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PREFACE 

Hashlng algorlthms scramble da t a  and create pseudo-unlform data dlstrl bii- 
tlons. Bucket algorlthms operate on raw untransformed data whlch are partl- 
tloned lnto groups accordlng to  membershlp In equl-slzed d-dlmenslonal hyperrec- 
tangles, called cells or buckets. The bucket data structure 1s rather sensltlve tr, 
the dlstrlbutlon of the data. In these lecture notes, we attempt to explaln the 
connectlon between the expected tlme of varlous bucket algorlthms and the d1.u- 
trlbutlon of the data. The results are lllustrated on standard searchlng, sortlng 
and selectlon problems, as well as on a varlety of problems In computatlonal 
geometry and operatlons research. 

The  notes grew partlally from a graduate course on probablllty theory In 
computer sclence. I wlsh to thank Ellzabeth Van Gullck for her help wlth the 
manuscrlpt, and Davld Avls, Hanna Ayukawa, Vasek Chvatal, Beatrlce Devroye, 
Hossam El Glndy, Duncan McCallum, Magda McCallum, Godfrled Toussalnt and 
Sue Whltesldes for maklng the School of Computer Sclence at  McGlll Unlverslty 
such a n  enjoyable place. The work was supported by NSERC Grant A3456 and 
by FCAC Grant EQ-1679. 
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It 1s not a secret that methods based upon the truncatlon of data have good 
expected tlme performance. For example, for nlce dlstrlbutlons of the data, 
searchlng 1s often better done vla a hashlng data structure Instead of vla a search 
tree. The speed one observes In practlce 1s due to the fact that the truncatlon 
operatlon 1s a constant tlme operatlon. 

Hashing data structures have not recelved a lot of attentlon In the 1970’s 
because they cannot be At Into the comparlson-based computatlonal model. For 
example, there 1s no generally accepted lower bound theory for algorlthms that 
can truncate real numbers In constant tlme. The few analyses that are avallable 
(see Knuth (1973), Gonnet (1981,1984) and the references found there ) relate to 
the followlng model: the data polnts are unlformly dlstrlbuted over elther [0,1] or 
{l, ..., M}. The unlform model 1s of course motlvated by the fact that I t  1s often 
posslble to And a good hash functlon h (.), 1.e. a function of the data polnts whlch 
dlstrlbutes the data evenly over Its range. In the vast majorlty of the cases, h (.) 
1s not a monotone functlon of Its argument when the argument Is an lnteger or a 
real number. Non monotone functlons have the undeslrable slde-effect that the 
data are not sorted. Although thls Is not Important for searchlng, It 1s when the 
data need to be llsted In sorted order rather frequently. If the data form a data 
base, 1.e. each data polnt can be consldered as a polnt In R with d > 1, then 
range queries can be convenlently handled If the data are hashed vla monotone 
functlons. There 1s an ever lncreaslng number of appllcatlons In computational 
geometry ( see the general survey artlcles by Toussalnt (1980,1982) where appll- 
catlons In pattern recognltlon are hlghllghted ; and the survey artlcle on bucket 
methods by Asano, Edahlro, Imal, Irl and Murota (1985)) and computer graph- 
ics, In whlch the data polnts should preserve thelr relatlve posltlons because of 
the numerous geometrlcal operatlons that have to  be carrled out on them. Polnts 
that are near one another should stay near. In geographic data processing, 
the cellular organlzatlon 1s partlcularly helpful In storlng large amounts of data 
such as satelllte data (see the survey artlcle by Nagy and Wagle, 1979). Many 
tests In statistics are based upon the partltlon of the space In equal Intervals, 
and the counts of the numbers of polnts In these Intervals. Among these, we clte 
the popular chl-square test, and the empty cell test. See for example Kolchln, 
Sevast’yanov and Chlstyakov (1978) and Johnson and Kotz (1977) for appllca- 
tlons In statlstlcs. In economic surveys and management science, the hlsto- 
gram 1s a favorlte tool for vlsuallzlng complex data. The hlstogram Is also a 
superb tool for statlstlclans In exploratory data analysls. In all these examples, 
the order In the data must be preserved. 
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Monotone hash function Typical hash function . 
Figure 0.1. 

If we use monotone or order-preservlng hash functlons, or no hash functlons 
at all, the unlform dlstrlbutlon model becomes suspect. At best, we should 
assume that the data polnts are random vectors (or random varlables) that are 
lndependent and ldentlcally dlstrlbuted. The randomness 1s lmportant because 
we are not lnterested here In worst-case performance. Expected tlme can only be 
analyzed If some randomness 1s assumed on the part of the data. The lndepen- 
dence assumptlon can be defended In some sltuatlons, e.g. In the context of data 
bases for populatlons. Unfortunately In some geometrlcal appllcatlons, partlcu- 
larly lmage processlng, the lndependence assumptlon I s  Just not good enough. 
Notlce that If plxels In a screen were selected lndependently and accordlng to a 
glven dlstrlbutlon, then the composed plcture would be a "pure nolse" plcture. 
In a sense, the more lnformatlon we have In a plcture, the more dependence we 
see between the plxels. Flnally, If we accept the Independence assumptlon, we 
mlght as well accept the ldentlcal dlstrlbutlon assumptlon, except If there 1s some 
nonstatlonary (tlme-dependent) element In the data collectlon process. 

We will only deal wlth d-dlmenslonal real numbers and wlth dlstrlbutlons 
that have densltles. The complexltles of various algorlthms are measured In 
terms of fundamental operatlons. Typically, truncatlon or hashlng 1s one such 
operatlon. We wlll of course assume that real numbers can be truncated and / or 
hashed In tlme lndependent of the slze or the preclslon of the number - recall 
that a slmllar assumptlon about comparing two real numbers 1s needed In the 
well-known comparlson-based complexlty theory. Densltles are convenlent 
because they free us from havlng to conslder dlscretlzatlon problems: If a dlstrl- 
butlon 1s atomlc (Le., I t  puts Its mass on a countable set), and enough data polnts 

are drawn from thls dlstrlbutlon, the number of collldlng values lncreases 
steadlly. In fact, If n lndependent ldentlcally dlstrlbuted random vectors are 
consldered wlth any atomlc dlstrlbutlon, then N / n  - 0 almost surely as 
n 00 where N 1s the number of dlfferent values. Meanlngful asymptotlcs are 
only posslble If elther the atomlc dlstrlbutlon varles wlth n , or the dlstrlbutlon 1s 
non-atomlc. There 1s another key argument In favor of the use of densltles: they 
provlde a compact descrlptlon of the dlstrlbutlon, and are easlly vlsuallzed or 
plotted. 

When lndependent random vectors wlth a ccmmon denslty are partltloned 
by means of a d-dlmenslonal grld, the number of grld locatlons (or buckets) wlth 
at least 2 polnts has a dlstrlbutlon whlch depends upon the denslty In questlon. 
The denslty affects the frequency of colllslons of data polnts In buckets. For 
example, lf the denslty 1s very peaked, the buckets near the peak are more llkely 
to contaln a large number of polnts. We want to lnvestlgate how thls crowdlng 
affects the performance of algorlthms of bucket or grld algorlthms. 

Throughout thls set of notes, we wlll conslder a d-dlmenslonal array of equl- 
shed rectangles (whlch we wlll call a grld), and wlthln each rectangle, polnts are 
kept ln a chain (or llnked llst). The number of rectangles wlll be denoted by m , 
and the data slze by n. We wlll not conslder lnflnlte grlds such as 
{ [i ,i +1) I i Integer} because lnflnlte arrays cannot be stored. However, because 
data may grow not only In slze but also In value as n - 00, we wlll conslder at 
tlmes grld'slzes m that are data value dependent. In any case, rn 1s usually a 
functlon of n . 
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Figure 0.2. 
2d Grid 

The purpose of thls collectlon of notes 1s to glve a varlety of probablllty 
theoretlcal techniques for analyzlng varlous rant om variables related to the 
bucket structure descrlbed above. Such random varlables lnclude for example, 
the average search tlme, the tlme needed for sortlng, the worst-case search tlme 
and other nonllnear functlons of the cardlnalltles N, ,  . . . , N,  of the buckets. 
The probablllty theoretlcal technlques have several features: they are general (for 
example, the Lebesgue denslty theorem 1s needed In cruclal places In order to 
avold havlng to  lmpose any smoothness condltlons on the densltles), and when- 
ever posslble, approprlate probablllty lnequalltles are lnvoked (for example, heavy 
use 1s made of Jensen's lnequallty (see e.g. Chow and Telcher (1978)) and 
Chernoffs exponentlal boundlng technlque (Chernoff (1952))). Slnce 
N , ,  . . . , N,  Is multlnomlally dlstrlbuted for a data-lndependent grld, and the 
Ni ' s  are thus not lndependent, I t  Is sometlmes useful to  use an embeddlng 
method that relates the multlnomlal vector to a vector of lndependent Polsson 
random varlables. Thls method 1s commonly called Polssonlzatlon. Even In our 
Polssonlzatlon, we choose to rely on lnequalltles because only lnequalltles wlll 

help us In the assessment of the expected tlme performance for partlcular values 
of n. 

The polnt 1s that we do not wlsh to  glve an exhaustlve descrlptlon of known 
results In the fleld, or to present' a llst of exotlc appllcatlons. We start very 
slowly on standard problems such as one-dlmenslonal sortlng and searchlng, and 
wlll move on to  multldlmenslonal appllcatlons towards the end of the notes. 
These appllcatlons are In the areas of computatlonal geometry, operatlons 
research (e.g. the travellng salesman problem) and pattern recognltlon (e.g. the 
all-nearest nelghbor problem). 

In chapter 1, we have the slmplest of all posslble settlngs: the random varl- 
ables X , ,  . . . , X,, have a common denslty f on [0,1], and [0,1] Is dlvlded lnto 

m equal lntervals Ai = [ i-1 m m  , "1, 1st' srn . We are concerned wlth the 

slmplest posslble measures of performance In searchlng and sortlng such as the 
average successful search tlme (called D s )  and the number of element comparls- 
ons for sortlng (called C). If m = n , and f 1s unlform on [OJ], then each 
lnterval recelves on the average one data polnt. It 1s well-known that 
E (Ds ) = 0 (1) and E ( C )  = 0 (n ) In that case. It 1s also known that the den- 
slty f affects the dlstrlbutlon of quantltles such as Ds and c .  We wlll see that 

E ( D s )  - 1 + -jf as n-oo. The factor If ', whlch 1s 

a measure of the peakedness of the denslty f , affects the performance In a 
dramatlc way. For example, when If ' = 03, we have E ( c ) / n  -+ oo and 
E ( D s )  + oo as n + 00. In other words, bucket sortlng takes llnear expected 
tlme If and only If J f  

Whlle most users wlll be qulte satlsfled wlth lnformatlon about E ( C ) ,  some 
may doubt whether the expected value ls a good measure of the state of affalrs. 
After all, E ( C )  1s an estlmate of the tlme taken per sort lf averaged over a large 
number of sorts. The actual value of C for one lndlvldual sort could be far away 
from Its mean. Fortunately, thls 1s not the case. We wlll see that 
C / n -  --t 211 In probablllty as n - 00: thus, If If < 00 , C / E  ( C )  -+ 1 In 

probablllty. For large n ,  even If we tlme only one sort, I t  Is unllkely that 
C / E  (C  ) 1s far away from 1. Of course, slmllar results are valld for Ds and the 
other quantltles. 

We can take our analysls a blt further and ask what the varlatlon Is on ran- 
dom varlables such as C .  In other words, how small 1s C - E ( c )  or 
Ds - E (Ds )? Thls too 1s done In chapter 1. The answer for c 1s the following: 

1 n 
2 2 

and E ( C )  - -If 

< 00. 

1 

1 
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In other words, c - E ( c )  1s of the order of 6 whereas E (C ) ltself 1s of the 
order of n . Varlances are used by statlstlclans to obtaln an upper bound for 

: P ( C - E ( C )  2 E )  

vla the Chebyshev-Cantelll lnequallty: 

Vur (C) 
c2+ Vur (C) 

P ( C - E ( C )  2 €) 5 

Sometlmes, thls lnequallty 1s very loose. When E 1s large compared to 6, there 
are much better (exponentlal) lnequalltles whlch provlde us wlth a lot of 
confldence and securlty. After all, If C 1s extremely unllkely to be much larger 
than E (C  ), then the usual worst-case analysls becomes almost meanlngless. 

We close chapter 1 wlth an attempt at reduclng the dependence upon f . 
The ldea 1s to apply the bucket method agaln wlthln each bucket. Thls wlll be 
called double bucketlng. The rather surprlslng result 1s that double bucketlng 
works. For example, when If < 00, we have 

1.e. the asyrnptotlc coefflclent of n 1s the expected range of the data (thls meas- 
ures the heavlness of the tall of f ) tlmes If 2, the measure of peakedness. 
Unless f vanlshes outslde a compact set, I t  1s lmposslble to have 
E ( C )  = O ( n ) .  

In chapter 3, we look at multldlmenslonal problems In general. The appllca- 
tlons are so dlfferent that a good treatment 1s only posslble If we analyze 

I = I  

where g (.) 1s a “work functlon”, typlcally a convex posltlve functlon. The maln 
result of the chapter 1s that for m = n , the expected value of thls sum 1s 0 (n)  
If and only If f has compact suppon, and 

The detalled analysls of chapter 1 1s well worth the effort. The development 
glven there can be mlmlcked In more compllcated contexts. It would of course be 
unwlse to do so In these notes. Rather, from chapter 2 on, we wlll look at varl- 
ous problems, and focus our attentlon on expected values only. From chapter 2 
onwards, the chapters are lndependent of each other, so that Interested readers 
can lmmedlately sklp to the subJect of thelr cholce. 

In chapter 2 ,  the data X,, . . . , X, determlne the buckets: the lnterval 
[mln Xi , max X i ]  1s partltloned lnto n equal Intervals. Thls lntroduces addl- 
tlonal dependence between the bucket cardlnalltles. The new factor worklng 
agalnst us 1s the slze of the tall of the dlstrlbutlon. 
and max XI to dlverge, and If the rate of dlvergence 1s uncontrolled, we could 
actually have a sltuatlon In whlch the slzes of the lntervals lncrease wlth n In 
some probablllstlc sense. The study of E ( D s ) ,  E ( C )  and other quantltles 
requlres auxlllary results from the theory of order statlstlcs. Under some condl- 
tlons on f , lncludlng If 

j Inflnlte talls force mln Xi 

< 00, we wlll for example see that 

provlded that g (.) 1s a “nlce” functlon. Some appllcatlons In computatlonal 
geometry and operatlons research are treated In separate sectlons of the chapter. 

In some problems, we need to have assurances that the expected worst-case 
1s not bad. For example, In the slmple one-dlmenslonal bucket data structure, 
the worst-case search tlme for a glven element 1s equal to the maxlmal cardlnal- 
lty. Thus, we need to know how large 

max(iVi ) 

1s. Thls quantlty 1s analyzed In chapter 1. If f 1s bounded on a compact set of 
. If f IS not log n 

R d ,  and m = n  then Its expected value Is asyrnptotlc to log log n 
bounded, then Its expected value could lncrease faster wlth n . Thls result 1s for 
example applled to Shamos’ two dlmenslonal convex hull algorlthm. 
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Binary trie for points distributed on [0,1]. 
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so that c, -* c as n + 00.) We do so because we are malnly lnterested In 
searchlng and sortlng. Roughly speaklng, we can expect to sort the data In tlme 
O ( n )  and to search for an element In tlme o(1). If m = o (n), the average 
number of polnts per lntenral grows unbounded, and we cannot hope to sort the 
data In tlme O ( n ) .  On the other hand, lf m/n + 00, the overhead due to 
housekeeplng (e.g., travellng from bucket to bucket), whlch 1s proportlonal to m , 
and the storage requlrements are both superllnear In n. Thus, there are few 
sltuatlons that warrant a subllnear or superllnear cholce for m . 

Whlle we do generally speaklng have some control over m , the grld slze, we 
do not have the power to determlne d ,  the dlmenslon. Raw bucket algorlthms 
perform partlcularly poorly for large values of d . For example, lf each axls 1s cut 
lnto two Intervals, then the grld slze 1s 2 d .  There are problems In whlch fLd ls 
much larger than n, the sample slze. Thus, storage llmltatlons wlll keep us from 
creatlng flne mazes In large dlmenslons. On the other hand, lf rough grlds are 
employed, the dlstrlbutlon of polnts Is probably more uneven, and the expected 
tlme performance deterlorates. 

It ls sometlmes lmportant to have bucket structures whlch are allowed to 
grow a d  shrlnk dynamlcally, 1.e. structures that can handle the operatlons lnsert 
and delete emclently. The essentlal lngredlent In such a structure ls an auxlllary 
array of bucket cardlnalltles. One can choose to spllt lndlvldual buckets once a 
certaln threshold value ls reached. Thls leads to  a tree structure. If a bucket can 
hold at most one element, then one obtalrq In fact a blnary trle (Knuth, 1973). 
Another strategy conslsts of spllttlng all buckets In two equl-sfzed buckets slmul- 
taneously as soon as the global cardlnallty reaches a certaln level. In thls manner, 
the number of buckets ls guaranteed to be a power of two, and by manlpulatlng 
the threshold, one can assure that the ratlo of polnts to buckets 1s a number 
between 1 and 2 for example. Thls has the addltlonal advantage that lndlvldual 
bucket counts are n d  necessary. Also, no polnters for a tree structure are needed, 
slnce data polnts are kept In llnked llsts wlthln buckets. Thls dyadlc dynamlc 
structure Is at the basls of the extendlble hash structure descrlbed and analyzed 
In Fagln, Mevergelt, Plppenger and Strong (1979), Tammlnen (1981) and Flajolet 
(1983). Tammlnen (1985) compares extendlble hashlng wlth ordlnary bucketlng 
and varlous types of trles. See Tammlnen (1985) and Samet (1984) for multldl- 
menslonal trles. To keep these notes slmple, we wlll not analyze any tree struc- 
tures, nor wlll we speclflcally deal wlth dynamic bucket structures. 

A last remark about the grld slze m. Usually, we wlll choose m such chat 
m = m (n ) - cn for some constant c > 0. (The ratlo m /n wlll be called c, , 
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Chapter 1 

CHAPTER -1 CHAPTER 1 11 

ANALYSIS OF BUCKET SORTING 
AND SEARCHING 

1.1. EXPECTED VALUES. 
In thls chapter, f ls a denslty on [0,1], whlch 1s dlvlded lnto m lntervals 

The quantltles of lnterest to us here are those that matter In sortlng and search- 
lng. If sortlng 1s done by performlng a selectlon sort wlthln each bucket and con- 
catenating the buckets, then the total number of element comparlsons 1s 

where, by- definltlon, 

m 
T Ni2. 

. i=1 

5 
Figure 1 .I. 

Bucket structure with n=l7 points, m=l2 buckets. 

The other work takes tlme proportlonal to m , and Is not random. Selectlon sort 
was only chosen here for I t s  slmpllclty. It Is clear that for quadraflc comparison- 
based sortlng methods, we wlll eventually have to study T. 

To search for an element present In the data, assumlng that all elements are 
equally llkely; to be querled, takes on the average 
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comparlsons. Thls wlll be referred to as the M S T  (Average Successful Search 
Tlme). Note thst  DS Is a functlon of the Ni 's and 1s thus a random varlable. 

To search for an element not present In the data (l.e., an unsuccessful 
search), we m u m e  that the element querled 1s lndependent of the data 
and dlstrlbuted as XI. The expected number of comparlsons condltlonal on the 
data 1s 

where only comparlsons wlth non-empty cells In the data structure are counted. 
D ,  wlll be called the AUST (Average Unsuccessful Search Tlme), and p i  1s the 
lntegral of f over A i .  

The propertles of thls slmple bucket structure for sorting and searchlng have 
been studled by Maclaren (1966), Doboslewlcz (1978) and Akl and Meljer (1982). 
In thls chapter, we wlll unravel the dependence upon f . To get a rough ldea of 
the dependence, we wlll start wlth the expected values of the quantltles defhed 
above. 

Theorem 1.1. 
Let f be an arbltrary denslty on [0,1]. Then, even If sf = 00, 

1 
C 

E ( T ) / n  - 1 + -Jf ; 

1 E(C)/n - -Jf 
2 c  ' 
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Furthermore, E ( T )  = o(n2) ,  E(C) = o(n2) ,  E ( D u )  = o ( n )  and 
E ( D s )  = o(n) .  

I I I 

Density with low value for Density with high value for 
square integral square integral 

Figure 1.2. 

