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PREFACE

Hashlng algorithms scramble data and create pseudo-uniform data distribu-
tlons. Bucket algorithms operate on raw untransformed data which are parti-
tloned into groups according to membership In equl-sized d-dimenslonal hyperrec-
tangles, called cells or buckets. The bucket data structure Is rather sensltive t,
the distribution of the data. In these lecture notes, we attempt to explain the
connectlon between the expected time of varlous bucket algorithms and the dls-
tribution of the data. The results are lilustrated on standard searchlng, sorting
and selectlon problems, as well as on a varlety of problems In computational
geometry and operatlons research.

The notes grew partially from a graduate course on probablllty theory In
computer sclence. I wish to thank Elizabeth Van Gulick for her help with the
manuscript, and David Avis, Hanna Ayukawa, Vasek Chvatal, Beatrice Devroye,
Hossam El Gindy, Duncan McCallum, Magda McCallum, Godfrled Toussalnt and
Sue Whitesldes for making the School of Computer Sclence at McGill Unlversity
such an en}oyable place. The work was supported by NSERC Grant A3458 and
by FCAC Grant EQ-1879.



28 CHAPTER 1

Theorem 1.4.
Assume that supf < C < oo. For all € > 0, we have

P(Dy 2 (1+€)e, [ [ ) < exp(-A (e)n)

where

2
A =supreff2-1-ff3¢C >o0.
() r>% ff 2 ff
In partlcular, If € = ¢, varles With n In such a way that ¢, | O, then
1
Ale) ~ S ([F/] 175
and If ¢, | oo, then

1
A(e,,)~?5sze,, log €, .

Proof of Theorem 1.4.

The proof s based upon Chernoff’s bounding technlque and a simple expres-
sion for the moment generating functlon of the multlnomlal dlstrlbutlon (see
Lemma 5.2). Let ¢ > O be an arbitrary number. Then

P(Dy = EN ;> (1+e)—f/ )

§ =1

< E(exp(—t(1+e)—ff +t EN pi))

§=1

= exp(—t———ff H1+e) ( E p; exp(ip; )" .

f=1
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Let us recall the definltion of the function f, from Lemma 1.1. Using the fact
2
that e®*-1 < u + iz-c" for + > 0, we have the following chaln of equalitles

and lnequalitles (where the first expresslon Is equal to the last expression of the
chaln given above):

exp(-te, (1+6) £ 3. ([ £ nexp(—f 2 )da )"
= exp(~te, {(1+6)[ [ . 1+ [/, (exp(—’i fa1)dz)

< exp(~te, (1+€) [ [ 2). (1+%ff,.’ + 2t722ff,,3 exp(-r—:‘-f,‘ )"

< expl-te, Ma+e) [ f 2+ te, M [ [+ n t22ff,,3 exp(—-C))
2m m

< exp(-tc, 'ef [ 2 + n2::2ff 3 exp(%C’)).

Here we also used the Inequality (14u) < exp(u), and the fact that
Jfa® < ff® foralls > 1 (Lemma 1.1). The first half of the Theorem follows
from the choice ¢ = rm. Now, as € | 0, we see that the supremum Is reached

for r =r (¢) > O, and that A (¢) is asymptotic to the value sup r eff 2-——;-rsz 3,
The latter supremum, for each ¢ > O, Is reached for r = ¢ f f 2/ f S 3, Resubstt-
tution gives the desired solution, A (€) ~ -;—52( Jro¥fre

When ¢ | 00, It 1S easy to see that the supremem 1n the expression for A {¢)
1s reached for r{¢) { co. By standard functional Iteratlons, applied to the equa-
tlon r(_e)=iclog(eff 2/(r(€)f f ®)), we see that A (¢) ~ the value of the expres-

sion to be optimlzed, at r =iclog(eff N7 3-(}_:-logE)), which glves us our solu-
tlon.
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Remark.

The Inequality of Theorem 1.4 for ¢, | 0, n¢,2 1 oo, Is called a moderate
deviation inequality. It provides us with good Information about the tall of
the distributlon of Dy for values of the order of magnltude of the mean of Dy
plus a few standard deviatlons of DU. On the other hand, when ¢, is constant
or tends to oo, we have large deviation inequalities. As a rule, these should
glve good Information about the extreme tall of the dlistribution, where the cen-
tral llmit theorem Is hardly at work. For example, 1t appears from the form of
the lnequallity that the extreme tall of Dy drops off at the rate of the tall of the
Polsson distributlon.

