 4 pp. 237-244 (1877).
- R.G. Parker and R.L. Rardin, "The traveling salesman problem : an update of research," Naval Research Logistics Quarterly 30 pp. 68-86 (1983).
. J. PickandsIII, "Moment convergence of sample extremes," Annals of Mathematical Statistics 39 pp. 881-889 (1988).
- F.P. Preparata and S.J. Hong, "Convex hulls of finite sets of points in two and three dlmenslons," Communications of the ACM 20 pp. 87-83 (1977).
- M. Rabin, "Probabllistic algorithms,' in Algorithms and Complexity, ed. J. Traub,Academlc Press, New York, N.Y. (1976).
. H.L. Royden, Real Analysis, Macmillan, London (1988).
. H. Samet, "The quadtree and related hlerarchical data structures," Computing Surveys 16 pp. 187-260 (1984).
- H. Scheffe, "A useful convergence theorem for probabllity distributions," Annals of Mathematical Statistics 18 pp. 434-458 (1047).
- A. Schonhage, M. Paterson, and N. Plppenger, "Finding the median," Journal of Computers and System Sciences 13 pp. 184-199 (1876).
E. Seneta, "Regularly Varying Functions," Springer Lecture Notes in Mathematics \#508, Springer-Verlag, Berlin (1976).
. M.I. Shamos and D. Hoey, "Closest-point problems," Proceedings of the 16 th IEEE Symposium on the Foundations of Computer Science, pp. 151-182

(1975).

M.I. Shamos and J.L. Bentley, "Optimal algorithms for structuring geographlc data," Proceedings of the Symposium on Topological Data Structures for Geographic Information Systems, pp. 43-51 (1977).
M.I. Shamos, "Computatlonal Geometry," Ph.D. Dissertation, Yale Unlverslty, New Haven, Connectlcut (1978).
M.I. Shamos, 1979.
G. Slmons and N.L. Johnson, "On the convergence of binomial to Polsson distrlbutions," Annals of Mathematical Statistics 42 pp. 1735-1736 (1971).
E.V. Slud, "Distribution Inequalltles for the blinomlal law," Annals of Probability 5 pp. 404-412 (1977).
J.M. Steele, "Subadditive Euclldean Punctionals and nonlinear growth in geometric probabllity," Annals of Probability 9 pp. 385-376 (1981).
. K.J. Supowit, E.M. Relngold, and D.A. Plalsted, "The traveling salesman problem and minimum matching in the unit square," SIAM Journal on Computing 12 pp. 144-158 (1983).

- M. Tamminen, "Order preserving extendible hashing and bucket tries," BIT 21 pp. 419-435 (1981).
- M. Tamminen, "Analysis of recursive bucket methods," Report HTKK-TKO-B44, Helsinki Unlversity of Technology, Laboratory for Information Processing Sclence, Otakaarl 1, SF-02150 Espoo 15, Flnland (1982).
M. Tamminen, "The extendible cell method for closest point problems," BIT 22 pp. 27-41 (1982).
. M. Tamminen, "Analysls of N-trees," Information Processing Letters 16 pp . 131-137 (1983).
. M. Tamminen, "Two levels are as good as any," Journal of Algorithms 6 pp . 138-144 (1985).
M. Tamminen, "On search by address computation," BIT 25 pp. 135-147 (1985).
G.T. Toussalnt, "Pattern recognition and geometrical complexity," pp. 1324-1347 in Fifth International Conference on Pattern Recognition, (1980).
G.T. Toussalnt, "Computational geometric problems in pattern recognition," pp. 73-91 in Pattern Recognition Theory and Applications, ed. J. Kıttler, K.S. Fu and L.F. Pau,D. Reldel (1982).
V.K. Valshnavl and D. Wood, "Data structures for the rectangle contalnment and enclosure problems," Computer Graphics and Image Processing 13 pp. 372-384 (1880).
- V.K. Valshnavi, "Computing polnt enclosures," IEEE Transactions on Computers C-31 pp. 22-29 (1982).
- W.B. VanDam, J.B.G. Frenk, and A.H.G. Rinnooy Kan, "The asymptotic behaviour of a distrlbutlve sorting method," Computing 31 pp . 287-303 (1983).
. B.W. Welde, "Statlstlcal Methods in Algorithm Design and Analysis," Ph.D.Dissertation, Carnegle-Mellon Unlversity, Pittsburgh, Pennsylvania (1978).
. R.L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, N.Y. (1977).
- A.C. Yao, "An $O(|E| \log \log |V|)$ algorithm for flnding minlmum spannlng trees," Information Processing Letters 4 pp. 21-23 (1975).
A.C. Yao, "On constructing minlmum spannlng trees in k-dimensional space and related problems," SIAM Journal on Computing 11 pp. 721-738 (1982).
G. Yuval, "Flndlng nearest nelghbors," Information Processing Letters 5 pp. 63-65 (1978).