Theorem 1.1 sets the stage for thls paper. We see for example that 
E ( T )  = 0 (n ) if and only I If < 00. Thus, for hashlng wlth chalnlng, J12 
measures to some extent the Intluence of f on the data structure: i t  1s an lndl- 
cator of the peakedness of f . In the best case (Jf < oo), we have llnear 
expected tlme behavlor for sortlng, and constant expected tlme behavlor for 
searching. Thls fact was flrst polnted out In Devroye and Kllncsek (1981). Under 
strlcter condltlons on f (f bounded, etc.), the glven expected tlme behavlor was 
establlshed In a serles of papers; see e.g. Doboslewlcz (1977), Welde (1978). MeUer 
and Akl (1980) and Akl and LMelJer (1982). Theorem 1.1 glves a characterlzatlon 
of the densltles wlth If = 00 In terms of quantltles that are lrnportant In com- 
puter sclence. It also provldes us wlth the form of the "best" denslty. Because 
J f  * 2 (If )2 = 1 (Jensen's lnequallty), and If = 1 for the uniform density 
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on [0,1]. we see that all the expected values In Theorem 1.1 are mlnlmal for the 
uniform density. 

Theorem 1.1 does not give the rate of increase of E (T ) as a functlon of n 
when If N i 2  can reach Its maximal 

value n 2  (Just set N 1 = n ,  N2= . . . =Nm =O), we have E (T) = o (n') for all 
densltles f . Thus, hashing with chalnlng when used for even the most peaked 
density, must dramatlcally improve the expected time for sorting and searching 
when n Is large. 

m 
= 00. However, even though T = 

I =1 

Proof of Theorem 1.1. 

places: 
The proof Is based upon a fundamental Lemma that wlll be useful In several 

CHAPTER 1 1s 

(111) follows from (11) and a small addltlonal argument: the upper bound In 

(11) - (-)r-ln C If r .  Furthermore, by Fatou's Lemma and the Lebesgue denslty 

theorem (see Lemma 5.10 for one verslon of this theorem), we have 

1 

= ~ i m l n f  --[:Ir 1 m I f n r  (where fn(x)=mpi f o r x E A i )  
n -00 

r-1 

If (because f,, -+ f for almost all X ). 

Lemma 1.1. 

Note that f, Is the histogram approximation of f . 
(I) m F  pi = o (1) as m --roo. 

F 

(111) For all r 2 1. 

Proof of Lemma 1.1. 
(1) follows from the absolute cohtlnulty of f , Le. for each E > 0 we can flnd 

a 6 > 0 such that for all sets A with J d x  < 6, we have s f < E .  
A A 

(11) follows from Jensen's Inequality: 
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The 
m 

f - 

The proof of Theorem 1.1 Is slmple. Observe that each Ni 1s a blnomlal 
(n , p i  ) random varlable and thus E (Ni ' )= (np i  )2+np i  (1-pi ). Thus, 

by Lemma 1.1 (111). Also, by Lemma 1.1 

E ( T )  = o (71'). All the other statements In th  
tlons: 

and 

m 

i = 1  
(111). p i 2  = o (l), so that 

Theorem follow from the rela- 

5 2 Figure 1.3. A 10 1.2. WEAK CONVERGENCE. A 

Density f and its histogram approximation In the prevlous sectlon, we obtalned an asymptotlc expresslon for E ( T ) .  
One should not exaggerate the lmportance of such a quantlty unless I t  1s known 
that T-E ( T )  Is usually "small". For example, lf we could show that 
T / E ( T )  + 1 In probablllty, then we would be satlsfled wlth our crlterlon 
E ( T  ). In addltlon, slnce T / E  ( T )  Is closed to 1 for large n , the value of T 

second half of (111) follows from (1) and the lnequallty obtalned In one partlcular case (Le., run; slmulatlon) Is probably representatlve of 
m 

pi' 5 max p i .  c 
i = l  i = I  

nearly all the value8 that wlll be obtalned In the future for the same n. The 
maln result here 1s 
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Theorem 1.2. 

Let If < 00 . Then : 

1 
C 

T / n  + 1+-jf  * In probablllty ; 

c / n  + - If 
D, + 1 + - If 

1 
2 c  

In probablllty : 

1 
2 c  

In probablllty ; 

and 

D, + f ' In probablllty . 

CHAPTER 1 

The proof of the Theorem uses Polssonlzatlon to  handle the fact that 
N , ,  . . . , N ,  are dependent random varlables. For some propertles of the Pols- 
son dlstrlbutlon used here, we refer to sectlon 5.1. We proceed now by extractlng 
a key Lemma: 

Lemma 1.2. 
Let If 

Then 
< 00. Let Ni be Polsson (npi ) random variables 1 5 i 5 m . 

l r n  llm llm sup - E ( Y i )  = o 
K+UJ n-rco  n i = l  

where Yi 1s either 

CHAPTER 1 19 

and I 1s the lndlcator functlon. 

Proof of Lemma 1.2. 
It 1s useful to recall a simple assoclatlon lnequallty: If &$I are nondecreaslng 

nonnegatlve functlons of thelr arguments, and x 1s an arbltrary real-valued ran- 
dom varlable. then E ($(X)$(x)) 3 E (Q(x))E (?b(x)) (see e.g. Lehmann (leas), 
Esary, Proschan and Walkup (1967). and Gurland (lQ68)). For example. applled 
here, 

Thus, we need not conslder (11). We wlll deal wlth (111) flrst. 

(where f ,  1s the functlon of sectlon 1.1) 

5 I, 2 K c / 2  for almost dl Now, n lm + l / c  . Also, I / . ,K , / ,  
f (2) > 0, and all n large enough (thls uses the fact that / n  * 

for whlch 
rlt'fiost 
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all 2 ;  see sectlon 5.3.) Slnce If ' < 00, we thus have by the Lebesgue dom- 
lnated convergence theorem, 

and thIs can be made arbltrarlly small by chooslng K large enough. 

only. 
Conslder now (I). Let L > 0 be an arbltrary constant, dependlng upon K 

A slmple appllcatlon of (Ill) shows that the flrst term on the rlght-hand-slde has a 
llmlt supermum that Is o(1)  as L -c 00. Thus, we should choose L In such a 
way that L 00 as K -* 00. The second term on the rlght-hand-slde Is 

5 (c +o (1)) E ( Y 2 I y > m  ) (where Y 1s Polsson (a) dlstrlbuted) 

5 (c +o (1)) E ( Y 3 / a  ) (by Chebyshev's Inequallty) 

- 

= (e +o (1)) (L 3"+3L +a )/a. 
Thls tends to 0 as K -+ 00 when we choose L = K 'I4. The proof of Lemma 1.2 
1s complete. 

Proof of Theorem 1.2. 
The results for C and Ds follow from the result for T. One posslble Pols- 

sonlzatlon argument goes as roiiows: let n r  = n -n3I4 , n r  I = n +n314. Let 
N' , N' be Polsson (n'  ) and Polsson (n '  ) respectlvely. Let Ni' be a 
number of Xi' s, l < j  <N' ' belonglng to Ai. It 1s clear that 
Nl' , . . . , N,' are Independent Polsson random varlables wlth parameters 

n '  pi, l < i < m .  Flnally, let T' = Ni , T' ' = N; . For arbl- 

trary E > 0 we have 

, 2  1 1 2  

i = I  i=1 

< -n3/4/nI I 1 N-n'  
n '  Uslng Theorem 5.5, we have P (N' < n  ) = P (  

5 2 exp(-n312/(2n' ' (l+-))). Thus, for all n large enough, 
3/4 

n '  ' 

Slmllarly. 

all n large enough. Now, all the probabllltles lnvolvlng T' and T' I are o(1)  

lf both T' / n '  and T' /n' ' tend to 1 + - I f 2  In probablllty. Thus, the 

statements about T I  C and Ds are valld lf we can show the statement about. T 
where T = Ni2 and N,, . . . , Nm are lndependent Polsson random varl- 

ables wlth parameters npi , 1 5 i 5 rh. 

1 
C 

m 

i =I 

Flrst. we note that by Lemma 1.1, 
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1 
C 

m 
E ( T  = ( n  2pi  2+npi ) - n (i+-Jf 2). 

I E l  

To show that ( T - E ( T ) ) / n  -+ 0 In probablllty (whlch 1s all that Is left), we 
could verlm the condltlons of the weak law of large numbers for trlangular arrays 
of non-ldentlcally dlstrlbuted random varlables (see e.g., Loeve (1063, p. 317)). 
Instead, we wlll proceed In a more dlrect fashlon. We wlll show the stronger 
result that E (IT -E ( T  ) l ) /n  -+ 0. We have 

and 

Now, flrst choose K large enough so that Ilm supE(f I l ) /n  < E , where E Is an 

arbltrary posltlve Integer. (Thls can be done In vlew of Lemma 1.2.) Now, we 
need only show that for every K ,  E ( I U ) / n  + 0. But thb 1s an lmmedlate 
consequence of the fact that the Y i - E ( Y i )  terms are lndependent zero mean 
bounded random varlables (see e.g. sectlon 10 of Loeve (1083)). 

Thls completes the flrst part of the proof of Theorem 1.2. The argument for 
D, Is left as an exerclse: flrst, argue agaln by Polssonlzatlon that I t  sufflcea to 

n 403 

conslder lndependent Ni's that are Polsson (npi )  dlstrlbuted. Then note that we 

need only show that 
m 

i - 1  
p i  (Ni -npi )-+O In probablllty. 

1.3. VARIANCE. 
The results obtalned so far are more qualltatlve than quantltatlve: we know 

now for example that E ( T )  grows as n ( l + - J /  2, and that I T - E ( T ) I / n  tends 

to 0 In probablllty and In the mean. Yet, we have not establlshed just how close 
T Is to  E ( T  ). Thus, we should take our anslysls a step further and get a more 
reflned result. For example, we could ask how large var ( T  ) 1s. Because of the 
relatlons between C. Ds and T .  we need only conslder V a r ( T )  as 
Var ( C  )= Var ( T  )/4 and Var (D, )=Vat ( T  ) / (4n 2). Vur (D, ) 1s treated 
separately. 

1 
C 

Theorem 1.3. 
A. For all f , we have 

where the rlght-hand-side remalns valld even 11 J f  ' or 
avold 00--03, conslder only the lowest bound In such sltuatlons.) 

are lnfinlte. (To 

8. For all f 

n Var (Dv) - c - ~  (J/ - (Jf 2)2). 

Here, the rlght-hand-slde should formally be consldered as 00 when elther 
J f = 00 or J f = 00. 

We note that for all 1 , ( J j  ')' 5 I j  (Jensen's lnequallty), and that equal- 
lty 1s reached for the unlform denslty on [ O . l ] .  Thus, once agaln. the unlform 
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denslty mlmlnlzes the "cost", now measured In terms of varlances. In fact, for 

the unlform denslty, we have var ( 0 ~ )  = 0. all n , and Var (T)=2n4--+- 
n n 2  

when c =1, m = n  . 
For the proof of Theorem 1.3, the reader should consult sectlon 5.1 flrst. We 

note here that the Polssonlzatlon trlck of sectlon 1.2 1s no longer of any use 
because the varlance lntroduced by I t ,  say, Var (T' - T )  for n' = n  (see nota- 
tlon of the proof of Theorem 1.1). grows as n , and 1s thus asyrnptotlcally nonne- 
gllglble. 

4 6  

Proof of Theorem 1.3. 
Conslder T flrst. We wlll repeatedly use Lemma 5.1 because N , ,  . . . , N ,  

are multlnomlal ( n  ,p . . . , p,). Thus, omlttlng the fact that we are con- 
stantly summlng for i and j from 1 to m we have 

= C [ n 2 ( n - 1 ) 2 p i 4  + 2n2(n-1)pj3 + n 2 p i 2 ]  

+ [ n 2 ( n - 1 ) 2 p i 2 p j 2  + n 2 ( n - l ) ( p j p j 2 + p i 2 p j )  + n 2 p i p j ]  
i # j  

where we used the fact that E2(Ni )  = n (n- l )p i2  + n p j .  Uslng varlous expres- 
slons from Lemma 5.1, we have 

E ( T 2 )  = CE (Ni + E (Ni ' N j  2, 
i # j  

= C[npi+7n ( n - l ) p i 2 + 6 n  (n-l)(n-2)pj3+n (n-l)(n-2)(n-3)pi4] 

+ [n (n  -l)(n -2) (n-3)& * p j  2+n (n - l ) ( n  -2)(& p j  2+Pi 2Pj  )+n ( n - l ) P i  P ,  
i # i  

Because Var (T)=E ( T2)-E2( T), we have 

Var ( T )  = C((-4n3+10n2-6)p;4+(4n3-16n2+12)pi3+(6n2-7n)pi 2+npi 

+ [(4n3+10n2-6)pi2pj2+(-2n2+2n)(~i2pj + p i p j 2 ) + ( - n ) p i  p j ] .  
i # I  

Uslng the facts that Cpi = 1. p i p i  = C p i ( l - p i )  = 1-Cpi2. 
i # j  i # j  

p i 2 p j  

= Cpi 2(i-pi  ) = Cpi 2-pi ', and p i  2 p j  = CPi 2 ( ~ ~  j 2 - ~ ;  2, 
i #i 

= (Cpi 2)2-Cpi, we see that 

Var (T) = (4n3+10n2-6)(Cpi2)2 

+ (4n3-12n24n+12)Cpi3 + (2n2-2n)Cpj2.  

By Lemma 1.1, we have for all constants r 
Thus, If If < 00, 

1 1, Cpi - (nc )4r-1)Jf . 

whlch glves us our expresslon. The rlght-hand-slde of thls expresslon Is nonsense 
If both J f  are 00. In that case, note that ( C P ~ ~ ) ~  5 Cpi3 (by 
Jensen's Inequallty). and that thus, because Cpi = o (Cpi 2), 

and If 

so that var ( T ) / n  -.c 00. Thls concludes the p m f  of the flrst half of Theorem 
1.3. 

1 
We have E ( D v )  = Cnpi2  - f ', and 

Thus, 
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If 
nc 

Jf = 03 but J f  < 03, thls 1s stlll true. If both lntegrals are lnflnlte, we need 
an addltlonal argument. For example, let J be the collectlon of lndlces for whlch 
p i  > a / m ,  where a > 0 Is a constant. We have, by the lnequallty 

1 
If J f 3  < 00. then Var(&r) - -(Jf "(Jf 2)2). 

( u + v ) 2  5 2u"2v2, 

where J c  Is the complement of J. By Jensen's lnequallty, 

CHAPTER 1 

From Markov's lnequallty and Theorem 1.1. we have 

valld for all f . Unfortunately, thls bound requlres large values of E to be useful. 
By restrlctlng ourselves to smaller classes of densltles, we can obtaln smaller 
upper bounds. 

For example, by the Chebyshev-Cantelll lnequallty and E ( D o )  I cn-'/f ', 
we have 

and slmllarly for J c  . Thus, we have 

It 1s a slmple exerclse to show that m C p i 2  -+ f ', Cpi + J f , 

Cpi + J f E (O,l), we have 

thus n Var ( D o )  4 03. 

J' f l a  I' f l a  

f , m C p i 2  + 03. For any cholce of a wlth 
J f >a J f > a  

1.4. LARGE DEVIATION INEQUALITIES. 
Often, one would llke to know the llkellhood of the event [c > z ]  (or of 

[D, > z ]  or [D,  > z]). and In the absence of an exact answer, good upper 
bounds for the correspondlng probabllltles P ( c  > z). P ( D s  > z )  and 
P ( D ,  > 5 ) wlll do too. For the sake of slmpllclty, we wlll derlve such upper 
bounds for P (Do  > ). The analysls for c and Ds 1s conslderably more com- 
pllcated. 

Flrst, we observe that there 1s llttle hope to get a small bound unless z 

exceeds E ( D o )  - --If '. Thus, we wlll ask for upper bounds for the proba- 

blllty 

1 

Ca 

27 

lf Jf < 03. The upper bound Is obvlously useless when sf = 03. When 

Jf 03, I t  decreases wlth n for every E > 0. Unfortunately. the decrease Is 
only as l / n  . Better rates can be obtalned at the expense of strlcter condltlons 
on f . For example, we can hope to obtaln bounds that decrease as ( n  c2)+ for 
arbltrary r > 1 provlded that sf < 03 for an approprlately blg constant p . 

< co, p > 1, are condltlons restrlctlng the slze of the 
lnflnlte peaks of f . The strongest posslble peak condltlon 1s "f  5 C for some 
constant C . In that case, we can obtaln an exponentlal lnequallty: 

The condltlons Jf 
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Theorem 1.4. 
Assume that supf 5 C < 00. For all E > 0, we have 

where 

and lf e,, CQ, then 
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Proof of Theorem 1.4. 
The proof 1s based upon Chernoffs boundlng technlque and a slmple expres 

sfon for the moment generatlng functlon of the multlnomlal dlstrlbutlon (see 
Lemma 5.2). Let t > 0 be an arbltrary number. Then 

CHAPTER 1 2o 

Let us recall the detlnltlon of the functlon f, from Lemma 1.1. Uslng tha  fact 

that e"-1 I u + - e u  for u > 0, we have the followlng chaln of equolltles 

and lnequalltles (where the Rrst expresslon 1s equal to the last expresslon or the 
chaln glven above): 

U 2  

2 

Here we also used the lnequallty ( l + u )  5 exp(u), and the fact that 
If, for all s 2 1 (Lemma 1.1). The flrst half of the Theorem follows 
from the cholce t = rm.  Now, as e IO, we see that the supremum ls reached 
for r =r (E) > 0, and that A (e) 1s asymptotic to the value sup r rJf ' - - r 2 J f  '. 
The latter supremum, for each E > 0. Is reached for r = e J f  '/Jf '. Resubstl- 

tutlon glves the deslred solutlon, A (e) - - e 2 ( J f  ')'/Jf '. 
00, I t  1s easy to see that the supremem In the expresslon for A (e) 

1s reached for r (e) t 00. By standard functlonal lteratlons, applled to the e q u s  
1 tlon r (e)=-log(EJf '/(r (e)!/ 3)), we see that A (6) - the value of the expres- 
C 

slon to be optlmlzed. at r =-log(eJf '/(Jf 3-10ge)). whlch glves us our solu- 
C C 

tlon. 

5 If 
1 

r > o  2 

1 
2 

When e 

1 1 
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Remark. 
1 06, 1s called a moderate 

deviation inequality. It provldes us wlth good lnformatlon about the tall of 
the dlstrlbutlon of Du for values of the order of magnltude of the mean of D" 
plus a few standard devlatlons of Du. On the other hand, when c,, ls constant 
or tends to 06, we have large deviation inequalities. As a rule, these should 
glve good lnformatlon about the extreme tall of the dlstrlbutlon, where the cen- 
tral llmlt theorem 1s hardly at work. For example, I t  appears from the form of 
the lnequallty that the extreme tall of Du drops off at the rate of the tall of the 
Polsson dlstrlbutlon. 

The lnequallty of Theorem 1.4 for E ,  1 0. n E, 

1.5. DOUBLE BUCKETING. 
The results that we have obtalned untll now quallfy the statement that 7" 1s 

close to n (l+;Jf ') when If ' < 00. The presence of If ' In thls expresslon 1s 

dlsappolntlng. Perhaps we could hope to reduce the dlrect lnfluence of f on the 
quantltles that are of lnterest to us by hashlng the n lntervals a second tlme: 
each lnterval Ai 1s subdlvlded lnto Ni equal sublntervals. Thls method wlll be 
referred to as the "double bucketlng" method. The ldea of double bucketlng 1s 
obvlously not novel (see for example Maclaren, 1966). In fact, we could keep on 
dlvldlng lntervals untll all data polnts are In separate lntervals. The structure 
thus obtalned 1s called an N-tree (Ehrllch (1982), Tammlnen (1982)). Some 
analysls for restrlcted classes of densltles 1s glven in these papers. Recurslve 
bucketlng when applled to sortlng ls analyzed In Doboslewlcz (1978) and Van 
Dam, Frenk and Rlnnooy Kan (1983). 

What we wlll try to show here ls that most of the beneflts of recurslve buck- 
etlng are obtalned after two passes. 1.e. wlth double bucketlng. The structure 
that we wlll analyze 1s obtalned as follows: 

1 

Step 1. 
- i -1  i 

n n  
Let Ai =[-,-), 1 5 i 5 n . For each A i ,  keep a llned llst of xj' s fal- 

llng In It. Let Ni be the cardlnallty of A i .  

For i = 1 to n do : li  Ni 2 1, dlvlde Ai lnto Ni equal lntervals A;, , and 
keep for each Aii llnked llsts of the data polnts In I t .  Let Nii be the cardl- 
nallty of Aii . 