1.5. DOUBLE BUCKETING.
The results that we have obtalned until now quallfy the statement that T Is
close to n (1+-i—ff ?) when [ f? < oo. The presence of [ f ?1In this expression Is

disappointing. Perhaps we could hope to reduce the direct Influence of f on the
quantities that are of Interest to us by hashing the n Intervals a second time:
each Interval A; Is subdlvided Into N; equal sublntervals. This method will be
referred to as the ‘‘double bucketing™ method. The idea of double bucketing Is
obviously not novel (see for example Maclaren, 1968). In fact, we could keep on
dividing Intervals untll all data polnts are In separate Intervals. The structure
thus obtained 1s called an N-tree (Ehrilch (1982), Tamminen (1982)). Some
analysis for restricted classes of densitles Is glven In these papers. Recursive
bucketing when applled to sortlng Is analyzed In Doboslewlcz (1978) and Van
Dam, Frenk and Rinnooy Kan (1983).

‘What we will try to show here 1s that most of the benefits of recursive buck-
etlng are obtained after two passes, l.e. with double bucketing. The structure
that we will analyze is obtalned as follows:

Step 1. ) . ]
Let A,~=[%,-‘-), 1 <+ < n.For each A;, keep a lined list of X’ s fal-
n
ling 1n 1t. Let N; be the cardlnality of A;.

Step 2.
Fori =1ton do:If N; 2 1, divide A; Into N; equal Intervals 4,;, and
keep for each A,~J- linked lists of the data points In 1t. Let N,-J- be the cardl-
nality of A,‘j

CHAPTER 1 31

—
—

Double bucket structure.

n=17 data points (@)

6 ariginal buckets

bucket with cardinality Nidivided into Ni intervals

Figure 1.4.

The quantities that we will consider here are

n
T = E N,JZ!
=1 j=1
noq N 1
C =X (7 X( Nij )= —(T-n),
. 2 2
=1 1=
L& S Livoagy, L(T+n)
IR — — .. 2. ) T e—— n),
and
n N
Dy=3% ¥ 7N
f==] j=1
N, .
where all the summatlons 33 for N; =0 must be omitted, and

i=1
pij= [ f when A;; 1s defined. We note that the first division Is Into n
A :

)
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Intervals. The generallzatlon towards a divislon Into m Intervals s straighfor-
ward.

Theorem 1.5.
It [f2 < oo, then the double bucketing structure glves

1

1 1
E(T)n ~1+[e! ;EQC)n ~% [ e ;EDs)~ L2+ e)
4] 2 0 2 0

and

EDy)—1.

If we compare these asymptotic expressions with those for ordinary bucket-
Ing when m=n, le. E(T)/n ~1+[f2 we see that double bucketing is
strictly better for all f . This follows from Jensen’s lnequallty and the fact that
e™® < 1-u +—;-u2:

1 1
[17> 212> [e! > em-[f)=2.
2 ° ° e
Forall f with [f? < oo, we have

llm ﬂnT—) € [1+—i-, 2).

n —00

Thus, the llmit of E(T)/n is uniformly bounded over all such f . In other
words, double bucketing has the effect of ellminating all peaks In densities with
ff ? < oo0. ‘Let us also note In passing that the lower bound for E(T)/n 1s
reached for the uniform density on [0,1], and that the upper bound can be
approached by consldering densitles that are uniform on [0,1], and that the upper
bound can be approached by consldering densitles that are uniform on

CHAPTER 1 33

1
1 - 1 1 kg
y— = ]-—+—¢ and letting K — oo. The fact that the proper-
o K] ({e K K )

tles of the double bucketing structure are basically Independent of the density f
was observed Independently by Tamminen (1985). The same s a fortlor! true for
N -trees (Ehritch (1981), Van Dam, Frenk and Rinnooy Kan (1983), Tammilnen
(1983)).

Proof of Theorem 1.5.
N,
In the proof, all summations Y, for which N; = 0 should be omltted, to

1=1
avold trivialltles. We start with a lower bound for E (T).
n N .
E(T)= S EUn> X NN Xpij/pi)* + Nipij/p:])

§ =1 J=1

n n N,
= NEW;)+ 3 E(N;?-N;) py (i /7))

f=1 =1 j=1

\Y
3

" Ny
+ TEWW-N) B (50

§=1 j=1 Iv‘

=n 4 é E((N;-1),) (where u  ,=max(x,0))

§=1

—n + REW;-1)+ 3 PWN;=0)

=1 f=1

=1 + T P(N;=0)

(=1

=n + f](l—p,-)" (where p;==[ f )
i =1 A,

+ fn‘_, exp(-np; /(1-p; ) (because 1-u >exp(-u /(1-u)), 0<u <1)

=1

v
s

1
=n+n fexD(—fn/(l_fn/n )) (where fn(z)=npi' .'IEA,')
o

~n+nfe'/
0
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by the Lebesgue domlnated convergence theorem and Lemma 5.10.

We now derlve an upper bound for £ (T ). For any integer K, we have

E(T)=n+ SEV, )+ S EWV'")

f=1 i =1
where
1 2 M
Vi =W-N) Y (95 /0:) Iy, <k
=t
and
[ 2 N'
Vi’ =O=N))Y (05 /9 Iy 5k
i=1

The statements about E(T), E(C) and E(Dg) In Theorem 1.5 are proved if we
can show that

1
1 2B '
lim Hm — . ) = - .
m s BEW =]

K —00 n—c0 i=1

n
im llmsup% EE(V;")-—-—O.

1
K —00 n—o00 i=1
We will use the function g, (z) = E(V;' ), z€A;. Clearly,

9n(z) < K E(N;) = Knp; = Kf,(z),z€4,,

ffa=1,alln; f, — f almostall z.

Thus, by an extended version of the Lebesgue dominated convergence theorem
(see e.g. Royden (1968, p. 89)), we have

1 1
1 n r
lm — YNE(V, )= Im, [¢g, =[ lmg,
N n 00 0 o n —00

n-—o00 N Q=1
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provided that the llmlt of ¢, exlsts almost everywhere. Conslder now a sequence
of couples (i,7) such that z€A;; CA; for all n. We have by Lemma 5.11,
nN;p;; — [ (z) for almost all z, uniformly 1n N; 1 < N; € K. From thils, we
conclude that

9a(2) ~ E((N;-1)4IN, <k ) - 2lmost all z.

Conslder only those z’ s for which f (z) > 0, and Lemma 5.11 applies.
Clearly, N; tends In distributlon to Z where Z 1s a Polsson (f (z)) random vari-
able (this follows from np; — f (z) (Chow and Telcher (1978, p. 36-37))). Since
(N;-1),Iy, < g forms a sequence of bounded random varlables, we also have con-
vergence of the moments, and thus,

9u(2) ~ E((Z-1)Iz<x) = [ (21 +e T E) -~ E(Z-1),175k)

for all such z, l.e. for almost all z (f ). Thus,

1
im lim -::E(V,-')=Kllm J(f @r1+e/ CE(Z-1),1p5k)) dz
N - 0

I
K—00 n—

1
Here we needed the fact that Kllm f E((Z-1),17.g) dz = 0, which s a simple
—vmo

consequence of the Lebesgue dominated convergence theorem (note that
1

J E(Z)dz =1). Also,
0

LEEW )< BEW I k)

=1 f=1

Deflne the functlon h,(z)= E(V; ZIN.- k) TEA;, and the functlon
h(z)= E(Z%I;- k) where Z 1s Polsson (f (z)) distributed. We know that
hy(z) S E(N;Y) < np; + (np;)? = [, (z)+f%z)— f(z) + [ *z), almost
all z; and that [/, +/,%— [/ +/2 Thus, by an extenslon of the Lebesgue
dominated convergence theorem, we have
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1

hy — [ lm &,

0'3—‘00

E(V;') <

1
n 1

1=
Oty ~

provided that the almost everywhere llmit of h, exists. For almost all z, NV;
tends In distrlbution to Z. Thus, for such z,

oo
lha-h| < 33 7P (N;=3)}P(Z=7)| =0

i=1

1
(see e.g. Slmons and Johnson, 1871). But f h —-0 as K — oo since
1 1 0
JE(Z* = [f +f? < oo, and E(Z2I; . g )—0 for almost all z. This concludes
0 o

the proof of

1 n [
llm sup Ilm sup — E(V. = 0.
K-ox n—~o0 N z: ( : )