Step 2. 

Double bucket structure. 
n=l7 data points ( 
6 original buckets 
bucket with cardinality N divided into Ni intervals 

Figure 1.4. 

The quantltles that  we wlll conslder here are 

n N 1 
C = (- (Nij2-Nii))  = - (T -n ) ,  2 

i = l  2 j=1 

and 

N. 

j - 1  
where all the summatlons C for Ni = 0 must be omltted. and 

P i ,  = J f when Aij  1s deflned. We note that the flrst dlvlslon 1s Into n 
A?, 
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Intervals. The generallzatlon towards a dlvlslon lnto m Intervals Is stralghfor- 
ward. 

Theorem 1.5. 
If If < 00. then the double bucketlng structure glves 

and 

E ( D u )  + 1.. 

If we compare these asymptotlc expresslons wlth those for ordlnary bucket- 
lng when m = n ,  1.e. E ( T ) / n  - l+Jf ', we see that double bucketlng 1s 
strlctly better for all f . Thls follows from Jensen's lnequallty and the fact that  
e-' 5 1-u +-u2: 1 

2 

For all f wlth Jf < 00, we have 

1 
n - a ,  n e 
Ilm Eo E [I+--, 2 ) .  

Thus, the llmlt of E ( T ) / n  Is unlformly bounded over all such f . In other 
words, double bucketlng has the effect of ellmlnatlng all peaks In densltles wlth 
If < 00. Let us  also note In passlng that the lower bound lor E(T) /n  1s 
reached for the unlform denslty on [0,1]. and that the upper bound can be 
approached by conslderlng densltles that are unlform on [0,1], and that the upper 
bound can be approached by conslderlng densltles that are unlform on 
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1 
1 1 

( 0 . ~ 1  (Je-! = l - - + l e - K )  and lettlng K --c 00. The fact that the proper- 

tles of the double bucketlng structure are baslcally lndependent of the denslty f 
was observed lndependently by Tammlnen (1985). The same 1s a fortlorl true for 
N-trees (Ehrllch (1981). Van Dam, Frenk and Rlnnooy Kan (1983). Tammlnen 
(1983)). 

K K  0 

Proof of Theorem 1.5. 
N, 

j =I 
In the proof, all summatlons for whlch Ni = 0 should be omltted, to 

avold trlvlalltles. We start wlth a lower bound for E (T ). 

n 

i =I 

1 

2 n + exp(-npi /(l-pi )) (because 1-u Lexp(-u /(l-u )), O l u  <1) 

= n + n l e x p ( - f n / ( l - f n / n ) )  (where f n ( z ) = n p i ,  z E A i )  
0 

1 - n + n l e - '  
0 
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by the Lebesgue domlnated convergence theorem and Lemma 5.10. 

We now derlve an upper bound for E (T  ). For any lnteger K , we have 

where 

and 

The statements about E (T ), E ( C  ) and E (Ds ) In Theorem 1.5 are proved lf we 
can show that 

1 
1 "  lim llm - C E ( V i ' ) =  e - /  ; 

i =I 0 K-co n + w  n 

1 "  llm l lmsup-  C E ( V i " ) = ~ .  
K+co n-mo n i = l  

We wlll use the functlon gn (z ) = E (Vi ' ), z EAi . Clearly, 

Thus, by an extended verslon of the Lebesgue domlnated convergence theorem 
(see e.g. Royden (1868, p. 8@)),  we have 

provlded that the llmlt of gn exlsts almost everywhere. Conslder now a sequence 
of couples ( i  . j )  such that z E A i j  S A i  for all n. We have by Lemma 5.11. 
nNi p i j  + f (z ) for almost all z , unlformly In Ni ,  1 5 Ni 5 K. From thls, we 
conclude that 

g, (Z ) - E ((Ni -1)+IN, S K )  , almost all 2. 

Conslder only those 2' 8 for whlch f (z)  > 0, and Lemma 5.11 applles. 
Clearly, Ni tends In dlstdbutlon to Z where z 1s a Polsson (f (z )) random varl- 
able (thls follows from npi + f (2) (Chow and Telcher (1878, p. 36-37))). Slnce 
(Ni-l)+IN, forms a sequence of bounded random varlables. we also have con- 
vergence of the moments, and thus, 

for all such z , 1.e. for almost all z (f ). Thus, 

1 

Here we needed the fact that llm s E ( ( z - l ) + I ~ > ~ )  dz = 0, whlch Is a slmple 

consequence of the Lebesgue domlnated convergence theorem (note that 

J E ( Z ) &  = 1 ) .  ASO. 

K + W o  

1 

0 

Deflne the functlon h, (z ) = E (Ni 21N, ,K ), z EAi, and the functlon 
h ( z )  = E ( Z 2 1 z , ~ )  where Z 1s Polsson (f (2)) dlstrlbuted. We know that  
h , ( z )  5 E ( N , ~ )  5 npi + (npil2 = f n ( z ) + f n 2 ( z )  -* l(z) + 121z). almost 
all z; and that 11, +f, --+ +f '. Thus, by an extenslon of the Lebesgue 
domlnated convergence theorem, we have 
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1 

(see e.g. Slmons and Johnson, 1971). But 1 h + o as K + 00 since 

I E ( 2 ' )  = If +f ' < co. and E ( Z ' ~ ~ , K ) + O  for almost all x .  Thls concludes 

I 
1 1 

0 

0 0 

provlded that the almost everywhere llmlt of h, exlsts. For almost all z, Ni 
tends In dlstrlbutlon to 2 .  Thus, for such 2 ,  

1 "  llmsup llm sup - E ( V i '  ' ) = 0. 
K+co n + w  n 

We wlll only sketch the proof for 

Flrst. I t  1s easily seen that 

Also, If we follow the treatment to obtaln an upper bound for E ( T ) ,  we come 
across terms V, ' and Vi ' ' In whlch (Ni  2-Ni ) Is now replaced by p i  Ni . Mlm- 
lcklng the Polsson approxlmatlon arguments for E ( T  ), we obtaln 
Ilm sup E(&,) 5 1 when sf < co. Thls concludes the proof of Theorem 1.5. 

n +Q) 
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DENSITIES WITH UNBOUNDED SUPPORT 

2.1. MAIN RESULTS. 
In chapter 1, we have analyzed In some detall what happens when f Is 

known to have support contalned In [0,1]. In flrst approxlmatlon. the maln term 
In the asymptotlc expresslons for E ( T ) / n  and E ( D u )  contaln the factor I/ 2, 

whlch 1s scale-dependent. If we were to dlvlde the lnterval [M,, .Mn '1 = 
[mln xi .max xi ] lnto m equal-slzed sub-lntervals, these expected values would 
obvlously not be scale-dependent because the dlstrlbutlon of N , ,  . . . , N,,, Is 
scale lnvarlant. 

We could repeat all of chapter 1 for thls more general settlng lf tedlum waa 
no deterrent. There 1s a new lngredlent however when f has lnflnlte talls 
because Mn and / or Mn ' dlverges In those cases. The results In thls chapter 
rely heavlly on some results from the theory of order statlstlcs. The technlcalltles 
are deferred to sectlon 2.2. The followlng notatlon wlll be Introduced: 

M,, = mln Xi , 
l < i  In 

Mn* = max Xi , 
l < i < n  

R,, = range(& . . . , X,, ) = Mn *-M,, , 

xi =M,, +T(Mn*-Mn),~<i5m+1, i -1 
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s = ess sup X ,  - ess Inf XI = wldth of support of f .  

. :13 points X. 
I 

I 

Figure 2.1. 

Theorem 2.1. 
Let f be a denslty on R wlth Sf < 00. Then 

E ( T )  l + S  qf? E ( T )  llm Inf - = Ilm sup - = 
C n-+m n n-w n 

Theorem 2.1 shows that there Is a close relatlon between E ( T )  and the 
range R, . For densltles wlth no talls. we have a generallzatlon of Theorem 1.1. 

It Is noteworthy that 1+-Jf ', the llmlt value of E ( T ) / n ,  1s scale lnvarlant. 

When s = 00, I t  Is not clear at all how E (mln(R, cn-'J/ 2,n )) varles wlth n. 
For example, Is thls quantlty close to E (R, )e ,  -'Jf (whlch Is easler to handle)? 
Thus, to apply Theorem 2.1 In concrete examples, some results are needed for 
R, . Some of these are stated In Lemma 2.1. 

We wlll work wlth the followlng quantltles: x = x, has denslty f and dls- 
trlbutlon functlon F (z ) = P (x 5 z ) = 1-G (z ): the Integrals 

S 

C 

In partlcular. lf s < 00, we have 

I 

wlll also be useful. We recall that 

Lemma 2.1 
Let 6 > 0 be arbltrary. Then: 

(1) E (mln(R, ,6n )It .  
(11) 

(111) 

(Iv) 

Ilm sup E (mln(Rn .6n )) < m If and only lf s < co . 
Ilm sup E (R, ) < 00 If and only lf s < co . 
E(R, )  = 00 for all n 2 2 lf andonlylf  E(R,)  = m for some n > 2 

n -00 

n '00 

- m. If and only lf E (IX I) - 
(v) E (IX I) < 00 lmplles E (R, ) = o (n ). 
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E ( - a z )  Ilrn Ilrn lnf - = 00 

E (mln(Rn ,6n )) - E (R,  ) for all 6 > 0. 

Ilm sup E (mln(Rn ,6n ) ) / n  > 0 for all 6 > 0 ; 

a10 ~ - + w  F ( - z )  
imply 

(vll) Are equlvalent: 

n -00 

Ilrn sup 
n ‘ 0 0  

E ,6n for some 6 > 0 ;  

Ilm SUP 15 IP (IX I > z ) > 0. 

Ilm lnf E (mln(R, ,6n ))/n > 0 for all 6 > o ; 

I ‘ 0 0  

(vlll) Are equlvalent: 

n +w 

Ilm Inf E (mln(Rn ,6n ))/n > 0 for some 6 > 0 ; 
n +00 

(And If s < 00, thls Ilrn Inf 1s equal to thls Ilm sup. Its value 1+-lf s ’.) C 

Theorem 2.2 follows from Lemma 2.1 (I), (11) and Theorem 2.1. In Devroye 
and Kllncsek (1980). one flnds a sllghtly stronger result: E (T)=O(n ) lf and only 
If s < 00 and I/ < 00. In the next chapter, thls wlll be generallzed to R d ,  so 
we don’t have to bother wlth an R verslon of I t  here. 

We also have 

Theorem 2.3. 

If f j  < 00, then condltlon (vl) of Lemma 2.1 lmplles that 

Ilrn Inf 
2 +0O 

IZIP(IXI > 5 )  > 0. 

Theorems 2.2 and 2.3 cover all the small-talled dlstrlbutlons wlth llttle oscll- 
latlon In the talk. In Akl and MelJer (1982) the upper bound part of Theorem 
2.3 was obtalned for bounded densltles. The actual llmltlng expresslon of E (T ) 
shows the lnteractlon between the effect of the peaks ( l j  2, and the effect of the 
talk (E  (R,)). Note that E (R, )If 1s a scale-lnvarlant and transtatlon- 
lnvarlant quantlty: I t  Is solely determlned by the shape of the denslty. It 1s 
perhaps lnterestlng to see when condltlon (VI) of Lemma 2.1 Is valld. 

Lemma 2.1 In codunctlon wlth Theorem 2.1 glves us qulte a blt of Informa- 
tlon about E (T ). For example, we have 

Theorem 2.2. 

If I i  < 00, then are equlvalent: 

Ilm Inf E ( T ) / n  < co ; 
n ‘ 0 0  

Example 2.1. (Relatlvely stable dlstrlbutlons.) 
A relatlvely stable dlstrlbutlon 1s one for whlch 

s < a o .  

and 
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If we use the notatlon hf, ' = max(X,+, . . . , x, +) where u+=max(u .O) then 
I t  should be noted that lf P(x > 0) > 0, (1) 1s equlvalent to 

(111) hf, ' + 1 In probablllty for some sequence a, 

1 
n 

(Gnedenko, 1943). In that case we can take a, = lnf(z: G ( z ) ~ - )  where 

G ( z ) = P ( x  3 z), or In short, a, = G-'(-)  (Dehaan. 1975. pp. 117). We note 

that (1) 1s equlvalent to G (0) < 00. G(z)/(zG(z)) -+ 0 as z -+ co; or to 

G ( 0 )  < 00, I t d F ( t ) / ( z G ( z ) )  -+ 1 as z + 00. 

1 
n 

00 

2 

1 1 
n 

For relatlvely stable dlstrlbutlons. we have E (R, ) - F-'(;)+G-'(-) 
(Plckands. 1968). It 1s very easy to check that condltlon (vl) follows from the 
relatlve stablllty of the dlstrlbutlon of x . When 

we know that (111) holds (Geffroy, 1958; Dehaan, 1975, Theorem 2.9.2). condltlon 
(lv) comes close to belng best posslble because If f 1s nonlncreaslng and posltlve 
for all 2, then (111) lmplles (lv) (Dehaan, 1975, Theorem 2.9.2). 

Example 2.2. (Normal dlstrlbutlon.) 
For the normal dlstrlbutlon wlth denslty (27r)-'l2 exp(-z2/2), we have rela- 

tlve stablllty and square lntegrablllty. In partlcular, 
E (R, ) - 2G-'-) (1 - 2- (see e.g. Galambos, 1978, pp. 65), and thus 

n 

Example 2.3. (Exponentlal dlstrlbutlon.) 

lntegrablllty. Thus, because E (R, ) - log n , 
For denslty f (5) = e-', z > 0, we have relatlve stablllty and square 

Example 2.4. (Regularly varylng dlstrlbutlon functlons.) 
Condltlon (vl) of Lemma 2.1 ls satlsfled for all dlstrlbutlons for whlch 
(1) G(z)  = 0 for all-z large enough; or ls regularly varylng wlth 
coemclent p < o (1.e.. G (az ) / b  (z) -+ U P  for all a > o as 2 -+ 00). 

(11) E(z)  = 0 for all z large enough; or E 1s regularly varylng wlth 
coemclent p < o (1.e.. E (az ) / E  (z -+ U P  for all a > o as 3: -+ 00). 

In (1) and (11) we can replace the functlons and E by G and F lf we wlsh pro- 
vlded that we add the condltlon that the coefnclent of regular varlatlon be 
p_ < -1. The latter fact follows from the observatlon that as z + 00, 

G (z) - zG (z )/(+-I) (Dehaan, 1975, Theorem 1.2.1). 

Example 2.5. (Upper bounds for E (R, ).) 
One of the by-products of Theorem 2.1 1s that 

Thus, good upper bounds for E @ , )  glve us good upper bounds for E ( T ) / n .  
For example, we have 

Thus, dependlng upon the heaviness of the tall of x, we obtaln upper bounds for 
E ( T ) . t h a t  lncrease as n'+'/'. We can do better when the moment generatlng 
functlon of X 1s flnlte In a nelghborhood of the orlgln. Le. 
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r 
SlnCe u 5 (-) e tu , u 2 0,we have e t  
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where we took r = log n .  For the t ' s In the lnterval I0.e). we have a: 
n --LOO, 

Thus, the best result ls obtalned by setting t equal to e. In partlcular, 1 
E (e t l x l )  < 00 for all t > 0 (such as for the normal denslty). then 

and thus 

E ( T )  = o (n  log n ) .  

Theorem 2.2 treats densltles wlth compact support, whlle Theorem 2.3 cov 
ers qulte a few densltles wlth flnlte moment. We wlll now sklp over some dens' 
tles In a gray area: some have a flnlte flrst moment but do not satlsfy (vl) c 
Lemma 2.1, and some have lnflnlte flrst moment E(IXI) ,  but have relatlvel 
small talls. The worst densltles are descrlbed In Theorem 2.4: 

CHAPTER 2 

Theorem 2.4. 
Let sf < 00. Then 

(1) Ilm sup E ( T ) / n 2  > 0 lf and only lf llm sup IzIP(IXI > 2 )  > 0; 
n -03 I+oO 

(11) llm Inf E ( T ) / n 2  > 0 If and only lf llm lnf IzIP(IXI > z )  > 0; 
(111) E ( T )  = o ( n 2 )  If and only lf llm sup 15 IP(lXl > z )  = 0; 

n + o ~  I+oO 

I+oO 

(Note that T 5 n 2  for all densltles. and that statement (1) lmplles 
E ( l X l )  = 00.1 

1 
x 

Thus, the Cauchy denslty f (z)=-(l+z')-'. whlch satlsfles (11), must have 

E ( T )  2 cn for some posltlve constant c . If we compare Theorem 2.4 wlth the 
results of chapter 1. we notlce that heavy talk are much more of a nulsance than 
lnflnlte peaks: Indeed, regardless of whlch f 1s chosen on [OJ], we have 
E (T) = o (n2) ;  but even moderately talled densltles can lead to a lower bound 
for E ( T )  of the form en2. Let us also polnt out that there are densltles wlth 
E (1x1) = 00 ror all n , but E (mln(R, Jn)) = o ( n  ) for all 6 > 0: Just take 
F (5) = I-I/((I+z ) log (z +e )), z >O. 

We conclude thls sectlon by notlng that 

and 

Nearly all that was sald about E ( T  ) remalns easlly extendlble to E (C ), E (Ds ) 
and E(Du) .  For example, lf s < 00, 
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and 

1 I f s  = m . w e h a v e E ( C ) - -  - ) - E ( T ) / ( 2 n ) a n d E ( D u ) - E ( T ) / n .  
E (Ds 

We flnally note that the quantlty s 1s scale lnvarlant and that for all 
densltles I t  Is a t  least equal to 1, In vlew of 

I = (  J r,"JIr2 J d z = s J f 2  
support of f supporto1 f 

2.2. PROOFS. 

Proof of Lemma 2.1. 
Fact ( I )  Is trlvlal. For fact (11). we note that lf s = 00, we have R, + oc 

almost surely, and thus, llm Inf E (mln(R, ,6n )) > E (llm Inf mln(R, ,671 )) = 00. 

Also, In all cases, s 2 R, , and we are done. Fact (Ill) Is proved as (11). 

E ( R 2 )  = E(IX,-X,I)> 1nf E(IX-si)  = 00 when E(IX1) = 00. 

n +m n -00 

For Item (Iv), we note that E (R, ) 5 2nE (1x1). that E (R, ) t and that 

2 

To show (v), I t  sufflces to prove that E ( m a (  I x, 1 , . . . , I X, I )) = o (n  ). 
Let /X,I have dlstrlbuted functlon F on [0,00). Then for all E > 0, 
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We wlll now prove (VI). Slnce mln(R, .6n) 5 R, , we need only show that 
Ilm Inf E (mln(R, .6n ))/E (Rn )> 1 for all 6 > 0. Let us deflne z+=mBx(z ,O), 

z-=mln(z ,O), R+=max(X,+, . . . , Xnf), R-=mln(X,-, . . . , X,-). We wlll 
show that E (R, -mln(R, .6n ))/E (R, ) -+ 0 for all 6 > 0 and all nondegenerate 
dlstrlbutlon wlth s = 00 ( for otherwlse. the statement Is trlvlally true). Clearly, 
it sufflces to show that for all 6 > 0. E (R+-mIn(R+h) ) /E  (R,) -+ 0. If X+ 
has flnlte support, we see that thls follows from (11). Thus, we need only conslder 
the case that X+ has Inflnlte support. NOW, E(R,)  2 E((R+-X)IR+,o) 

n --roo 

00 

2 E(R+IR+,,) -E(IXI) = E ( R + )  -E(lXl) = JI-(I-G(t))"dt -E(IXI)  
0 

00 00 - Jl-(l-G(t))" dt. 
0 6n 

reduced the problem to that of showlng that for all 6 > 0. 
Also, E(R+-rnln(R+,bn)) = Jl-(l-G(t)), d t .  We have 

00 00 

6n Jl-(l-G(t))n dt / Jl-(l-G(t)), 0 dt 0. 

We wlll need the followlng lnequallty: 

1 
2 
-mln(nu ,I) 5 I-(I-u), 5 mln(nu .I) , all n 2 1. u E [0.1]. 

1 
ThIs follows from 1-nu 5 (1-u)" 5 e-,"; e- t  5 - 2 for t 2 1; and 

e-t 5 1-- 2 for t E[O,l]. Thus, If a, = lnf(z :G (2) 5 -) n and n Is so large that 

a,, > 0, we have 

t 1 

00 00 
1 - 5 JI-(l-G(t))"dt / ( a , ,  +nJ G ( t ) d t  ) 5 1. 
2 0  a. 