=1

‘We will only sketch the proof for

n N n N;
EDy)=E(Yy T Pij Nij) = E(XS o N; 3 (i /9:)?) -

i=1 j=1 =1 j=1

First, 1t 1s easlly seen that

EDy) > E(S o N /N;)= 23p; = 1.

f=1 i=1

Also, If we follow the treatment to obtaln an upper bound for E (T ), we come
across terms V;' and V;'’ in which (V; 2-N;) 1s now replaced by p; N;. Mim-
leking the Polsson approximatlon arguments  for E(T), we obtain
llin_‘s;}p E(Dy) < 1when [f? < co. This concludes the proof of Theorem 1.5.
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Chapter 2

DENSITIES WITH UNBOUNDED SUPPORT

2.1. MAIN RESULTS.

In chapter 1, we have analyzed In some detall what happens when f Is
known to have support contalned In [0,1]. In first approximation, the maln term
In the asymptotic expressions for E (T )/n and E (Dy) contaln the factor f 12
which Is scale-dependent. If we were to divide the Interval {M, .M, "] =
[mln X;,max X;] into m equal-sized sub-Intervals, these expected values would
obviously not be scale-dependent because the distributlon of N,, ..., N, Is
scale invariant.

We could repeat all of chapter 1 for this more general setting If tedlum was
no deterrent. There 1s a new Ingredlent however when f has Inflnite talls
because M, and / or M, * dlverges In those cases. The results In this chapter
rely heavily on some results from the theory of order statistics. The technicalltlies
are deferred to sectlon 2.2. The following notation will be Introduced:

Mn = m‘n X,’ ’
1<i<n

Mn’=max¢x|'y
1<i<n

R, =rangeX,, ..., X,)=M,"-M, ,

5 =M, + —-‘: (M, *-M,),1<i<m+1,

Fi41

P = ff y1<i1<m
z,
M.

p= [,
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39
s = ess sup X, —ess Inf X, = width of support of [. um ne L) 1im sup E(T) _, +s —l-f]"
n—00 n n —00 n c
f Theorem 2.1 shows that there Is a close relatlon between E (T ) and the
range R,. For densltles with no talls, we have a generallzation of Theorem 1.1.
Area pi It 1s noteworthy that 1+ﬁ- f f 2, the limit value of E(T)/n, Is scale Invartant.
c
® :13 points Xi When s == oo, It Is not clear at all how E (mIn(R, ¢, "f[ 2,n)) varles with n.

For example, Is this quantity close to E (R, )¢, ! f f ? (which s easler to handle)?
Thus, to apply Theorem 2.1 In concrete examples, some results are needed for
R, . Some of these are stated In Lemma 2.1.

4 buckets

We wlll work with the following quantities: X = X, has denslty f and dis-
tributlon function F (z) = P(X < z) = 1-G (z); the Integrals

F(z)= [F(t)dt ;G(z)= [G(t)dt

-00

Figure 2.1.

will also be useful. We recall that

[o] 0
E(X]))=G@+F(@©) = [G(t)dt + [F(t)dt .
o —00

Theorem 2.1.

Let f be a density on R* with [ f % < co. Then
Lemma 2.1

Let § > O be arbitrary. Then:

(1) lm Inf Um Inf E(T) >1 '
: flo a—0 (n(1+E (min(R, ¢, [ f2,60)) (1) E(min(R, ,5n)1.

(1) Hmsup E(min(R, én)) < ccolfandonlyifs < oo .
and n —00 ’

(M1) tmsup E(R,) < ocolfandonlylfs < oco.

(1) 1lm sup E(T) <1 n —00

n —00 n(1+E(mln(R,,c,,“ff2,n))) - (v) E(R,)=coforalln > 21fandonly!f E(R,)= oo forsome n > 2
If and only If E (|X[) = co.

(v) E(X]) < ooimplles E(R,) = o(n).

In particular, If s < o0, we have
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™) E(X)) <o,
llmllmlnfg-(az—)=oo (%:oo)

a0 z—00 G (z)
and

Itm m tnf 2C98)

8]0 z—0 F (-z)
imply

E (min(R, ,bn)) ~ E(R,) for all § > 0.
(vi1) Are equlvalent:
lim sup E (min(R,,n))/n > O0foralld > 0;
n —00

Iim sup F (min(R, ,6n))/n > O for some § > 0 ;
n —+00

Im sup [z [P (| X]| > z) > 0.
z —00

(vi1l) Are equlvalent:
Iim inf E (min(R, ,6n))/n >0forall§ > 0;

n —0oo

Ilm inf E (min(R, ,6n))/n > O for some § > O ;

n —00

Ilm inf |z |P(|X]| > z) > 0.
Z —0

Lemma 2.1 in conjunctlon with Theorem 2.1 gives us quite a bit of informa-
tlon about £ (T ). For example, we have

Theorem 2.2.
It [f? < oo, then are equivalent:

Iminf E(T)/n < 0}
n 00
imsup E(T)/n < ;
n —+00

§ < o0
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(And iIf 5 < co, this Ilm Inf Is equal to this Ilm sup. Its value 1+iff %)
¢

Theorem 2.2 follows from Lemma 2.1 (1), (11) and Theorem 2.1. In Devroye
and Klincsek (1980), one finds a slightly stronger result: £ (T )==0(n ) If and only
If s < o¢ and fj ? < 00. In the next chapter, this will be generallzed to R d , SO
we don’t have to bother with an R ! verslon of it here.

We also have

Theorem 2.3.
I ff 2 < oo, then condition (v1) of Lemma 2.1 Implles that

E(T)~n(1+-z—E(R,,)ff2).

Theorems 2.2 and 2.3 cover all the smali-tailed distributions with little oscll-
lation In the talls. In Akl and Meller (1982) the upper bound part of Theorem
2.3 was obtalned for bounded densitles. The actual llmiting expression of E(T)
shows the Interactlon between the effect of the peaks ( f / 2) and the effect of the
talls (E(R,)). Note that E(R,) f f % 1s a scale-invarlant and translation-
invarlant quantity: It Is solely determlned by the shape of the density. It Is
perhaps Interesting to see when condition (vi) of Lemma 2.1 Is valid.

Example 2.1. (Relatively stable distributions.)
A relatlvely stable distribution 1s one for which

G(az) __ 8 5.
(l)zll_xgo—c @) — all 6 €(0,1) ; (5=00) ;
and

1) im 92D

= , al ,1) .
Ry T, o , all a €(0,1)
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If we use the notatlon M, * = max(X,*, ..., X, 1) where u*+=max(u ,0) then
1t should be noted that if P(X > 0) > 0, (1) Is equlvalent to

(1) M, * — 1 In probabllity for some sequence a,

(Gnedenko, 1943). In that case we can take @, = Inf(z: G(z)Sl) where
v n

G (z)=P(X > z), or\n short, a, = G"(%) (Dehaan, 1975, pp. 117). We note
that (1) 1s equlvalent to G (0) < 0o, G (z)/(zG(z)) =0 as z — oo0; or to
o]

G (0) < oo, [tdF (¢)/(zG(z)) — 1 as z — oo.

For relatlvely stable distributions, we have E(R,)~F “(—1-)+G ‘1(-1-)
n n

(Pickands, 1968). It s very easy to check that condltion (v1) follows from the
relative stabllity of the distribution of X . When

zf (2) _
(lV)zlE%o W =00,

we know that (111) holds (Geffroy, 1958; Dehaan, 1975, Theorem 2.9.2). condition
(1v) comes close to belng best possible because If f Is nonincreasing and positive
for all z, then (111) implles (1v) (Dehaan, 1975, Theorem 2.8.2).

Example 2.2. (Normal distribution.)

For the normal distribution with density (27r)"Y/2 exp(-z2/2), we have rela-
tive stabillty and square integrabllity. In particular,

1
ER,)~ 2G“-(-7;-) ~ 2v2log n (see e.g. Galambos, 1878, pp. 85), and thus

E(T)~n (1+2V21log n sz)=n(1+.\/72r-logn)~ %—nx/logn .