Thus, we need only show that 

and we are done. 
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00 00 

By our assumptlon In (VI), we have I G (t )dt / I G ( t  )dt + 00 when a, / n  N 0 

(and thls In turn follows of course from the fact that I G ( t ) d t  < 00 lmplles 

tC (t  ) + 0 88 t -+ 00). Thls concludes the proof of (VI). 

0. 6n 
00 

0 

We wlll now prove (vll) an$ (vlll) for R +  and Ilm sup (or llrn Inf) 

s G ( z )  > 0. The extenslon of the result to R, Is left as an exerclse. For 
E E (0,s) we have the followlng chalns of Inequalltles: 

z -m z -m 

and 

6n en 6n 

n o  ' o en 

1 1 1 -E (mln(R + ,6n )) = - I 1-(1-G ( t  ))" dt = -( J + 
n ) 

6 
6n 

5 (en + n I G(t)dt  ) 5 E + 6 n G ( m )  = E + - En G ( c n ) ;  
E en n 

Thls proves that llm sup zG(z)  > 0 1s equlvalent to 

llm sup E (rnh(R+Jn))/n > 0 for all 6 > 0 or for some 6 > 0; and that slmllar 

statements are true for the llmlt Inflmum. Thls concludes the proof of Lemma 
2.1. 

2 dm 

n -00 

We are left wlth the proof of Theorem 2.1. Thls wlll be taken care of In 
small steps. From the observatlon that condltlonal on M,, , M,, ' , the Ni 's  are 
blnomlally dlstrlbuted wlth parameters n -2, p i  / p  , we deduce the followlng: 

Lemma 2.2. 
(I) T 5 n2. 

Proof of Lemma 2.2. 
Part (1) 1s obvlously true. Parts (11) and (Ill) follow from 

and the fact that 

Proof of Theorem 2.1 (i) 

Then 
We start from Lemma 2.2 (Ill). Let 6 > 0 be a sufnclently small number. 
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Y 
(where f ( a  , x )  = lnf f / ly-z I) 

E $ : 2 y  E 
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6 00 6 A (6 )  

--oo A ' ( @  
Flnd values A (6) and A *(a) such that f = -f J f = f 2, and a 

value B (6) such that 

Thus. lf A Is the event [M,, < A (a), Mn * > A *(@I and B 1s the event 
[R, /m 5 B (41. we have on A n B ,  for u =Rn /m , 

M. 00 M. 

M. M. 00 
J f ' ( a  . X I  L J f ' ( a  . X I  - J f 2(a , X I  - J f 2(a , X I  

6 6 
3 

2 (1--)J f - 231, = (1-6)Jf 

Thus, 

We also have 

where 
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Note that as 6 10, we have B(6) + 0 and thus c(6) -c 0. Comblnlng these 
bounds glves 

where Z(R,) 1s an lncreaslng functlon of R, . By Gurland's lnequalltles (Gur- 
land, 1968) we have E (IA Z(R, )) 2 P ( A  ) E (Z(Rn )). We also know that 
P ( A  ) + 1 for all 6 E (OJ). Thus, wlth a llttle extra manlpulatlon we obtaln the 
followlng bound: 

Thls concludes the proof of Theorem 2.1 (1). 

Proof of Theorem 2.1 (E). 
From Lemma 2.2, we have 

Let us take expectatlons on both sides of thls lnequallty. For arbitrary E > 0 we 
have 
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The proof 1s complete If we can show that the last probablllty is o ( 1 )  for every 
e > 0. Let U , , U ,  be lndependent unlform [ O J ]  random varlables, and note that 
p 1s dlstrlbuted as ull/n U2'/(''-'). Thus, 

The mlnlmum 1s attalned at 

and we are done. 
and the mlnlmal value of the cost functlon 1s 

2.3. A SUPERLINEAR NUMBER OF BUCKETS. 

asymptotlcally. For example, for densltles covered by Theorem 2.3, 
For many lnflnlte-talled dlstributlons, we know preclsely how E ( T  ) varles 

when m - cn . We also have In those cases, by the proof of Theorem 2.1 (11). 

for arbltrary E > 0. Here c ,  = m / n  . When we sort, there 1s an addltlonal c a s  
of the form Am for some constant A > 0 due to  the tlme needed to  lnltlallze 
and concatenate the buckets. If E ( R , )  -+ 00. lt 1s easy to see that In the upper 
bound, 

provlded that E ( R , ) / c ,  + 03. If we balance the two contrlbutlons to the cost 
of searchlng wlth respect to m , then we wlll flnd that I t  1s best to let m lncrease 
at  a faster-than-llnear pace. For example. conslder the mlnlmlzatlon of the cost 
functlon 

If we had plcked m - e n ,  then the maln contrlbutlon to the sortlng tlme would 
have come from the selectlon sort, and I t  would have lncreased as a constant 
tlmes n E (R, ). The balanclng act reduces thls to about n J E ! ? ,  albelt at 
some cost: the space requlrementa lncrease at a superlinear rate too. Futhermore, 
for the balanclng to be useful, one has to have a prlori lnformatlon about E (R, ). 

Let us conslder a few examples. For the normal dlstrlbutlon, we would 
optlmally need 

and obtaln 

Am - E ( T ) - n d -  

For the exponentlal dlstrlbutlon, we have 
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Slmllarly. for all dlstrlbutlons wlth flnlte IIz 1' f (z)&, If 2(z)dz ,  we can 
choose m such that 

1+' *' Am - E ( T )  5 C n 

for some constant C.  
The ldea of a superllnear number of buckets to reduce the expected tlme can 

also be used advantageously when If has compact support. 
When preprocesslng 1s allowed, as In the case of searchlng, and space requlre- 
ments are no obstacle, we could choose rn so large that E ( D s )  and E ( D " )  are 
both O(1) .  To lllustrate thls polnt, we use the bound lor E ( T )  used In the 
proof of Theorem 2.1 (11). and the fact that 

= co and f 

T i  
2n 2 

Ds = - + -  

Thus, when If < 00, E (R, ) + co, we can choose 

and conclude that 

llm sup E ( D s )  5 - 3 . 
n +oo 2 
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MULTIDIMENSIONAL BUCKETING. 

3.1. MAIN THEOREM. 
by flrst stor- 

lng the polnts In equal-slzed cells, and then travellng from cell to cell, to obtaln 
some solutlon. Often these algorlthms have good expected tlme behavlor when 
the polnts are sufflclently smoothly dlstrlbuted over R d .  Thls wlll be lllustrated 
here by exhlbltlng necessary and sufflclent condltlons on the dlstrlbutlon of the 
polnts for llnear expected tlme behavlor. 

Our model 1s as follows: X , ,  . . . , x,, are lndependent random vectors from 
R wlth common denslty f . We let C, be the smallest closed rectangle cover- 
lng X , ,  . . . , X ,  . Each slde of c, ls dlvlded lnto n' = Lnlld] equal-length 
lntervals of the type [a , b  ): the rlghtmost lntervals are of the type [a  , b ] .  Let A 
be the collectlon of all rectangles (ceb) generated by taklng d-fold products of 
Intervals. Clearly, A has m cells where 

Several algorlthms In computer sclence operate on polnts In R 

The cells wlll be called A 1, . . . , A,,, , and Ni wlll denote the number of xi' 8 

In cell A i .  Thus, to determlne all the cell membershlps takes tlme proportlonal 
to  n . Wlthln each cell, the data are stored In a llnked llst for the tlme belng. 

We stress agaln that the ldea of a superllnear number of buckets seems more use- 
ful In problems In whlch a lot of preprocesslng 1s allowed, such as In ordlnary 
searchlng and In data base query problems. 
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Figure 3.1. 

8 by 8 grid 
64 points 

Ai has Ni =3 points 

The cell structure has been used wlth some success In computatlonal 
geometry (see for example, Shamos (1978). Welde (1978). Bentley, Welde and Ym 
(1980). and Asano, Edahlro. Imal, Irl and Murota (1985)). Often I t  sufflces to 
travel to each cell once and to do some work In the 1-th cell that takes tlme 
g (Ni ) for some functlon g (or at least, 1s bounded from above by ag (Ni ) and 
from below by 69 ( N i )  for some approprlate constants a ,b : thls sllghtly more 
general formulatlon wlll not be pursued here for the sake of slmpllclty). 

For example, one heurlstlc for the travellng salesman problem would be as 
follows: sort the polnts wlthln each cell accordlng to thelr y-coordlnate, Joln 
these polnts, then joln all the cells that have the same x-coordlnate. and flnally 
joln all the long strlps at the ends to obtaln a travellng salesman path (see e.g. 
Chrlstofldes (1878) or Papadlmltrlou and Stelglltz (1978)). It 1s clear that the 

work here 1s 0 (n ) + g ( N i )  for g ( u  )=u2 or g (u  )=a log(u +1) dependlng 
m 

i =1 
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upon the type of sortlng algorlthm that 1s used. The same serpentlne path con- 
structlon Is of use In mlnlmum-welght perfect planar matchlng heurlstlcs (see e.g. 
Irl. Murota. and Matsul 1981, 1983). 

If we need to flnd the two closest polnts among x,, . . . , x, In [OJ]~, I t  
clearly sufflces to conslder all palrwlse dlstances d (xi ,xi ) for xi and Xi at most 
ad (a constant dependlng upon d only) cells apart, provlded that the grld 1s con- 
structed by cuttlng each slde of 0.lId lnto n' = [ n ' / d J  equal pleces. Uslng the 
lnequailty (u  ,+ u2+ ...+ uk )' 5 h - ' ( u  :+ ...+ uk '), I t  1s not hard to see that the 

total work here 1s bounded from above by 0 (n ) plus a constant tlmes 
m 

i -1 
Ni '. 

8 by 8 grid 
64 points 

3 
Figure 3.2. 

Range search problem: report all points in the 
intersection of A and B. Grid to be used in solution is also shown. 

For multldlmenslonal sortlng and searchlng, we refer to sectlon 3.2. In sec- 
tlon 3.2, a few brlef remarks about the polnt-locatlon and polnt enclosure prob- 
lems wlll be Included. The polnt enclosure problem can be consldered as a speclal 
case of range searchlng, 1.e. the problem of retrlevlng all polnts satlsfylng certaln 
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characteristics. If for example we want to retrleve all polnts for which the coorc 
nates are between certaln threshold values, then we can speak of an orthogon 
range query. In the survey artlcles of Bentley and Frledman (1979) and ‘&an 
Edahlro, Im’al, Irl and Murota (1985). some comparlsons between cell structurt 
and other StrUCtUres for the range search problem are made. The range searc 
problem has one addltlonal parameter. namely the number of polnts retrlevet 
Query tlme Is usually measured In terms of the number of retrleved polnts plus 
functlon of n .  If most querles are large, then I t  makes sense to  conslder larg 
cells. In other words, the cell she should not only depend upon n and f , bt 
also on the expected slze of the query rectangle (see e.g. Bentley, Stanat and Wi 
llams, 1977). In addltlon, new dlstrlbutlons must be lntroduced for the locatlc 
and slze of the query rectangle. thus compllcatlng matters even further. Fc 
these reasons, the range search problem wlll not be dealt wlth any further In th  
collectlon of notes. The travellng salesman problem 1s brlefly dealt wlth In sec 
tlon 3.3, and In sectlon 3.4, we wlll look at some closest polnt problems In compl 
tatlonsl geometry. The latter problems dlffer In that  the tlme taken by the algc 
rlthm la no longer a slmple sum of an unlvarlate functlon of cell cardlnalltles, b L  

a sum of a multlvarlate functlon of cell cardlnalltles (usually of the cardlnallty c 
a central cell and the cardlnalltles of some nelghborlng cells). In the entlr 
chapter, we wlll deal wlth a work functlon g . Inltlally. the tlme of an algorlth1 
1s glven by 

for some functlon g satlsfylng: 

(1) g 1s nonnegatlve and g (u ) / u  00 as ZL 00. 

(11) g (u  ) / u  1 o as u -+ 00 for some finite constant k ; 

(111) g Is convex on [o.00); g (0) = 0. 

Remark. 
We would llke to  polnt out that (1) and (11) lmply that g 1s contlnuous anc 

that g(O)=O. Examples of functlons g(.) satlsfylng the llsted condltlons arc 
g ( u ) = u ‘ , s o m e z  >, l . a n d g ( u ) = u  log(u+l). 
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Theorem 3.1. 
Let f be an arbltrafy denslty on R d .  Then are equlvalent: 

Proof of Theorem 3.1. 
The proof ls In three parts: 

A. f compact support, Jg ( f  ) = 00 => flm 1nf E ( T ) / n  = 00. n --too 

B. f compact support, J g  (f ) < 00 => llm n+w lnf E ( T ) / n  < 00. 

C. f does not have compact support. Urn n --roo lnf E ( T ) / n  = 00. 

m 
In the proof, we wlll use the symbols p i  = f , c- i=1 U A i ,  p =Jf. C The 

A, 

followlng fact wlll be needed a few tlmes: glven c, 

Y i < N i <  W i + 2 d , 1 < i s m , n > 2 d ,  

where Yi 1s a blnomlal (n -2d , p i )  random varlable, wi 1s a blnomlal (n , p i / p )  
random varlable. and ”<” denotes “1s stochastlcally smaller than”, Le. 
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Proof of A. 
Let Co be the smallest closed rectangle coverlng the support of f , and ler 

f ,  (2) be the functlon deflned by the relatlons: f, (2) = 0, z 4 C 
f , , (z )  = ( n - 2 d ) p i .  z E A i .  We have 

m = E(J- g ( f ,  -c)). (1 denotes Lebesgue measure) 
2 U C )  

CHAPTER 3 

Thus, by Fatou's lemma, 

where the Inner llmlt lnflmum 1s wlth respect to a.e. convergence. Now, for 
almost all w E Cl (where (n,F ,P ) Is our probablllty space wlth probablllty ele- 
ment w ), we have C -+ co and thus X(c) + X(co). But then, by Lemma 5.11, 
for almost all (z ,w) E R X a. we have f,, (z ) + f (z ). Thus, the Fatou lower 
bound glven above Is 

Shaded area is support of f. 

:sn - nallest - 

Figure 3.3. 

rectangle covering - support o f f  

rectangle covering 

e1 

Proof of B. 

where a 1s the constant of Lemma 5.4 (and depends upon k only). Thus, to 

show that E (T) = 0 (n ), we need only show that E ( g  (npi / p  )) = 0 (n ). 

Now, 

m 

I = 1  
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The last term 1s unlformly bounded In n as we wlll now prove. Flrst, we have 
g (n ) 5 n g ( 1 ) .  We wlll show that P ( p  < 1 / 2 )  5 2d exp(-n / ( 4 d ) )  for all n . 
Because the functlon u k  e-” ,  u > 0, 1s unlformly bounded, we see that 
sup g ( n ) P ( p  < 1 / 2 )  < 00. Indeed, 
n 

where p j ‘  Is the lntegral of f over all z ’ 6 whose J-th component lles between 
the mlnlmal and maxlmal J-th components of all the X i ’  8 .  But by the proba- 
blllty lntegrai transform, when U,, . . . , Un are lndependent unlform [0,1] ran- 
dom varlables. 

Flnally, by Jensen’s lnequallty, 

and B follows slnce m - n ,  

Proof of C .  

Lemma 5.4. we need only show that 
By a bound derlved In the proof of A and by the second lnequallty of 

when f does not have compact support. By our assumptlons on g , (n -2d ) can 
be replaced by n . We may assume wlthout loss of generallty that the flrst com- 
ponent of Xl has unbounded support. Let (al ,bl) ,  . . . , (ad . b d )  be 6 and 1-e 
quantlles of all the marglnal dlstrlbutlons where 6 E (0 .1 /2 )  Is chosen such that - 

1 B= x ( a j , b i )  satisfies // = -. Let Q be the collectlon of Ai’  8 lntenect- 
j -1 2 A I 

lng wlth B ,  and let q be the cardlnallty of Q . Set p j ’  = 

the lndlcator of the event B c . Clearly, 

f , and let Z be 
A ,  nB 

where we used Jensen’s lnequallty. Slnce g ( u ) / u  
for any constant M ,  however large. 

00, we need only show that 

Now, let U,V be the mlnlmum and the maxlmum of the A n t  components Of 
X, ,  . . . , X,. When z = 1, we have 
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and thus 

P ( Z = l , n  >2q(M+1)) 

2 P ( Z = i , ( b l - a l ) m / ( V - ~ ) + 2 m  5 n/(2(M+1))) 
d -1 - 

2 i - P ( Z = o ) - P ( ( b , - a , ) m / ( V - U )  2 ) 
4(M +1) 

d -1 
n 

4(M+1) 

- 
1. -P (2m 

The second term of the last expresslon 1s o(1) for obvlous reasons. The thlrd 
term 1s o (1) slnce m - n and v-U + 00 In probablllty as n -+ 00. The last 
term Is o (1) slnce m - n . Thls concludes the p m f  of C. 

3.2. SORTING AND SEARCHING. 
When d 3 1 ,  and elements wlthln each bucket Ai are sorted by an n 2  SOR- 

lng algorlthm (such as selectlon sort, or lnsertlon sort), Theorem 3.1 applies wlth 
g (u  )=u2. The data can be sorted In expected tlme 0 (n ) lf and only If f has 
compact support and 

J f * < O 0 .  

If however we employ an expected tlme n log n sortlng algorlthm based upon 
comparlsons only (such as heapsort, qulcksort or tree lnsertlon sort), the data can 
be sorted In expected tlme 0 (n ) If and only If f has compact support and 

// log+ f < 00 

The latter condltlon Is only vlolated for all but the most peaked densltles. These 
results generallze those of Devroye and Kllncsek (1881). We should mentlon here 
that lf we flrst transform arbltrary data by a mapplng h : R' -+ [O,l] that Is 
contlnuous and monotone, construct buckets on [0.1]. and then carry out a subse- 
quent sort wlthln each bucket as descrlbed above, then olten E (2 ' )  = 0 (n ): in 
other words, wlth llttle extra effort, we galn a lot In expected tlme. The ldeal 

transformatlon h unlformlzes, 1.e. we should try to use F (z ) where F 1s the d l s  
trlbutlon functlon of the data. In general, we can take h In such a way that I t  1s 

equal to F (z) where F 1s a flxed dlstrlbutlon functlon, p 1s a sample estlmate 

of locatlon (mean, medlan, etc.) and u 1s a sample estlmate of scale (standard 
devlatlon, etc.). Thls should In many cases glve satlsfactory results. It 1s prob- 
ably advantageous to take robust estlmates of locatlon and scale, 1.e. estlmates 
that are based upon the sample quantlles. Meljer and Akl (1980) and Welde 
(1878) glve varlatlons of a slmllar Idea. For example, In the former reference, F 
Is plecewlse h e a r  wlth cut-polnts at the extrema and a few sample quantlles. 
One should of course lnvestlgate lf the theoretlcal results remaln valld for 
transformatlons F that are data-dependent. 

U 

I 

1 Y f='* f k i s t r i b u t i o n  function F 

PROPERTY: When X has distribution function 
F, then U=F(X) is uniformly distributed on [0,1]. 

Figure 3.4. 

The condltlons on f mentloned above are satlsfled for all bounded densltles 
f . It 1s nlce exerclse to verlm that If a transformatlon 

Is used and f (I ) 5 a exp(-b 11 IC ) for some a ,b  ,c > 0. then the denslty of the 
transformed denslty remalns bounded. Thus, for the Isrge class of densltles wlth 
exponentlally domlnated tall, we can sort the transformed data In average tlme 
0 (n ) by any of the bucket-based methods dlscussed above. 
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an exerclse to  show that 

E ( T )  5 a + bn + n E( log(1  +mln(n.R,))) 

5 a + bn + n  l o g ( l + E ( R , ) )  

for some constants a .6 > 0 when If log(! +I) < 00. Hence, If f 1s any den- 
slty wlth a flnlte moment generatlng lunctlon In a small nelghborhood of the orl- 
gln, we obtaln E (T) = 0 (n log log n ). Examples of such densltles are the 
exponentlal and normal densltles. Thls extends an lnterestlng observatlon 
reported In AkI and MeUer (1982). 

widths 

A nonlinear transformation useful for distribution 
with unbounded support. 

For the expected number of comparlsons In a successful or unsuccessful 
search of linked I l s t  based buckets, we obtaln wlthout effort from Theorem 3.1 
the value o(1) (even when d fl ) when f has compact support and 
Jf < 00. These condltlons are necessary too. If wlthln each bucket the x, s 
are ordered accordlng to  thelr ftrst component, and are stored In a blnary search 
tree or a balanced blnary tree such as a 2-3 tree, condltlon Jf < 00 can be 
replaced by If log+f < 03. Just apply the Theorem wlth g (u )=u log(u +I), 
and note that J f  log(f +1) < co 1s equlvalent to If log+f < 00 because 
log+% 5 log(l+u ) 5 log+u +log2. For a more detalled analysis. the quantlty 
T = Ni log(Ni +I). 

Most of chapten 1 and 2 can be repeated for this new quantlty. We leave I t  as 

m m 

I =1 i -1 

N i 2  of chapter 1 must be replaced now by T =’ 

Figure 3.6. 
The planar graph point location problem: 

return the set in the partition to which the query point belongs. 
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Remark. [Polnt locatlon problems.] 
In the planar polnt-locatlon problem, a stralght-llne planar graph wlth fz 

vertlces 1s glven, and one 1s asked to flnd the set In the partltlon of the plane to 
whlch a query polnt z belongs. In many appllcatlons, a large number of querles 
are ralsed for one flxed planar partltlon. We won't be concerned here wlth worst- 
case complexltles. It sufllces to mentlon that each query can be answered In 
worst-case tlme 0 (log(n )) provlded that up to 0 (n log(n )) tlme 1s spent In set- 
tlng up an approprlate data structure (Llpton and TarJan, 1977 ; Klrkpatrlck, 
1983). See also Lee and Preparata (1977) for an algorlthm wlth 0 ((log(n ))2) 

worst-case search tlme. and Shamos and Bentley (1977) for the polnt-locatlon 
problem when the space 1s partltloned lnto nonoverlapplng rectangles. It was 
polnted out ln Asano, Edahlro, Imal. Irl and Murota (1985) that these algorlthms 
can be very slow In practlce. In partlcular, they compare Infavorably wlth a 
bucket-based algorlthm of Edahlro, Kokubo and Asano (1983). 

Query 

Figure 3.7. 
The rectangular point location problem. 

point - 

Assume for example the followlng probablllstlc model : the n polnts 
X , ,  . . . , X,, and the query polnt are lld random vectors unlformly dlstrlbuted In 
the unlt square, and the graph 1s constructed by connectlng polnts ln an as yet 
unspeclfled manner. In flrst Instance, we wlll be lnterested In the expected worst- 
case tlme. where "worst-case" 1s wlth respect to all posslble planar graphs glven 
the data. Let us construct an m-grld where for each bucket the followlng lnfor- 
matlon 1s stored : the llst of vertlces sorted by y-coordlnates, the collectlons of 

edges lntersectlng the north, south east and west boundarles (sorted), and the 
reglon of the partltlon contalnlng the north-west corner vertex of the bucket. 
Thls assumes that all reglons are numbered beforehand, and that we are to 
return a regton number. Partftton each bucket In a number of horlzontal slabs, 
where the slab boundarles are deflned by the locatlons of the vertlces and the 
polnts where the edges cut the east and west boundarles. For each slab, set up a 
llnked llst of condltlons and reglon numbers, correspondlng to the reglons vlslted 
when the slab Is traversed from left to rlght. (Note that no two edges cross In our 
graph.) It 1s lmportant to recall that the number of edges In a planar graph 1s 
0 (n) , and that the number of reglons In the partltlon 1s thus also o(n)  . One 
can verlfy that the data structure descrlbed above can be set up In worst case 
tlme 0 (n3I2) when m -cn for some constant e .  The expected set-up tlme 1s 
0 (n ) In many cases. Thls statement uses technlques slmllar to those needed to 
analyze the expected search tlme. We are of course malnly lnterested In the 
expected search tlme. It should come as no surprlse that the expected search tlme 
decreases wlth lncreaslng values of rn . If rn lncreases llnearly In n , the expected 
search tlme 1s 0 (1) for many dlstrlbutlons. Those are the cases of lnterest to us. 
If rn lncreases faster than n , the expected search tlme .while stlll 0 (1). has a 
smaller constant. Unfortunately, the space requlrements become lnacceptable 
because Q(max(rn ,n )) space Is needed for the glven data structure. On the posl- 
tlve slde, note that the space requlrements are 0 (n ) when m lncreases at most 
as O ( n ) .  

Figure 3.8. 

Slab - 

The slab method descrlbed above Is due to Dobkln and Llpton (1976). and 
dlffers sllghtly from the method descrlbed In Edahlro, Kokubo and Asano (1983). 
The tlme taken to flnd the reglon number for a query polnt x In a glven bucket 
1s bounded by the number of slabs. To see thls. note that we need to flnd the 
slab flrst. and then travel through the slab from left to rlght. Thus, the expected 
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m 

i = l  
time is bounded by p i  si, where si denotes the number of slabs In the i- th 

bucket, pi 1s the probablllty that x belongs to  the i - th  bucket, and the expected 
tlme 1s wlth respect to the dlstrlbutlon of X ,  but 1s condltlonal on the data. But 
E(Si)<npi +E (Ci 1. where Ci 1s the number of edges crosslng the boundary of 
the i-th bucket. Wlthout further assumptions about the dlstrlbutlon of the data 
polnts and the edges. any further analysls seems dlfflcult, because E ( C i )  Is not 
necessarlly a quantlty wlth propertles determlned by the behavlor of In or near 
the i - th  bucket. Assume next that X 1s unlformly dlstrlbuted. Then, the 
expected tlme Is bounded by 

m .  

where E (C) Is the expected value of the overall number of edge-bucket boundary 
crosslngs. E (C)  can grow much faster than m : Just conslder a uniform denslty 
on [0,1]*. Sort the polnts from left to rlght, and connect consecutlve polnts by 
edges. Thls ylelds about n edges of expected length close to 1/3 each. E ( C )  
should be close to a constant tlmes n 6 .  Also, for any planar graph, 
c S-yn 6 where 7 1s a unlversal constant. Thus, I t  Is not hard to  check that 
the condltlonal expected search tlme Is In the worst-case bounded by 

n 
m++ 

Thls 1s o(1) when m lncreases as n(n2) .  Often, we cannot afIord thls because of 
space or set-up tlme llmltatlons. Nevertheless, I t  1s true that even lf m lncreases 
llnearly wlth n , then the expected search tlme 1s O(1) for certaln probablllstlc 
models for putting In the edges. Help can be obtalned lf we observe that an edge 
of length L cuts at most 2(2+L 6) buckets, and thus leads to  at  most twice 
that number of edge-boundary crosslngs. Thus, the expected tlme 1s bounded by 
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where e 1s the total number of edges and L ,  1s the length of the j - t h  edge. Slnce 
e =o ( n  ), and m -en (by assumptlon). thls glves 0 (1) provlded that 

In other words, we have obtalned a condltlon whlch depends upon the expected 
lengths of the edges only. For example, the condltlon 1s satlsfled If the data 
polnts have an arbltrary denslty 1 on [0,1]2 , and each polnt Is connected to Its 
nearest nelghbor : thls ls because the expected lengths of the edges grow roughly 
as 1 / 6 .  The condltlon 1s also satlsfled If the polnts are all connected to polnts 
that are close to I t  In the ordlnary sense. such as for example In a road map. 

point 

Figure 3.9. 
The point enclosure prob1em:report 

all rectangles to which query point belongs. 
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Remark. [Polnt enclosure problems.] 
In polnt-enclosure problems. one 1s glven n rectangles In R * . For one query 

polnt x, one 1s then asked to report all the rectangles to whlch X belongs. Slnce 
a rectangle can be consldered as a polnt In R 2 d ,  I t  1s clear that thls problem 1s 
equlvalent to an orthogonal range search query In R 2 d .  Thus, orthogonal range 
search algorlthms can be used to solve thls problem. There have been several 
dlrect attempts at solvlng the problem too. based malnly on the segment or lnter- 
Val  tree (Bentley (1077). Bentley and Wood (1080). Valshnavl and Wood (1080), 
Valshnavl (1082)). For example, on the real Ilne, the algorlthm of Bentley and 
Wood (1080) takes preprocesslng tlme 0 (n  log(n )), space 0 (n log(n )), and 
worst-case query tlme 0 (log(n )+k ) where k 1s the number of segments (1.e.. 
one-dlmenslonal rectangles) reported. We wlll brlefly look lnto the propertles of 
the bucket structure for the one-dlmenslonal polnt-enclosure problem. 

Flrst, we need a good probablllstlc model. To thls end, assume that (L ,R ), 
the endpolnts of a segment form a random vector wlth a denslty f on the 
north-west trlangle of [0,112 (thls 1s because L < R  In all cases). The n lntervals 
are lld, and the query polnt has a denslty g on [0,1]. The segment [OJ] 1s partl- 
tloned lnto m buckets, where typlcally rn-cn for some constant c (whlch we 
assume from here onwards). For each bucket, keep two llnked llsts : one llnked 
llst of segments completely coverlng the bucket, and one of lntervals only par- 
tlally coverlng the bucket. Note that the entlre structure can be set up In tlme 
proportlonal to n plus n tlmes the total length of the segments (because a seg- 
ment of length 1 can be found In at least 1 and about d llnked Ilsts). The space 
requlrernents are formally slmllar. Under the probablllstlc model considered here, 
I t  1s easy to see that the expected space and expected preprocesslng tlme are both 
proportlonal to n tlmes the expected value of the total length. Slnce the expected 
value of the total length 1s n tlmes the expected value of the length of the flrst 
segment, and slnce thls ls a constant, the expected space and preprocesslng 
requlrements lncrease quadratlcally In n. The expected search tlme 1s small. 
Indeed, we flrst report all segments of the flrst llnked llst In the bucket of x. 
Then. we traverse the second llnked Ils t ,  and report those segments that contaln 
x. Thus, the search tlme 1s equal to k+l plus the cardlnallty of the second 
llnked Ilst, 1.e. the number of endpolnts In the bucket. Wlth the standard nota- 
tlon for buckets and bucket probabllltles. we observe that the latter contrlbutlon 
to  the expected search tlme ls 

where h 1s the denslty of x (1.e. I t  ls the average of the densltles of L and R ) ,  
and pi =I h . Here we used Lemma 1.1. 

A,  
There are other probablllstlc models wlth totally dlflerent results. For exam- 

ple, In the car parklng model, we a sume  that the mldpolnts of the segments 
have denslty f on [0,1], and that the lengths of the segments are random and 
lndependent of the locatlon of the segment : the dlstrlbutlon of the lengths how- 
ever ls allowed to  vary wlth n to allow for the fact that as more segments are 
avallable, the segments are more llkely to be smaller. For example, lf the lengths 
are all the same and equal to rn where r,, tends to 0 at the rate l / n  , the overlap 
among lntervals 1s qulte small. In fact, the preprocesslng and set-up tlmes are 
both O ( n )  In the worst case. If x has denslty f as well, then the expected 
search tlme 1s 0 (1) when s r  

3.3. THE TRAVELING SALESMAN PROBLEM. 
The travellng salesman problem 1s perhaps the most celebrated of all dlscrete 

optlmlzatlon problems. A travellng salesman tour of XI, . . . , Xn 1s a permuta- 
tlon cl, . . . , Q, of 1, . . . , n :  thls permutatlon formally represents the path 
formed by the edges (xoI,XoI), (x,x,,).....(x,.,x,l). The cost of a travellng 
salesman tour 1s the sum of the lengths of the edges. The travellng salesman 
problem 1s to  flnd a mlnlmum ccst tour. When the lengths of the edges are the 
Euclldean dlstances between the endpolnts, the problem 1s also called the 
Euclldean travellng salesman problem, or ETSP. 

In partlcular, lf x 1s uniformly dlstrlbuted, then thls expresslon 1s slmply 2n /m . 
Thls can be made as small as deslred by the approprlate cholce of m .  If, how- 
ever, X ls wlth equal probablllty dlstrlbuted as L and R respectlvely, whlch 
seems to be a more reallstlc model. then the expresslon 1s 
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salesman path 

Figure 3.1 0. 
The Euclidean traveling salesman problem: 

find the shortest path through all cities. 

The ETSP Is an NP-hard problem (Papadlmltrlou (1977), Papadlmltrlou and 
Stelglltz (1982)). and there has been conslderable lnterest In developlng fast 
heurlstlc algorlthms (see Papadlmltrlou and Stelglltz (1982) and Parker and Rar- 
dln (1983) for surveys). It should be stressed that these algorlthms are nonexact. 
Nevertheless, they can lead to excellent tours: for example, a heurlstlc based upon 
the mlnlmat spannlng tree for x,, . . . , x, developed by Chrlstofldes (1976) 
ylelds a tour whlch 1s at worst 3/2 tlmes the length of the optlmal tour. Other 
heurlstlcs can be found In Karp (1977) (wlth addltlonal analysls In Steele (1981)) 
and Supowlt, Relngold and Plalsted (1983). We are not concerned here wlth the 
costs of these heurlstlc tours as compared, for example, to the cost of the optlmal 
tours, but rather wlth the tlme needed to construct the tours. For lld polnts ln 
[OJ]', the expected value of the cost of the optlmal tour Is asymptotic to 
B 6  Jfl where ,f3 > 0 Is a unlversal constant (Steele, 1981). For the unlform 
dlstrlbutlon, thls result goes back to Beardwood, Halton and Hammersley (1959). 
where I t  Is shown that 0.81 5 p 5 0.92. 

For the ETSP In [0,1]'. we can capture many bucket-based heurlstlcs In the 
followlng general form. Partltlon [OJ]' lnto m equal cubes of slde 1/& each. 
Typlcally, m Increases In proportion to n for slmple heurlstlcs, and rn =O (n ) 
when the expected cost of the heurlstlc tour 1s to be optlmai In some sense (see 
Karp (1977)and Supowlt, Relngold and Plalsted (1983)). The bucket data struc- 
ture Is set up (In time 0 (n fm )). The cells are traversed In serpentlne fashlon, 

startlng wlth the leftmost column, the second column, etcetera. wlthout ever l l f t  
lng the pen or sklpplng cells. The polnts wlthln the buckets are all connected by 
a tour whlch ls of one of three posslble types: 

A. 
B. 

C. 

Random tour. The polnts connected as they are stored In the llnked Ilsts. 
Sorted tour. All polnts are sorted accordlng to y coordlnates, and then 
llnked up. 
Optimal tour. The optlmal Euclldean travellng salesman tour Is found. 

' Figure 3.1 1. 
Serpentine cell traversal. 
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Figure 3.1 2. 
A sorted tour. 

The time costs of A ,B ,c for a bucket wlth N points are bounded respectlveb 
by 

CN , 

C N  log(N+1), 

and 

CN aN 

for constants C. For the optlmal tour, a dynamic pmgrammlng algorlthm Is use( 
(Bellman, 1982). The m tours are then llnked up by traversing the cells In ser 
pentlne order. We are not concerned here wlth Just how the lndlvidual tours art 
linked up. It should for example be obvlous that two sorted tours are llnked UT 

by connectlng the northernmost polnt of one tour wlth the southernmost point of 
the adjacent tour, except when an eastwest connectlon Is made at the U-turns In 
the serpentlne. It Is easy to see that the total cost of the between-cell connec- 
tlons Is 0 (6). and that the total cost of the tours is 0 (n /6) for all three 
schemes. For schemes A and B therefore, I t  seems Important to make m pro- 
portional to n so that the total cost Is 0 (6 ), Just as for the optlmal tour. In 
scheme C, as polnted out In Karp (1977) and Supowlt, Relngold and Plalsted 
(1983). lf m increases at a rate that Is sllghtly subllnear ( 0  (n)), then we can 
come very close to the globally optlmal tour cost because wlthln the buckets 
small optimal tours are constructed. The expected time taken by the algorlthm 
Is bounded by 

0 (n +m 

and 

0 (n +m 

respectlvely. 

+ E ( i= l  5 CNi log(Ni +I)) , 

m 
+ E ( C  CNizN1) 

Theorem 3.2. 

expected time requlred 1s bounded by 0 (n  +m ) plus, respectlvely 
For the methods A ,B ,C for constructing travellng salesman tours, the 

where $(u ) Is the functlonal generatlng functlon for the density f on [0,1]*. 
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Remark. 
The functional generating function for a density f on [0,1]' Is deflned 

by 

By Taylor's series expansion, I t  1s seen that 

whlch explalns the name. Note that the Taylor series Is not necessarily conver- 
gent, and that + Is not necessarily flnlte: I t  Is flnlte for all bounded densities wltli 
compact support, and for a few unbounded densitles with compact support. FOI 
example, If f 5 f ' on [0,112, then Mu ) 5 y e  "1 ', u > 0. Thus, the bounc 

in (C ) becomes 

1 

f 

L J *  
(In fact, by a dlrect argument, we can obtain the better bound 2Cne .) Note 
that In the paper of Supowlt et al. (1983), m 1s allowed to be picked arbitrarllq 
close to n (e& m =n /log log Log n).  As a result. the algorithm based on (c ;  
has nearly llnear expected time. Supowlt et al. (1983) provlde a further 
modlflcatlon of algorithm (c ) which guarantees that the algorithm runs In nearly 
llnear time in the worst case. 

Proof of Theorem 3.2. 
To show ( B ) ,  we consider 

where B,, . . . , B,, are lid Bernoulli ( p i )  random varlables. Also, since 
p i  log(2+(n -l)pi ) Is a convex functlon of pi, another appllcatlon of Jensen's lne- 
quality yields the upper bound 

whlch Is all that is needed to prove the statement for ( B ) .  For (c). we argue 
slmllarly, and note that 

E(Ni2") 

= nE(B,zB' fi 2'I) 
j =2 

= 2np; (2p; + (l-pi 

= 2npi(1 + pi)"-'  

< 2npi e('-')P* - 
n -1 

5 2n 1 f e -f (Jensen's Inequality). 
A.  

This concludes the proof of Theorem 3.2. 

n n 
= E (  Bj log( Bj + I)) 

j = 1  J =1 
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Remark. [ETSP In hlgher dlmenslons.] 

Halton and Terada (1982) descrlbe a heurlstlc for the ETSP In d dlmenslons 
whlch 1s slmllar to the heurlstlc glven above In whlch wlthln each cell an optlmai 
tour 1s found. In Partlcular. for polnts unlformly dlstrlbuted on the unlt hyper- 
cube, I t  Is shown that the tour length dlvlded by the optimal tour length tends 
wlth probablllty one to one as n '00. Also, the tlme taken by the algorlthm 1s In 
probablllty equal to o ( n  &n )) where 4 Is an arbltrary dlverglng functlon plcked 
beforehand and 4 1s used to  determlne at whlch rate m l n  tends to 0. The 
dlvergence of 4 1s agaln needed to lnsure asymptotlc optlmallty of the tour's 
length. The only technlcal problem In d dlmenslons Is related to the connection 
of cells to form a travellng salesman tour. 

3.4. CLOSEST POINT PROBLEMS. 
Local algorithms are algorlthms whlch perform operatlons on polnts In glven 

buckets and In nelghborlng buckets to construct a solutlon. Among these, we 
have algorlthms lor the followlng problems: 

(1) the close pairs problem: ldentlb all palrs of polnts wlthln dlstance r of 

(11) the isolated points problem: tdentlfy all polnts at least dlstance r away 

(111) the Euclidean minimal spanning tree problem; 
(lv) the all-nearest-neighbor problem: for each polnt, flnd Its nearest nelgh- 

(v)the cloeeat pair problem: flnd the mlnlmum dlstance between any two 

each other: 

of all other polnts; 

bor; 

polnts. 

0 
0 

Distance r in definition t 0 

0 
0 0  

PROPERTY: Vertices with degree 0 
are isolated points for distance r. 

0 0 

0 
2 

0 
0 v. 

0 

0 

0 
Figure 3.13. 

Close pairs graph. 

0 

These problems are sometlmes called closest point problems (Shamos and 
Hoey, 1975; Bentley, Welde and Yao, 1980). What compllcates matters here 1s 
the fact that the tlme needed to Und a solutlon 1s not merely a runctlon of the 
form 

i = l  

as In the case of one-dlmenslonal sortlng. Usually, the tlme needed to solve these 
problems Is of the form 

where N; * 1s the number of polnts In the nelghborlng buckets; the deflnltlon of a 
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nelghbor bucket depends upon the problem of course. It 1s qulte lmposslble to 
glve a detalled analysls that would cover most lnterestlng closest polnt problems. 
As our prototype problems, we wlll plck (I) and (11). Our goal 1s not Just to flnd 
upper bounds for the expected tlme that are of the correct order but posslbly of 
the wrong constant: these can be obtalned by flrst boundlng the tlme by a func- 
tlon of the form 

where 3 1s another functlon. The overlap between buckets lmpllclt In the terms 
N i + N i *  does not matter because the expected value of a sum 1s the sum of 
expected values. Our goal here 1s to  obtaln the correct asymptotlc order and 
constant. Throughout thls sectlon too. x,, . . . , x,, are lndependent random 
vectors wlth denslty 1 on [O,lld. 