Example 2.3. (Exponentlal distribution.)

For density f(z)=1¢"%*, z > 0, we have relative stability and square
Integrabillty. Thus, because £ (R, ) ~ log n,

CHAPTER 2 43

E(T)~n(1+logn jf2)~%n logn .

Example 2.4. (Regularly varylng distribution functlons.)
Condition (v1) of Lemma 2.1 1s satisfled for all distributions for which

(1) G(z)=0 for all_z large enough; or G is regularly varylng with
coefliclent p < 0 (l.e.,, G(ar)/G(z) — afforalla > 0asz ~ o).

() F(z)=0 for all z large enough; or F 1s regularly varylng with
coeflicient p < O (l.e., F(az)/F(z) — a?forall a > 0as z — 00).

In (1) and (11) we can replace the functlons G and F by G and F If we wish pro-
vided that we add the condlitlon that the coefficlent of regular varlatlon be
p < -1. The latter fact follows from the observatlon that as z — oo,
G (z) ~ zG (z)/(-p-1) (Dehaan, 1975, Theorem 1.2.1).

Example 2.5. (Upper bounds for E (R, ).)
One of the by-products of Theorem 2.1 Is that

Ilm sup E(Ti
noe nE(Rn):ff2

<1

Thus, good upper bounds for E (R, ) glve us good upper bounds for E (T )/n.
For example, we have

E(R,) < E(max X;* - min X;")
t ]

< EY"(max X;*') + EV"((-min X;7)") allr > 1,
) 2
1

<2V ET(X|).

Thus, depending upon the heaviness of the tall of X, we obtaln upper bounds for
E(T)-that increase as n'*!/". We can do better when the moment generating
function of X 1s finlte In a nelghborhood of the origin, l.e.

E(et¥ly < oo, for all ¢t In some Interval [0,€).



44 CHAPTER :
Since u” < (;t) e, u > 0,we have
e

E(R,) < 2_'t,nl/r El/r(ctl)(])
[

t1X|
81 oy (log(E(e ))) Jorsuch ¢t ,and alln > e,
t log n

=2

where we took r ==log n. For the {' s In the Interval [0,¢), we have a
n — oo,

E(R,) < @+o 1)) =52,

Thus, the best result is obtalned by setting ¢t equal to e. In particular, 1
E (e tlx I) < oo for all t > O (such as for the normal denslty), then

ER,)=o0(ogn),
and thus

E(T)y=o(n log n).

Theorem 2.2 treats densitles with compact support, while Theorem 2.3 cov
ers quite a few densitles with finlte moment. We will now skip over some dens!
tles In a gray area: some have a finite first moment but do not satisfy (V1) ¢
Lemma 2.1, and some have infinite first moment E (|X|), but have relativel
small talls. The worst densities are described in Theorem 2.4:
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Theorem 2.4.
Let [f? < co. Then

(1) lmsup E(T)/n? > 01f and only If im sup |z |P(|X| > z) > 0;
n —00 z —00

(1) Um inf E(T)/n? > 01f and only if im 1nf |z [P (|X| > z) > 0;
n =00 z =00

(M) E(T)=o(n%1fand only if Im sup [z |[P(|X| > z)=0;
=0

(Note that T < n? for all densitles, and that statement (1) Implles

Thus, the Cauchy density f (z )=l-(1+1'2)'1, which satlsfles (11), must have
w

E(T) > cn? for some positive constant ¢ . If we compare Theorem 2.4 with the
results of chapter 1, we notlce that heavy talls are much more of a nuisance than
infinite peaks: indeed, regardless of which f s chosen on [0,1], we have
E(T) = o(n?®); but even moderately talled densities can lead to a lower bound
for E(T) of the form c¢n? Let us also polnt out that there are densitles with
E(]X|) =00 for all n, but E(min(R,.0n)) = o(n) for all § > 0: just take
F(z)=1-1/((1+z) log (z +¢)), z >O0.
‘We conclude thils sectlon by noting that

E(Ds) ~ E(T)/2n) + 1/2,

E(C) ~ ———E(z)‘" ~ o (i /p )

=1

and

E(Dy)~E®Y pi%p).