Figure 3.1 4. 
All nearest neighbor graph at left. This graph is a subgraph 

of the minimal spanning tree, shown at right. 

Remark. [Isolated polnts. Slngle-llnkage clusterlng.] 
If XI, . . . , x,, are d-dlmenslonal data polnts, and r > 0 1s a number 

dependlng upon n only, then xi Is sald to be isolated point lf the closed sphere 
of radlus r around Xi contalns no xi, j #i . 

Isolated polnts are lmportant In statlstlcs. They can often be consldered as 
“outllers” to be dlscarded In order not to destablllze certaln computatlons. In 
the theory of clusterlng, the followlng algorlthm 1s well-known: construct a 
graph In whlch xi and xi are jolned when they are wlthln dlstance r of each 
other. The connected components In the graph are the clusters. When r grows. 
there are fewer and fewer connected components of course. Thus, lf we can flnd 
all palm (xj ,xi) wlthln dlstance r of one another very qulckly, then the Cluster- 
lng algorlthm wlll be fast too. slnce the connected components can be grown by 
the unlon-flnd parentpolnter tree algorlthm (see e.g. Aho. Hopcroft and Ullman 
(1083, pp. 184-180)). Thls clusterlng method 1s equlvalent to the single linkage 
clustering method (see e.& Hartlgan (1875. chapter 11)). The lsolated polnts 
algorlthms dlscussed below wlll all glve an exhaustlve llstlng of the palrs (Ay, ..y, ) 
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V V V 
vv v v 

that satlsty IlXi-Xj 11 5 r ,  and can thus be used for clusterlng too. The p r o b  
lem of the ldentlflcatlon of these Palm 1s called the close palm problem. 

- r  

There are two bucket-based solutlons to the close-pairs problem. Flrst. we 
can deflne a grld of hypercubes (buckets) wlth sldes dependent upon r .  The 
dlsadvantage of thls 1s that when r changes, the bucket structure needs to be 
redeflned. The advantage 1s that when n changes, no such adjustment Is 
needed. In the second approach, the bucket slze depends upon n only: I t  1s 
lndependent of r . 

-ing buckets 

cell 

Figure 3.15. 

In the r-dependent grld. I t  1s useful to make the sldes equal to r / n  
because any palr of polnts wlthln the same bucket 1s wlthln dlstance r of each 
other. Furthermore, polnts that are not In nelghborlng buckets cannot be wlthln 
dlstance r of each other. By nelghborlng bucket, we do not mean a touchlng 
bucket, but merely one whlch has a vertex at dlstance r or less of a vertex of the 
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orlglnal bucket. A conservatlve upper bound for the number of nelghborlng 
buckets 1s ( 2 n  + 3 ) d .  In any case, the number depends upon d only, and wlll 
be denoted by rd. To ldentlf'y lsolated polnts. we flrst mark slngle polnt buck- 
ets, 1.e. buckets wlth N i = l ,  and check for each marked polnt all rd nelghborlng 
buckets. The sum of dlstance cornputatlons lnvolved 1s 

c c N j  
i :N, -1 j :A, neighbor 01 A. 

c 1 = C N j  
j i :N, =I, and A ,  neighbor oi A, 

The grld lnltlallzatlon takes tlme f l ( r - d )  and 0 (mln(r-d , l ) ) .  In partlcular, the 
entlre algorlthm 1s 0 (n ) In the worst-case whenever m ' I d  2 c > 0 for some 
constant c . For r much smaller than n- 'Id ,  the algorlthm 1s not recommended 
because nearly all the polnts are lsolated polnts - the bucket slze should be made 
dependent upon n Instead. 

Figure 3.16. 
Finding the maximal gap in a sequence of 

n points by dividing the range into n+l intervals. 

Remark. [The maxlmal gap.] 

The maxlmal gap In a sequence of polnts zlr  . . . , zm taklng values on [ O J ]  
1s the maxlmal lntemal lnduced by these polnts on [O.l]. As In the case of lso- 
lated polnts, the maxlmal gap can be found In worst-case tlme 0 (n ). For exam- 

1 
ple, thls can be done by observlng that the maxlmal gap 1s at least -. n +1 Thus, 
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if we organlze the data lnto a bucket structure wlth n +1 Intervals, no two polnts 
wlthln the same bucket can deflne the maxlmal gap. Therefore, I t  1s not neces- 
sary to store more than two polnts for each bucket, namely the maxlmum and 
the mlnlmum. To flnd the maxlmal gap, we travel from left to rlght through the 
buckets, and select the maxlmum of all dlfferences between the mlnlmum of the 
current bucket and the last maxlmum seen untll now. Thls algorlthm 1s due to 
Gonzalez (1975). 

Let us turn now to the close-palm problem. The tlme needed for reportlng 
all close palm 1s of the order of 

V = EN,' + E N ;  c Nj 
I i j :A, neighbor of A,  

where the flrst term accounts for llstlng all palrs that share the same bucket, and 
the second term accounts for all dlstance computatlons between polnts In nelgh- 
borlng buckets. 

For thls problem, let us conslder a grld of m buckets. Thls at least guaran- 
tees that the lnltlallzatlon or set-uptlme 1s 0 (n +m ). The expected value of our 
performance measure V 1s 

E ( V )  = E ( C N ; 2  + C N i  c Nj 1 
I i j .A, neighbor of A,  

and I t  Is the last term whlch causes some problems because we do not have zb full 
double sum. Also. when p i  = I f  1s large, p j  1s llkely to be large too slnce Ai 

A,  
and A j  are nelghborlng buckets. The asymptotlcs for E ( v )  are obtalned In the 
next theorem. There are 3 sltuatlons when m =n : 

A. 

B. 

C. 

nrd + 03 as n -+ 00: the expected number of close pslrs lncreases roughly 
speaklng faster than n . 
nr + 0 as n + 00: the expected number of close palrs 1s 0 ( n  ), and the 
probablllty that any glven polnt 1s an Isolated polnt tends to 1. 
nrd  --+ p E (0,co) as n -+ 00: the expected number of close palrs Increases 
as a constant tlmes n . Thls 1s the crltlcal case. 
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The upper bound In the theorem 1s valld In all three cases. In fact, Theorem 3.3 
also covers the sltuatlon that m # n :  m and / or r are allowed to vay wlth n 
In an arbltrary manner. 

Theorem 3.3. 
Let 7 = r(r , d , m ) be the number of nelghborlng buckets of a partlcular 

bucket In a grld of slze m deflned on [O,l]d, where r 1s used In the deflnltlon of 
nelghbor. Then 

Note that 
the unlt sphere In R d. Thus, 

mrd -+ 00 T + o , %r ,d  .m - mr vd where vd IS the value of 

E ( V )  = n + n z r d  vd(1 + o(1))Jf 2 .  

If mrd  + @ E (0,00]. then 7 osclllates but remalns bounded away from 0 and 00 

In the tall. In that case, 

E ( V )  = O ( n )  

when J /  < co, m - c n .  Note that E ( V )  = sl(n) In all cases. 
Flnally, If mr + 0, such that f > 0 for all n , m , then 7 -+ g d  -1, and 

n 2  E ( V )  = n + - m 3 d J j  2(1 + o(1) )  
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Proof of Theorem 3.3. 
We wlll use the notatlon A ( 2 )  for the bucket Ai to whlch z belongs. 

Furthermore, B (z ) IS the collectlon of nelghborlng buckets of A (z ). Deflne' the 
densltles 

Note that by the Lebesgue denslty theorem, If m --L 00, r -+O (and thus 
IA(z) l  -* 0, IB(z)I -+ O), f , ,(z) -* f (2) and g,(z) -+ g ( z )  for almost all 2. 
Thls result can be obtalned wlthout trouble from Lemmas 5.10, 5.11, and the fact 
that  the deflnltlon of nelghborlng bucket Is data Independent and depends upon 
r and m only. 

The upper bound wlll be derlved flrst. The sum V Is spllt Into V, + V,.  

Only V ,  causes some problems since E ( V , )  5 n2  X p i 2  + n 5 "Jf + n 
by Lemma 1.1. Note also for future reference that 

E (  v,) 2 n + (l+o (l))$Jf when m -.r 00 If we apply the Fatou lower 

bound argument of the proof of Lemma 1.1. Turnlng to V, ,  we have, by Lemma 
5.1, 

m 2 

m i = 1  

Slnce f ,  and gn are probably very close to each other, the Integral In the last 
expresslon Is probably very close to sf,, ' .  Therefore, llttle wlll be lost If the 
Integral Is bounded from above by the Cauchy-Schwartz lnequallty: 

CRAPTER 3 

~ (Jensen's InequalltY) 

= J j 2  

To treat Jgn we have argued as follows: 

. .  
(where B ( z )  now refers to an Inflnlte grld) 

m 
= X J f 2  

= J / ' .  

i = l  A, 

89 
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when m -+ 00, r -+ 0. Thls concludes the proof of the flrst two statements o 
the theorem. The remalnder of the theorem Is concerned wlth the slze of 7 as : 
functlon of r and e, and follows from elementary geometrlc prlnclples. 

We note for example that when m -t 00, m r d  -+ 0, the optlmal choke lo 
m would be a constant tlmes n d m  - at least, thls would mlnlmlzc 
Cm + E ( V )  asymptotlcally, where C Is a glven constant. The mlnlmlzln~ 
value Is a constant tlmes n d v .  The only sltuatlon In whlch E (V) Is no1 
o(n)  for m - cn 1s when nr  -c 00, 1.e. each bucket has very many datz 
polnts. It can be shown that the expected number of close palrs grows as a con- 
stant times n 2 r d ,  and thls provldes a lower bound for E(V). Thus, tht 
expected tlme for E (V) obtalned In Theorem 3.3 has an optlmal asymptotlc rate 

Remark. [The all-nearest-nelghbor problem.] 
All nearest nelghbor palm can be found In 0 (n log n ) worst-case tlme 

(Shamos and Hoey. 1975). Welde (1978) proposed a bucketlng algorlthm In 
whlch for a glven X i ,  a “splral search” Is started In the bucket of xi, and con- 
tlnues In nelghborlng cells, In a splrallng fashlon, untll no data point outslde the 
buckets already checked can be closer to xi than the closest data polnt already 
found. Bentley, Welde and Yao (1980) showed that Welde’s algorlthm halts In 
average tlme 0 (n ) when there exlsts a bounded open convex reglon B such that 
the denslty f of X, 1s 0 outslde B and satlsfies 
0 < lnf f ( 5 )  5 sup f (2) < 00. (Thls condltlon wlll be called the BUT condl- 

tlon.) 
B B 

Figure 3.17. 
Spiral search for nearest neighbor. 

Remark. [The closest palr problem.] 
To flnd the closest palr In [0,lId, one can argue geometrlcally and deduce an 

absolute upper bound of the form cd / n  for the smallest dlstance between any 
two polnts among x,, . . . , x, In [ O , l l d .  Here cd Is a constant dependlng upon 
d only., If we construct a grld wlth buckets havlng sldes cd /n d ,  then we can 
hope to “catch” the closest palr In the same bucket. Unfortunately, the closest 
palr can be separated by a bucket boundary. Thls case can be elegantly covered 
by shlftlng the grld approprlately a number of tlmes so that for one of the shifted 
grlds there Is a bucket whlch contalns the closest palr (Yuval, 1976). Ignorlng 
the dependence upon d , we see that wlth thls strategy, the tlme cornplexlty 1s of 
the form c ,n + c , where the square accounts for the cornputatlons of all 

palrwlse dlstances wlthln the same bucket, and c ,, e ,  > 0 are constants. It IS 
easy to see that lf .y,, . . , x, are lld random vectors wlth denslty f on [ O , l l d ,  

n 
lv, 

I = I  
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then the shlfted grld method takes expected tlme 0 (n ) If and only If If < 0: 
Rabln (1976) chooses a small subset for whlch the closest palr is found. T h  
correspondlng mlnlmal dlstance Is then used to obtaln the overall closest palr : 
llnear expected tlme. It 1s perhaps lnterestlng to note that not much 1s galne 
over worst-case tlme under our computatlonal model, slnce there exlst algorlthn: 
whlch can flnd the closest Palr In worst case tlme O(nlog1ogn) (Fortune an 
Hopcroft, 1979). 

Remark. [The Euclldean mlnlmal spannlng tree.] 

For a graph ( V , E ) )  Yao (1975) and Cherlton and Tarjan (1976) glve algc 
rlthms for flndlng the mlnlmal spanning tree (MST) In worst-case tlm 
0 (IE llog log1 VI). The Euclldean mlnlmal spanning tree (EMST) of n polnts I: 
R can therefore be obtalned In 0 (n log log n ) tlme If we can flnd a super 
graph of the EMST wlth 0 (n ) edges In 0 (n log log n ) tlme. Yao (1982) sug 
gested to flnd the nearest nelghbor of each polnt ln a crltlcal number of dlrec 
tlons; the resultlng graph has 0 (n ) edges and contalns the MST. Thls neares 
nelghbor search can be done by a sllght modlflcatlon of splral search (Weld1 
(1978)). Hence, the EMST can be found In expected tlme 0 (n log log n ) fo 
any d and for all dlstrlbutlons satlsfylng the BWY condltlon. The sltuatlon 1s : 
blt better In R '. We can flnd a planar supergraph of the EMST in expected tlmf 
0 (n ) (such as the Delaunay trlangulatlon (the dual of the Voronol dlagram), tht 
Gabrlel graph, etc.) and then apply Cherlton and TarJan's (1978) 0 ( a  ) algo- 
rlthm for flndlng the MST of a planar graph. For a llnear expected tlme Vorono 
dlagram algorlthm, see Bentley, Welde and Yao (1980). Thus, ln R and for the 
class of BWY dlstrlbutlons, we can flnd the EMST in h e a r  expected tlme. 

Chapter 4 

THE MAXIMAL CARDINALITY 
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The expected value of the worst posslble search time for an element In a 
bucket data structure Is equal to the expected value of M, = max Ni tlmes a 

constant. Thls quantlty dlffers from the worst-case search tlme, whlch Is the 
largest posslble value of max Nj over all posslble data sets, Le. n . In a sense, 

I s i s m  
the maxlmal cardlnallty has taken over the role of the helght In tree structures. 
Its maln lmportance 1s wlth respect to searchlng. Throughout the chapter, I t  1s 
cruclal to note the dependence of the maxlmal cardlnallty upon the denslty f of 
the data polnts X , ,  . . . , X ,  , whlch for the sake of slmpllclty are assumed to 
take values on [0.lld. The grld has m - en cells for some constant c > 0, 
unless we speclfy otherwlse. 

In sectlon 4.1, we look at the properties of M,, , and In partlcular of E (M,  ) 
followlng analysls glven In Devroye (1985). Thls 1s then generallzed to E (9 (kf, )) 
where g Is  a nonllnear work functlon (see sectlon 4.3). Such nonllnear functlons 
of M,, are lmportant when one partlcular bucket 1s selected for further work, as 
for example In a bucket-based selectlon algorlthm [sectlon 4.2). Occaslonally. the 
maxlmal cardlnallty can be useful In the analysls of bucket algorlthms in whlch 
certaln operatlons are performed on a few buckets, where buckets are selected by 
the data points themselves. In sectlon 4.4, we wlll Illustrate thls on extrema1 
polnt problems In cornputatlonal geometry. 

151 5 m  

4.1. EXPECTED VALUE AND INEQUALITIES. 

m = n ,  
For the unlform dlstrlbutlon on [0,1], Gonnet (1981) has shown that when 

E (M,  ) - r-l(n ) 
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where r 1s the gamma functlon. For example, when n = 40320, E (Ad,, ) is neal 
7.35 (Gonnet, 1981, table V). In other words, E (M, ) Is very small for all practi- 
cal values of n . Addltlonal lnformatlon 1s glven ln Larson (1982). The sltuatlor 
studled by Gonnet pertalns malnly to  hashlng wlth separate chalnlng when a per- 
fect hash functlon 1s avallable. As we know, order-preserving hash functions lead 
to non-unlform dlstrlbutlons over the locations, and we wlll see here how E (M, ; 
depends upon f . Thls Is done in two steps. Flrst we wlll handle the case of 
bounded f , and then that of unbounded f . 

Theorem 4.1. 
i 

Assume that f * = ess SUP f < 00 (note: X{z : f (z)  > f ’} 
= 0 ; x(z : f (z)  > f ’ - E} > 0 for all E > 0). Then, If m - cn for some 
c > o .  

log n 
log log n E(Mn 1 

and, in particular, 

96 
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Deflne b ( n ) = l + l o g ( f  * / c ) + l o g l o g n  + l o g l o g l o g n .  

c (n) = (log log log n . Thus, by assumption, 

o (I) = E (M,, ’ )c (n ) -b  (n ) 5 E (M,, (l+c))c (n ) + * n -b (n ) 

1 + 0 -b (n (I+€)) + (6 (n  (I+€)) -b (n )). 

NOW, b (n (i+E))-b (n )=o (I), and, for n large enough, c (n )>c (n (I+E)) 

Thus, 

Proof of Theorem 4.1. 
We wlll use a Polssonlzatlon device. Assume flrst that we have shown the 

statement of the theorem for kfn * where IW, * = inaxNi * and Ni t  1s the 

number of xi’ s In x,, . . . , XN belonglng to A , ,  where N 1s a Poisson (n) 
random variable Independent of Xl,X2, ... . Now, for all E > 0, we have 

1 

where I Is the lndlcator functlon, and where n ( I f f )  and n (1-6) should be read 
as “the smallest lnteger at least equal to ...”. By Lemma 5.8,  

Slmllarly, I t  can be shown that E (M,  ) 5 ( b  (n )+o ( l ) ) /c  (n), and comblnlng 
thls glves us our theorem. 

Lower bounds for M,, # .  

Let 1 > 0 be an arbitrary number, and let E > 0 be the solutlon Of 

71 = -2 l o g ( i - y c )  (this wlll turn out to be a convenlent cholce for e) .  Let A 
be the set {z :f (5 ) > f *-E}, and let 6 = I d ”  A (whlch Is posltlve by deflnltlon 

of f ’). Flnally, let h = h, be the lnteger part of -. We let p i  keep Its 
meaning from the Introductlon, and note that the functlon f on [OJ] deflned by 

2 

f 

b (n F-77 
c (n 1 
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(all n large enough) rl log n 
2 F log log n 

because log( f * - 2 ~ )  - log( f * ) = -2 
2 

Thus, for all n large enough, 

CFIAPTER 4 

Thls concludes the proof of the lower bound, since r ]  > 0 1s arbltrary. 

Upper bounds for M, * . 
Again, we let q be an arbltrary posltlve number, and choose h = h, as the 

lnteger part of - (n I+'. Let k 2 h be some Integer. Then, for h 2 e ,  by 

Lemma 5.9, 
c ( n )  

e-' k + i  
k !  k f l - c  . 

s n c k  -- 

Thus, 

00 -c k + l  E ( M , * ) < h  + P ( i M , * > k ) < h  + n c k  e- a3 

k =h k =h k !  k+l-c 

e-' h + i  
h !  h+l-c 

I h + n c h  - (-)2. 
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By some stralghtforward analysls, one can show that 

and that 

(*)2 = 1 + - 2c + 4x1. 1 
h +I h +I-c 

Therefore, 

But 7) was arbltrary. Thls concludes the proof of the theorem. 

For all bounded f , we have 

log n 
E (Ma ) - log log n 

whenever m - c n .  In flrst approxlmatlon, the denslty does not Influence 
E (&fa ). The explanatlon 1s due to the fact that the expected value of the max- 
lmum of n Independent Polsson (1) random varlables 1s asymptotlc LO 

log n / log log n for any constant A. The Influence of f * on E(M,)  Is In the 
thlrd largest asymptotlc expanslon term only. The proof of Theorem 4.1 1s long 
and tedlous because we want to obtaln rather reflned lnformatlon. From here 
onwards, we wlll content ourselves wlth maln asymptotlc terms only. 

Theorem 4.1 remains valld when the mlnlmum and the maxlmum Of the 
x: ' s are used to determlne an lnltlal Interval, and the buckets are deflned by 
dlvldlng thls lnterval Into n equal sub-lntervals. The denslty f 1s assumed 
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have support contained in [O,l] but not In [0, l-e] or [EJ] for any E > 0. 

is unbounded, the theorem glves very llttle lnformatlon about 
E (M,  )- Actually, the behavior of E (M,, ) depends upon a number of quantltles 
that  make a general statement all but impossible. In fact, any slow rate of con- 
vergence that Is o ( n  ) is achlevable for E (M, ). Slnce Ni Is blnomial ( n  , p i )  
where p i  Is the integral of f over the I-th bucket, we have 

When f 

When f 1s monotone nonincreasing, the left-hand-slde of this inequality Is equal 

to nF (-) where F Is the dlstrlbution function corresponding to f . Thus, slnce 

any slow rate of decrease to 0 Is poslble for F ,  when n + co, any slow rate 
o (n) Is achievable for E(Mn ). The rate log n /log log n , achieved by all 
bounded densities. Is also a lower bound for E (M,  ) for all densltles. 

This note would not be complete if we dld not mentlon how E (M, ) varles 
when max npi diverges. Most of thls lnformatlon can be deduced from the Ine- 

qualltles glven in Theorem 4.2 below. For example, we will see that 
E (M,, ) - log n /log log n (the optlmal rate achlevable) when q diverges very 

n slowly, and that E (M,, ) - -q when q diverges rapldly. 
m 

1 
n 

I 

Theorem 4.2. 
Let q = max mpi. Then 

lsilrn 

n n 1 n - q 5 E(M,)  5 - q +-(log m + - q ( e t - t - i ) )  
m m t m 

Proof of Theorem 4.2. 

The lower bound follows dlrectly from Jensen's Inequality. To derlve the 
upper bound, we let VI = Nl -np, , U = rnax U, . Note that U is a nonnega- 
tive random variable. We have 

I 

r- 

- - 1  
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I For r 2 1, we can apply Jensen's lnequallty again: 
-. ,- 

;y-. - E ' ( U  ) 5 E (U' ) = E (max I Ul ) ( u  I Is considered slgn-preserving) 

5 m max I E ( ( U ~ ' ) J  5 m mau l ~ ( ( L ) r e ~ ' l ) ,  e t  ail t > 0. 

__ 
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Here we used the lnequallty u t r  5 (z)' e t  e ", t > 0, where u + = m a ( u  ,O). 

Also. 

Thus, 

n 
Thls bound 1s mlnlmal wlth respect to r when r = log m + - q  m ( e t - t - l )  (Just 

set the derlvatlon of the logarithm of the second term In the bound equal to 0). 
Resubstltutlon give the deslred result. The restrlctlon T 2 1 forces us to choose 
m 2 3 .  

Theorem 4.2 shows that there are many posslble cases to be consldered wlth 
respect to the rates of lncrease of q and m . Assume that m - e n ,  whlch IS the 
standard case. Then 

when q /log n -, x. To see thls, observe that 

n M,, 5 m+ npi + m+ Ui = - q + br. 
I I m 
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t 2  e t - t - i  5 - e f  , 
2 

so that 

(thls mlnlmlzes the upper bound when e 1s neglected 
), and note that 

, 

In thls case, the bound of Theorem 4.2 1s tlght. 

q : q = (log n 
Conslder a second case at the other end of the spectrum, the very small 

(or: log q = o (log log n )). Then the upper bound 1s 

log m log n 
N 

log log n 
E W , )  I (1+0(1)) 

when we take t =log 

(note that thls cholce of t almost mlnlmlzes the upper bound). Thus, Theorem 
4.2 provides a considerable short-cut over Theorem 4.1 If one Is only Interested in 
flrst terms. 

A thlrd case occurs when q = o (log n ), but q 1s not necessarlly very small. 
In that case, for the same cholce of t suggested above, we have 

The only case not covered yet 1s when q - CL) log n for some constant a! > 0. It 
Is easy to see that by taklng t constant, both the upper and lower bound,for 
E (M,, ) vary In proportlon to q . Slnce obvlously the bounds lmpllclt In Theorem 
4.1 remaln valld when q + m, we see that the only case In whlch there might be 
a dlscrepancy between the rate of lncrease of upper and lower bounds 1s our 
“third” case. 

Remark 4.1. [The behavlor of 15: m.ax Srn mp; .] 

The behavlor of M, for unbounded densltles depends rather heavlly on the 
behavlor of q = max mp;. It 1s useful to relate thls maxlmum to f . In par- 

15i 5 m  
tlcular, we need to be able to bound the maxlmum In terms of f . One posslble 
polynomlal bound 1s obtalned as follows: for any set Ai, and any f 2 1, 

1 
I f  

5 - I f (Jensen’s lnequallty). [ & I r  X(A;) A,  

Thus, 

The less outspoken the peakedness of f Is (1.e. the smaller If ), the smaller the 
bound. For densltles f wlth extremely small lnflnlte peaks, the functlonal gen- 
eratlng functlon 1s flnlte: .1Mu ) = [ e  u’ < 00, some u > 0. For such densltles, 
even better bounds are obtalnable as follows: 

Thus, 

log m + log $(u ) 
max mpi 5 

15: <m 11 

The value of u for whlch the upper bound is mlnlmal 1s typically unknown. If 
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we keep u flxed, then the upper bound Is 0 (log(m )), and we are almost In the 
domaln In which E ( M , )  - log n/log log n. If $ ( u )  < 00 for all u > 0 then 
we can flnd a subsequence urn f 00 such that $(urn ) 5 m for all m . It Is easy 
to see that the maxlmum of the mpj’ s Is o(1og m) ,  so that  

( l + o  (1)). If $(log log m ) <_ m ‘(I), then 

E (M, ) = 0 ( ). Thus, the functlonal generatlng function alds In 
the establlshment of slmple verlflable condltlons for dlfferent domalns of behavlor 
of E (M,, ). 

log n 
log((l0 n ) / q  ) 

E (IVn 

Tog n 
log log log n 

Remark 4.2. [Double bucketlng.] 
I t  Is a rather straightforward exercfse to show that for bounded f on [O,lld, 

If all buckets are further subdlvlded Into grids of slzes N , ,  . . . , Nm , as Is done 
In sectlon 1.5 for example, then, when m - cn , 

log log n 
E (Mn ) - log log log n . 

Here M, Is the maxlmal cardlnallty In any of the buckets In the small grids. 
Intultlvely, thls can be seen as follows: for the orlglnal grid, M,, Is very close to 
log n /log log n. For the buckets contalnlng about log n /log log n elements, we 
obtaln an estlmate of E(M,,)  for the maxlmal cardlnallty In Its sub-buckets by 
applylng the results of thls sectlon after replacement of n by log n /log log n . 
Thus, as a tool for reduclng the maxlmal cardlnallty In the bucket data structure, 
double bucketlng Is qulte emclent although not perfect (because E (M, ) + 00). 

Remark 4.3. [Polssonlzatfon.] 
The proof of Theorem 4.1 Is based upon Polssonlzatlon of the sample size. 

The technlcal advantage Is that M, , a maxlmum of dependent blnomlal random 
varlables, Is replaced by M,, * , a maxlmum of Independent Poisson random varl- 
ables. In fact, we can do wlthout the Polssonlzatlon by using speclal propertles 
of the multlnomlal dlstrlbutlon. To Illustrate this, we could have used Mallows’ 
lnequallty: 

m m 

I =1 r=, 

P( max N, 5 z < 11 P ( N ,  s z ) < e x p ( - C  P ( N i  > z ) ) , z  > O  
121 < m  1 -  

(Mallows, 1968), from whlch one deduces without work that 
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where, N ,* , . . . , Nm * are Independent blnomlal random varlables, dlstrlbuted 
lndlvldually as N , ,  . . . , Nm . Thls can be used as a startlng polnt for develop- 
Ing a lower bound. 

Remark 4.4. [Hlstorlcal remark.] 
Kolchln, Sevast’yanov and Chlstyakov (1978, pp. 94-111) have studled In 

some detall how M,, behaves asymptotlcally for dlfferent rates of Increase of m , 
and for the unlform denslty on [OJ]. Thelr results can be summarlzed qulte slm- 

ply. A crltlcal parameter Is -, the average occupancy of a cell. There are three 

cases: 

n 
m 

Casel .  If * + o as n -+ co, then 
m log m 

where X Is a posltlve constant, and T = rn 1s chosen In such a way that 
n 

n -- 
(-)TI? , I -  

-+ A. (Thus, asyrnptotlcally, &f,, puts all Its mass on two n m 
m r !  r > - - , m  

polnts.) 

n + 03, then M,, /(-) n + 1 In probablllty. Case 3. If m log m m 

Case 1 Is by far the most Important case because usually m - cn. In Cases 2 

and 3, the asymptotlc dlstrlbutlon of hf,, Is no longer bl-atomlc because -u,, 
spreads I t s  mass more out. In fact, In case 3, M,, Is wlth high probabllltY equal 
to the value of the maxlmal cardlnallty If we were to dlstrlbute the 12 POlntS 

n 
Is evenly (not randomly!) over the m buckets! The dlfference M,, - - m 

2- log m In probablllty pravlded that m > n‘ for some E > 0. 
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4.2. AN EXAMPLE : THE SELECTION PROBLEM. 
Assume that a bucket structure 1s used to flnd the k-th smallest of 

x,, . . . , x, , Independent random varlables wlth denslty f on [OJ]. The m 

buckets are of slze - each, but what wlll be said below remalns valld If the m 

buckets are deflned on [mln x, ,max X , ] .  In the algorlthm, we keep a count for 
each bucket, so that In one addltlonal pass, I t  Is possible to determlne In whlch 
bucket the k-th smallest polnt Iles. Wlthln the bucket, thls element can be found 
In several ways, e.g. vla a h e a r  worst-case comparlson-based algorlthm 
(Schonhage, Paterson and Plppenger, 1976; Blum, Floyd, Pratt ,  Rlvest and Tar- 
Jan, 1973), vla a llnear expected tlme comparlson-based algorithm (Floyd and 
Rlvest, 1975; Hoare, l961), or vla a comparlson-based sortlng method. In the 
former two cases, we obtaln llnear worst-case tlme and llnear expected tlme 
respectlvely, regardless of how large or small m 1s - we mlght as well choose 
m = 1. The constant In the tlme complexlty mlght be smaller though for 
m > 1. If the  buckets have cardlnalltles N,,  . . . , Nm , then the tlme taken by 
the llnear worst-case algorlthm 1s bounded by 

1 
m 

where a, p, 7 > 0 are constants, and the mlddle term descrlbes the contrlbutlon 
of the llnear worst-case comparison-based selectlon algorithm. Whlle we can 
obvlously bound all of thls by (a+P)n+?m (whlch would lead us to the choice 
m =I), I t  1s lnstructlve to mlnlmize E ( V ) .  A s  we wfll see, I t  will be to our 
advantage to take m proportlonal to 6, so that  E ( V )  = an + O ( 6 )  as 
n +co. 

The suggestlon to take m proportlonal to 6 was also made by Alllson and 
Noga (1980), but their algorlthm 1s dlfferent, In that wlthln a selected bucket, the 
algorithm Is applled recursively. Note that the algorlthm suggested here Is more 
space efflclent (slnce I t  1s not recurslve) but far less elegant (since I t  1s a hybrid of 
a bucket algorlthm and a fairly compllcated llnear comparlson-based selectlon 
algorlt hm) . 

We note here that rnax N j  Is used In the deflnltlon of V because we do not 
know beforehand whlch order statlstlc 1s needed. For example, the sltuatlon 
would be qulte dlfferent If we were to ask for an average tlme, where the average 
1s taken over all n possible values for k - in that case, the middle term would 
have to be replaced by PEN, ', and we can apply some of the analysls of chapter 
1. 

If sortlng Is used wlthln a bucket, then the total tlme for selectlon Is 
bounded by 
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or 

V = a n  + p  max N i 2 + y m  , 
151 < m  

dependlng upon whether an n log n or a quadratlc sort 1s used. To obtaln a 
good estlmate for E ( V ) ,  we need good estlmates for E ( M ,  log (hf,+l)) and 
E (M, '), 1.e. for expected values of nonllnear functlons of M,, . Thls provldes 
some of the motlvatlon for the analysls of sectlon 4.3. In thls sectlon, we wlll 
merely apply Theorem 4.2 In the deslgn of a fast selectlon algorlthm when a 
llnear worst-case algorlthm 1s used wlthln buckets. The maln result 1s glven In 
Theorem 4.3: thls theorem applles to all bounded densltles on [OJ] wlthout 
exceptlon. It 1s for thls reason that we have to appeal, once agaln, to the Lebes- 
gue denslty theorem In the proof. 

Theorem 4.3. 
Deflne for posltlve a, p, 7, 

V = an + p max Ni + 7 m  , ,si Srn 

where XI, . . . , X ,  are lld random varlables wlth bounded density f on [OJ] : 
f (z) 5 f ' < co for all 5 .  Then, for any q ,m : 

where s = - log 'm . 

If we choose 
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U P  

I ,  

then 

and, in fact 

Proof of Theorem 4.3. 

The proof of Theorem 4.3 Is based upon a cruclal lemma. 

Lemma 4.1. 

q = m,ax mpi -+ f * = ess sup f .  
12: 5 ,  

For any bounded denslty f on [0,lId, and for any sequence m -+ co, 

Proof of Lemma 4.1. 

We wlll use the fact that for such f , llm (SI f Ir)'lr = f * (see Wheeden 
r-cu 

and Zygmund (1977, pp. 125-126)). Deflnfng the denslty 

on [0,lId, we note that 

and thus 

llm Inf q ' 3 
m +cu m -00 

= If ' (Lemma 5.10) 

llm lnf f , (Fatou's lemma) 

2 (f '1, - - E  

by cholce of r = f ( e ) ,  for arbltrary e > 0. Thls concludes the proof of the 
Lemma. 

We continue now wlth the proof of Theorem 4.3. The startlng polnt 1s the 
bound glven lmmedlately followlng the proof of Theorem 4.2. The cholce of t 1s 
asymptotlcally optlmal when nq / m  log m + co. Slnce q 2 1 In all cases, thls 
follows If n l m  log m -+ 00, whlch Is for example satlsfled when m - &, a 
cholce that wlll be convenlent In thls proof. The upper and lower bounds for 
E ( V ) ,  lgnorlng lower order terms, are thus roughly an + 7m + P z q .  Because 

q + f ' -nf  '1 1s again asymptotlcally 

optlmal. Resubtltutlon of thls cholce for m glves us our result. 

m 
(Lemma 4.1), the cholce m = L z- 

Remark 4.5. [Cholce of m -1 
Wlth the optlmal cholce for m ,  we notlce that E ( V )  - a n ,  1.e. the 

expected value of the tlme taken by the algorlthm has only one maln contrlbutor 
- the set-up of the data structure. The other components, Le. the traversal of the 
buckets. and the selectlon wlthln one partlcular bucket, take expected tlme - Js each. Slnce f * 1s unknown, one could use m - fi Instead, 
wlthout upsetting the expected tlme structure: we wlll stlll have 

or m 1s not of the order of 6, the upper 
bound of Theorem 4.3 should stlll be useful In the majorlty of the cases. Recall 
the lnequalltles for q obtalned In Remark 4.1. 

E ( V )  = an + O ( 6 ) .  

When f 1s not bounded, and 

4.3. NONLINEAR FUNCTIONS OF THE MAXIMAL CAR- 
DINALITY. 

As we have seen In the study of the selectlon problem, and as we wlll see In 
sectlon 4.4 (extrema1 polnt problems), I t  1s lmportant to derive the asymptotlc 
behavlor of 
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where a,, t 1s a glven sequence of posltive Integers (most often Q, = I). 
Mn = max Nit and g (.) 1s a work function satlsfylng some regularlty condi- 

1st srn 
tlons. The followlng condltlons wlll be assumed throughout thls sectlon: 

(1) g is nonnegatlve and nondecreaslng on [O,CQ). 

(11) g ( z )  > 0 for x > 0 

(111) g '  ( 5 )  <_ a + bz' for some a ,b ,s >o, all z 20. 
(Iv) llm g (z) = co 

(v) g IS convex. 
(VI) g 1s regularly varylng at lnflnlty, 1.e. there exlsts a constant p 2 0 such that 

2 -00 

for all 'u E R , 

Examples of such functlons lnclude 

g (5) = x*; 

g (z)  = 2' , 7 >_ 1; 

g (z) = 1 + z log(1fz). 

For the properties of reguiarly varylng functlons, see Seneta (1978) and Dehaan 
(1975) for example. 

The maln result of thls sectlon 1s: 

Theorem 4.4. 
Let g be a work Punctlon satlsfylng (1-lv, vl), let I,, . . . , x, be iId random 

vectors wlth bounded denslty f on [O,lld, and let the grid have m - cn buck- 
ets as n + co for some constant c > 0. Then, for a, as glven above, 
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If In addltlon, g (u ) 2 b * u for some b * > 0, and all 1 > 0, then 

a s n  +co. 

If the work functlon satlfles (1-11, lv-vi), then 

If g satlsfles (I-VI), g (u ) 2 6 * u +', some b * > 0, all u > 0, then 

If the work functlon satlsfles (I-vl), then 

Proof of Theorem 4.4. 
Let us deflne 

log(& +lm ) 
1 = 1, = (lt-€)Q, 

log log(Cr,s +lm ) 

where E > 0 1s arbltrary. We always have 
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by Lemma 5.5. If we can show that the lntegral 1s o (l), then we have 
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I log(a,S +lm ) 

log log(o,P +lm ) 
- (1fE)P g 

by condltlons (lv) and (vl) on g . Slnce E was arbltrary, we have shown the upper 
bound In the theorem. BY convexlty of g ,  the lower bound follows easlly from 
theorem 4.1, Jensen's lnequallty and (vi): 

log n - g ( a n  log log n 1. 

Thls leaves us wlth the proof of the statement that  the second term Is o(1). 
Note that q 5 f ', and that the bound of Lemma 5.5 remains valid if q is for- 
mally replaced by f *. It sumces to show that 
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because u /an 1 m. But the Integral can be vlewed U as a tall-of-the U gamma 

lntegral wlth respect to dv. Use v a  5 2'-l((-)' an + (v-(-))'), a n  and 

v = - + (v--) to obtaln an upper bound of the form 
U U 

a n  a n  

The flrst of these two terms 1s asymptotlcally domlnant. It 1s easlly seen that the 
flrst term 1s 

m 
nq 

Note that - remalns bounded away from 0 and CO. Trlvlal calculatlons show 

that for our cholce of u , the last expresslon 1s o (1). 
Conslder flnally all the statements lnvolvlng the condltlon g ( u  ) 3 b * u +'. 

It 1s clear that If the upper bounds for the Integral are o (g ( u  )) Instead of o (l), 
then we are done. Thus, I t  sufnces that the lntegrals are o (uS+l) ,  or o (a, '+'). 
Thls follows If 

log n 
log log n whlch 1s satlsfled for u = (14-6) 
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Theorem 4.4 1s Useful because we can baslcally take the expected value 
lnslde g . Recall that by Jensen’s lnequalfty E (9  (M, )) _> g ( E  (M,  )) whenever g 
1s convex. The opposlte lnequallty 1s provlded In Theorem 4.4, 1.e. E ( 9  (M, )) 1s 
l + o  (1) tlmes larger than g(E(M,)), malnly because M, concentrates Its proba- 
blllty mas near E (M, ) as n + co. 

The condltlons on g may appear to be a bit restrlctlve. Note however that 
all condltlons are satlsfled for most work functlons found In practlce. Further- 
more, If g 1s sufficiently smooth, then g ’  (z) 5 a + b x S  and g (z)  > b *xS+‘ 
can both be satlsfled slmultaneously. 

A last word about Theorem 4.4. We have only treated bounded densltles 
and grids of slze m - cn . The reader should have no dlfllculty at all to general- 
lze the technlques for use In other cases. For lower bounds, apply Jensen’s lne- 
quallty and lower bounds for E (M, ), and for upper bounds, use the lnequalltles 
glven In the proof of Theorem 4.4. 

4.4. EXTREMAL POINT PROBLEMS. 
Extrema1 polnt problems are problems that are concerned wlth the 

ldentlflcatlon of a subset of I,, . . . , x, whlch ln some sense deflnes the outer 
boundary of the “cloud” of polnts. The outer boundary 1s Important In many 
appllcatlon, such as: 

(1) pattern recognition: dlscrlmlnatlon rules can be based upon the relatlve 
posltlon of a polnt wlth respect to the outer boundarles of the dlfferent 
classes (see e.g. Toussalnt (1980, 1982)). 

(il) image processing and computer vision: objects are often characterfzed 
(stored) vla the outer boundary. 

(111) statistics: polnts on the outer boundary of a collectlon of d-dlmenslonal 
polnts can be consldered as outllers, whlch need to  be dlscarded before 
further analysls is carried out on the data. 

(iv) computational geometry: The convex hull, one partlcularly simple outer 
boundary, plays a key role In varlous contexts In computatlonal geometry. 
Often, Informatlon about the polnts can be derlved from the convex hull 
(such as the diameter of the collectlon of polnts). 

0 

0 

0 

Figure 4.1. 
The convex hull and the outer layer of a cloud of points. 

We wlll refer In thls short sectlon to only two outer boundarles: the convex hull 
(the collectlon of all I,’ s havlng the property that at least one hyperplane 
throngh x, puts all n-1 remalnlng polnts at the same side of the hyperplane), 
and the outer layer, also called the set of maximal vectors (the collectlon of 
all Xi‘ s havlng the property that at  least one quadrant centered at x, contalns 
no X j  , j # z  ). Once agaln, we wlll asume that XI, . . , x, have a common 

denslty f on [ O o , l j d .  A grld of slze m 1s constructed In one of two ways, elther 
by partltlonlng [OJ] or by partltlonlng the smallest closed rectangle coverlng 
x,, .-. . , &,. The second grld 1s of course a data-dependent grld. We wlll go 
through the mechanics of reduclng the analysls for the second grld to that Of the 
flrst grld. The reductlon 1s that glven In Devroye (1981). For slmpllclty, we wlfl 
conslder only d =2.  
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/I 
t 

Figure 4.2. 
Cell marking procedure. 

For the outer layer in R 2 ,  we flnd the leftmost nonempty column of rectan- 
gles, and mark the northernmost occupied rectangle In this column. Let its row 
number be J’ (row numbers lncrease when we go north). Having marked one or 
more cells in column 2 ,  we mark one or more cells in column z +1 as follows: (i) 
mark the cell at row number 3 ,  the highest row number marked up to that 
point; (li) mark all rectangles between row number J’ and the northernmost occu- 
pied rectangle in column z +1 provided that its row number is at least J’ +l. In 
this manner a “stalrcase” of at most 2 6  rectangles is marked. Also, any point 
that is a maximal vector for the north-west quadrant must be in a marked rec- 
tangle. We repeat thls procedure for the three other quadrants so that eventually 
at most 8 6  cells are marked. Collect all points in the marked cells, and And 
the outer layer by using standard algorithms. The naive method for example 
takes quadratic time (compare each polnt wlth all other points). One can do 
better by flrst sortlng according 60 y-coordinates. In an extra pass through the 
sorted array, the outer layer is found by keeping oniy partial extrema In the x- 
dlrection. If heapsort or mergesort is used, the time taken to And the outer !ayer 
of n elements is 0 (n log n ) In the worst-case. 

o Outer layer point - 1  
Figure 4.3. 

Finding the outer layer points for the north-west quadrant. 

Thus, returning to the data-independent grid, we see that the outer layer can be 
found in time bounded by 

corn + c l n  + c 2  E N i  
l i e ,  j 2  

corn + c l n  + c 3  CiVi l o g ( C N i  + 1) 
i €E i EB 

where c o ,  c 1, c 2 ,  c 3  > 0 are constants and B is the collection of indices of 
marked cells. The random component does not exceed c 2  ( L ~ G M , , ) ~  and 
c 8 6 h f n  10g(l+8-&i-i~n ) respectively. Clearly, these bounds are extremely 
crude. From Theorem 4.4, we recall that when m - c n ,  f is bounded, 

)2 .  and E (M, log(l+iwn )) - log n . Thus, Lhe expected 

+ 0 (& log n ) 

log n 
E ( M n 2 )  - (log log n 

) 2 )  in the former case, and corn + c time is 0 ( n  ( log log n log n 
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In the latter case. In the latter case, we observe that the contrlbutlon of the 
outer layer akorlthm 1s asymptotlcally negllglble compared to the contributlon,of 
the bucket data structure set-up. When we try to get rld of the boundedness 
condltlon on f , we could argue as follows: flrst of all, not much 1s lost by 
replaclng log( EN, + 1) by log(n +I) because E N i  = n ( 6 )  and m - e n .  

Thus. 
i EB i € B  

where q = max(mp,, . . . , mp,) (Theorem 4.2). For constant t ,  we see that 

the upper bound Is o ( n )  + 8n log(n +I) & - . Thls Is 0 (n ) for exam- 

Pie when q = 0 (-), m - c n  . Thls Is  the case when 

e t - l  
J m t  &- 

log n 

Jf < co 

for some E > 0 (Remark 4.1). See however the Important remark below. 

Remark 4.6 [Optlmizatlon wlth respect fo m .] 

We can once again tallor our grld to the problem by choosfng m .  Recall 
that an upper bound for the expected tlme complexity Is 

c ,n + c2m + c3& log(n +I)(- + -q  (7 )) where c ,, c 2 ,  e 3, t > 0 t m 
are constants. We can flrst choose t to approxlmately mlnlmlze the bound: for 
example, mlnlmlzatlon of 

log m ra e‘-i 

log m n t + -q- t m 2  

suggests the value t = J””-, and we obtaln 

n 
4 0. If we now mlnlmlze c zm + c 3-q log(n +l), we obtaln m log m 

nq J;;E- If 

the reclpe 

213 

m = t - 2 c 2  . nq log(n+1)] . c 3  

Plugglng thls back Into our condltlon for the use of the bound, we note that I t  1s 
satlsfled In all cases since nq + 00. The bound becomes 

c ,n + c21/3c3 2\31  2 22/3 + Z L / ~ \  (nq log(n +1))2/3 

+ c 3  

Whlch term Is asymptotlcally domlnant depends upon he enslty f . If f IS . .  

bounded, then the upper bound Is c ,n + ( K  +o (1)) f t2/3(n log n )2/3 where 
does not depend upon f and f * 1s the bound for f . We can also deslgn the 
grld for a partlcular class of densltles. For bounded densities, we can take 
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or, solving for m : 

Thl yields usefu 
bound 

CHAF'TER 4 

chokes for r > 2. Uslng q 5 pr m l / r ,  we obtaln the further 

27 - 
c + O ( ( n  log n ) 3 r - 2 )  . 

The maln conclusion Is that If m Is growlng slower than n , then for certain large 
classes of densltles, the asymptottcally most Important component In the 
expected tlme complexlty Is  c < 00, we have 
c 

For example, when j"f 
+ ~ ( ( a  log n )4/5). 

Of course, the same algorithm and discusslon can be used for flndlng the 
convex hull of x,, . . . ,I,, because for arbltrary polnts there exlst simple 
o(n log n )  and o ( n 2 )  worst-case algorlthms (see Graham (1972) , Shamos 
(1978), Preparata and Hong (1977) and Jarvls (1973)) and all convex hull points 
are outer layer points. In thls form, the algorlthm was suggested by Shamos 
(1979). 

Remark 4.7. [Bucket structure in polar coordlnates.] 

CHAPTER 4 

Figure 4.4. 
Points are ordered according to angular coordinates 

for use in Graham's convex hull algorithm , bucket algorithm. 

121 

The bucket data structure can be employed In unexpected ways. For exam- 
ple, to flnd the convex hulls In R ', it sufflces to transform 1,-z ,..., X,, -z Into 
polar coordinates where z Is a polnt known to belong to the Interior of convex 
hull of X, ,  . , X,, (note: we can always take X = X , ) .  The points are sorted 
according to polar angles by a bucket sort as described In chapter 2. Thls yields 
a polygon P . All vertices of P are vlslted In clockwlse fashion and pushed on a 
stack. The stack is popped when a non-convex-hull polnt 1s Identlfled. In thls 
manner, we can construct the convex hull from P In linear tlme. The stack algo- 
rlthm 1s based upon ldeas flrst developed by Graham (1972). It Is clear that the 
expected tlme of the convex hull algorithm 1s o(n )  If Jg' < =o or 
Jg log+g < 00 where g is the denslty of the polar ang!e of x,-z, z >_ 1. For 
example, when XI, . . , -yn have a radlally symmetric denslty f , and x Is 
taken to be the origin, che g :s the unlform denslty on : 0 , 2 ~ ] ,  and the algorithm 
takes 0 ( n  ) expected tlme. When x Itself Is a random vector, one must be care- 
ful before concludlng anythlng about the flnlteness of Jg'. In any case, 3 1s 
bounded whenever f 1s bounded and has compact support. 

density f 

mal point 
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The results about E(M,,) ,  albeit very helpful, lead sometlmes to rather 
crude upper bounds. Some Improvement Is posslble along the llnes of Theorem 
4.5 (Devroye, 1985). 

Theorem 4.5. 

on [0,112, let the grid have m cells, and let q = max(mp . . . , mp, ). Then, If 
B Is the collectlon of lndlces of marked cell In the extrema1 cell marklng algo- 
rlthm, 

Let XI, . . . , Xn be Independent random vectors wlth common denslty f 

n 
-a 

In particular, If m - cn (for some constant c > o), 

-- 
1-e 

and 

1-e 

Proof of Theorem 4.5. 

We note that each Nl 1s stochastlcally smal€er than a blnomlal (n ,pl ) ran- 
dom varlable condltloned on the varlable belng at least 1. Thus, 

n 
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The flrst lnequallty follows trlvlally from thls. The second lnequailty Is obvlo&, 
and the thlrd lnequallty Is based upon the fact that q 5 m1lr ( l j  ) ' Ir .  

In the proof of Theorem 4.5, we have not used the obvlous lnequallty 
If we flnd the outer layer or the convex hull by an 

i € B  
0 (n log n ) worst-case tlme method, then under the condltlons of Theorem 4.5, 
wlth m - cn , the expected tlme Is bounded by 

5 S G k f , ,  . 

and thls does not lmprove over the bound obtained when the crude lnequallty 
was used. For example, we cannot guarantee llnear expected tlme behavlor when 
f f < co, but only when a stronger condltlon such as $ f < co (some 
E > 0) holds. (We can of course always work on m , see remark 4.6). 

There Is, however, a further posslble Improvement along the llnes of an outer 
layer algorlthm of Mach11 and Igarashl (1984). Here we elther flnd the outer 
layers In all cells A , ,  z E B ,  or sort all polnts In the lndlvldual cells. Then, In 
another step, the outer layer can be found In tlme llnear in the number of polnts 
to be processed. Thus. there are three components In the tlme complexlty: n +m 
(set-up), Ni log(N, +l) (or N, *) (sortlng), and iv, (flnal outer layer). 

It should be clear that  a slmllar strategy works too for the convex hull. The 
prlnclple Is well-known: dlvlde-and-conquer. It Is better to delegate the work to 
the Indlvldual buckets, In other words. For example, we always have 

i EB  1 EB i € B  

I 8 6  E(Mn log(,M, + 1)) 
5 8 6  log(n + I) E (&& ) , 

and, If we use a more reflned bound from the proof of Theorem 4.5 comblned 
wlth Lemma 5.6, 
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For example, when m + 00, n l m  + 00, f 5 f * < co, the bound 1s 

The optlmal cholce for m Is proportlonal to (f ' n  log n)2/3,  so that the 
expected tlme complexlty for the algorlthm 1s c ln  (for the set-up) 
+ 0 ( ( n  log n)2/3). In another example, If m - cn , q + 00, the upper bound 
1s 

8 -6 - q  l o g q ,  
&- 

which In turn Is  0 (n ) when q = 0 (6 /log n ). 

We turn now to the problem of data-dependent grlds, and In partlcular grlds 
of slze m formed by partltlonlng the smallest closed rectangle coverlng all the 
potnts. For the convex hull and outer layer algorithms consldered here, the ran- 
dom terms are either 

or 

if dlvlde-and-conquer 1s used, and 

CHAPTER 4 

or 
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othemise. All these terms are bounded from above by g (an M, ) where a, 1s an 
Integer, g Is a work functlon and M,, = 15; max srn fv, . Unfortunately, our analysls 

of M, and g (M,, ) does not apply here because the grld Is data-dependent. The 
dependence 1s very weak though, and nearly all the results glven In thls sectlon 
remain valid if f has rectangular support [0,1]'. (Note: the rectangular support 
of f 1s the smallest rectangle R wlth the property that J R f = 1.) To keep 
thlngs slmple, we wlll only be concerned wlth an upper bound for E ( 9  (a, M, )) 
that  Is of the correct order of lncrease In n - In other words, we will not be con- 
cerned wlth the asymptotic constant. This case can easlly be dealt wlth vla a 
"shlfted grld" argument (Devroye, 1981). Partltlon [0,112 (or [ O , l l d  for that 
matter) lnto a grid of slze m /2d with member cells Bi .  Then conslder for each 
(jl, . . . , j d )  E ( 0 ~ ) ~  . . , jd) ,  

15; 5- where the shlft vector 1s 

the shlfted grid wlth member cells B; (jl, 
m 
2 d '  
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Original grid 
Figure 4.5. 

Illustration of the shifted grid argument. 

The key observatlon 1s that every Ai In the orlglnal data-dependent grld Is con- 
talned In some & ( j  ,, . . . , j ,  ). Thus, 

where M, *(j ,, 
Thus, 

. , id,  1s the maxlmal cardlnallty for the ( 3  ,, , j d  ) grld. 

Each lndlvldual term on the rlght hand slde Is  for a data-lndependent grld, for 
whlch we can derlve several types of Inequallties. Thus, typlcally, the expected 
value of the rlght hand slde 1s about qd tlmes the expected value of one term. 
For example, If f 1s bounded and m - c n ,  then ?or a, ,g as In Theorem 4.4, 

the expected value of the rlght hand slde is 5 ( l+o  ( 1 ) ) 2 d  g (a, log n 
log log 72 1. 

Chapter 5 

AUXILIARY RESULTS FROM 
PROBABILITY THEORY 

5.1. PROPERTIES OF THE MULTINOMIAL DISTRIBU- 
TION. 

A random vector ( Y , ,  . . . , Yk ) 1s multlnomlal (n  ; p  ,, . . . , pk ) when 

k 

j=1 

where pi = 1 and all pi’ s are nonnegatlve. Y ,  is sald to be blnomlal 

( n  .P 1)’ 

Lemma 5.1. [Moments of the multlnomlal dlstrlbutlon; see e.g. Johnson and 
Kotz, 19691 

For integer r ,s 2 1: 

E (Y ,  (Y ,  -1) ( Y ,  -T +I)) = p ,  ‘ n ( n  -1) ( n  -r +I) , 

E (Y,  (Y, -1) ( Y ,  -r + l ) Y j  ( Y j  -1)...( Y j  -s +l)) 

= p ,  ‘ p ,  n ( n  -1)...(n -r -s +I), z 5 3 .  

Thus, 



Lemma 5.2. [Moment generatlng functlon of the multlnomlal dlstrlbutlon.] 

The random vector Y,, . . . , Yk has moment generatlng functlon 
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Proof of Lemma 5.3. 
When r I 1, we have E ( Y ' )  5 ( n ~ ) ~ ,  by Jensen's lnequallty. We wlll 

thus assume that r > 1. Anderson and Samuels (1985) have shown that for all 
k 2 np +I, P ( Y  2 k ) 5 P (2 >_ k ) where Is a Poisson (np ) random varl- 
able. Thus, 

k >np +r 

Because (16 +w )' 5 2'-'(u +w ), the flrst two terms In the last sum are not 
greater than a ( n p  )r + b  for some constants a ,b only dependlng upon r . The 
last sum can be bounded from above by 

Assume that np 3 I .  Then thls 1s not greater than 

For n p  I 1, we have E ( Y r )  5 zr  + E ( Z ' )  where Z Is Poisson (1). Thls con- 
cludes the proof of Lemma 5.3. 

Lemma 5.3. [Unlform bounds for the moments of a binomial random varl- 
able.] 

If Y 1s blnomlal ( n  , p  ) and r > 0 1s a constant, then there exlst a ,b > 0 
only dependlng upon r such that 

Lemma 5.4. 

blnomlal (n , p  ). Then If g ( u  ) = 0 on (-co,O), 
Let g (16 ) be a nonnegatlve nondecreaslng functlon on [O,oo), and let l'- be 
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If also g (u  )/. 1 as -+ 00 for some flnlte constant k , then 

for some flnlte constant a dependlng upon k only. 

Proof of Lemma 5.4. 

Chebyshev-Cantelll lnequallty, 
For any t 2 0, we have E ( g ( Y ) )  2 g ( t ) P ( Y  2 t ) .  Now, by the 

Thus, 

The second inequallty follows dlrectly from Theorem 2.1 in Slud (1977). Next, 

5 9 ( n p  1 + 9 ( n p  )a  + bg ( n p  ) / ( n P  Ik 
where a ,b are the constants of Lemma 5.3. If n p  2 1, the las t  sum is not 
greater than g ( n p j ( l + a + b ) .  If n p  5 1, we have E ( g ( Y j )  5 E ( g ( 2 j )  

1 5 g ( l ) ( l+a  +b j where z is a blnomlal ( n  ,-) random variable. Thls concludes 

she proof of Lemma 5.4. 
92 
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Lemma 5.5. [Maximum of a multinomlal random vector.] 
Let B be a blnomlal ( n  , p  ) random variable. Then, for arbltrary x > 0, 

If lVl, . . . , &; Is mutlnomlal ( n ; p , ,  . . . , p,,,), and x 2 q 
- max(mp l r  . . . , m p ,  ), then - 

Proof of Lemma 5.5. 

note that for any t > 0: 
For the flrst part, we use ChernoE‘s bounding method (Chernoff, 1952) and 

X where we took e t  = -, slnce thls choice minimizes the upper bound. Note 

that the upper bound remalns valid when B Is binomial ( n  ,p ’ ), p ’  5 p . For 
the multinomlal distribution, we apply Bonferronl’s inequality. 

n P  

Lemma 5.6. [Logarithmic moment of the binomial distrlbutlon.] 
Let Y be binomial ( n  . p  ). Then 

E ( Y  !og(l+Y)) 5 ~p i o g ( 2 A n p  ). 
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Proof of Lemma 5.6. 

ItY, 
Let z be a blnomlal (n -1,p ) random varlable. Then, by Jensen's lnequal- 

5.2. PROPERTIES OF THE POISSON DISTRIBUTION. 

Lemma 5.7. Bxponentlal lnequallty for the Polsson tall.] 

If Y 1s Polsson (1) dlstrlbuted. then 

Proof of Lemma 5.7. 
By Chernoffs boundlng technique, we have 
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mlnlmal If we take t = log(l+c), and thls glves the bound 

Here we used the Taylor's serles wlth remalnder term to obtaln the las t  lnequal- 
1ty. 

Lemma 5.8. [Fourth moment lnequallty for the Polsson tall.] 
If Y 1s Poisson (A) dlstrlbuted, then 

Proof of Lemma 5.8. 
By Chebyshev's lnequallty, 

- X+3X2 4 --<- 
X4€4 - X%4 

Lemma 5.9. preclse estimates of the Polsson tall.] 

for k + l  > X, 
Let Y be a Polsson (1) random varlable, and let k be a Axed Integer. Then, 

P ( Y > t )  < k + l  
P ( Y = k )  - k + 1 - 1  

where we used the fact that  e - t  5 e t - 2 t .  The exponent e'-l-t(l+~) 1s 
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Proof of Lemma 5.9. 
Observe that 

5.3. THE LEBESGUE DENSITY THEOREM. 
In thls sectlon we give several forms of the Lebesgue denslty theorem, that 

wlll enable us to obtaln theorems without contlnulty condltlons on f . For 
proofs and additional detalls, we refer to Wheeden and Zygmund (1977) and to 
de Guzman (1975, 1981). 

Lemma 5.10. 
Let A be the class of all rectangles contalnlng the orlgln of R d ,  and wlth 

sldes sl, . . sd satfsfylng a, 5 s, 5 6, for some flxed positive numbers 
a, 5 6 , ,  1 5  I _< d .  

There exlsts a set D R such that X(D ) = 0 ( D  1s the complement of 
D ) and 

sup 1 J f / A ( i + r A ) - f ( i ) I + O  a s r  - 0 , a i l z  E D .  
z-rA 

Proof of Lemma 5.10. 
See Wheeden and Zygmund (1977) or de Guzman (197.5, 1981). 
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1lm sup I J f /A(z +r, A ) -f (z)I = o , almost a11 2. 
n - c o A S %  z + r n ~  

The set on whlch the convergence takes place does not depend upon the cholce of 
the sequences A ,  and r ,  . 

Lemma 5.12. [Scheffe's theorem (1947).] 

f on R d .  Then 
Let f ,  be a sequence of densltles converglng almost everywhere to a denslty 

asn -+m. 

Proof of Lemma 5.12.. 
Note that 

J 1 f n - f  I = z J ( f - f n ) +  - 0 7  

where we used the almost everywhere convergence of f, to f and the Lebesgue 
domlnated convergence theorem. 

Lemma 5.11. 
. , c d  . LeG {A, ;% 5e a 

sequence of rectangles tendlng to C as n -+ 00. Let A be the coilectlon of all 
translates of A ,  that cover the origln. Then, for any sequence of positive 
numbers r ,  10, 

Let C be a axed rectangle of R wlth sldes c 
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