§=1

Nearty all that was sald about E (T ) remalns easlly extendible to E(C), E (Dg)
and E (Dy). For example, If s < oo,

~ Srre
E(Dg) 1+2cff.
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E(Dy)~ =[/*
and

8§
E(C)~n —=[f*.

1
E (Dg

We finally note that the quantity s f / 2 is scale Invarlant and that for a
densities 1t Is at least equal to 1, In view of

If s = oo, we have E(C) ~

)~ E(T)/(2n) and E (Dy) ~ E(T)/n.

—_

i

1=( [ [P<f1* [ d=s[f?.

support of [ support of f

2.2. PROOFS.

Proof of Lemma 2.1.

Fact (1) 1s trivial. For fact (1), we note that If s = co, we have B, —

almost surely, and thus, im inf E (min(R, ,6n )} > E (lm Inf min(R, .6n)) = co.
n—0 n —0o0

Also, In all cases, s > R,, and we are done. Fact (111) Is proved as (11).
For ttem (lv), we note that E(R,) < 2nE (|X|), that E(R,) 1 and that
ER,) = E(|X~X,)> ot E(|X-z|) = oo when E (|X|) = oo.
z

To show (v), 1t suffices to prove that E(max( | X,|,..., | X, |) =o(n).
Let |X,| have distributed functlon F on [0,00). Then for all € > 0,

Emax(|X,], ..., | X%, )= [1-Q-F (z )" dz
[+]

<ne+ [Q-(1-F(z)*)dz < ne+nf F(z)dz =ne+ o(n),

and we are done.
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We will now prove (vi). Slnce min(R,,fn) < R,, we need only show that
Iim inf E (min(R, ,6n))/E (R, )= 1 for all § > 0. Let us define z t¥=max(z ,0),

zu'=°;ln(z 0), Rt=max(X,*,...,X,"), R"=mIn(X 7, ..., X;7). We wil
show that E (R, -min(R,,6n))/E(R,) — O for all § > 0 and all nondegenerate
distribution with s = oo ( for otherwise, the statement s trivially true). Clearly,
1t suffices to show that for all § > 0, E(R *-min(R *,6n))/E(R,) —0. It X+
has finite support, we see that this follows from (l1). Thus, we need only consider
the case that X+ has inflnlte support. Now, E o(SR,‘) > E((R*-X)p+sq)

> E(R*Ig+s) -E(IX|) =ER") -E(X|) = [1-0-G()"dt - E(X])
0

~ [1~(1-G (t))* dt. Also, E(R*-min(R +6n)) = [1-(1-G (¢))" dt. We have
[} on .

reduced the problem to that of showing that for all 6§>0,
[0 o] o0
f1-a-G )" dt / [1-(1-G (¢)* dt —o.
in ]

We will need the following Inequallty:

—;-mln(nu 1) < 1-(1-4)® < min(ny,1),alln > 1, v € [0,1].

This follows from 1-nu < (1-u)* < e™; e* < %rort >1; and

1
et < 1-—% for t €[0,1]. Thus, If ¢, = Inf(z:G (z) < —n-) and n s so large that

a, > 0, we have

-;- < [1-1-G (t)"dt / (a, +nf G(t)dt ) < 1.
o]

Gy

Thus, we need only show that

00

n [G(t)dt /(a, +nf G(t)dt)—0,allé> 0.
in

Ge



48 CHAPTER 2 CHAPTER 2 49

*® hod " Lemma 2.2.
By our assumptlion in (v1), we have fG(t )dt / fG(t )dt — co when @, /n ~ 0 M T < n?
F < nZ
a, n - '
(and this o turn follows of course from the fact that f G (t)dt < co lmplles . R, M. 2
) W) E(T|M, .M, *) < n(1+—— 2.
tG(t) =+ 0ast — o0o). This concludes the proof of (vi). CaP” M,
We will now prove (vll) and (viil) for R* and lim sup (or llm Inf) mo
T —~00 z —»00 * _9)2 .
zG (z) > 0. The extenslon of the result to R, Is left as an exerclse. For ) E(T|M, M, *) 2 (n-2) '}21 .
€ € (0,6) we have the following chalns of lnequalities:
én en 6 ) Proof of Lemma 2.2.
1e (min(R* ,6n)) = L f 1-1-G () dt = i( f + f ) Part (1) 1s obviously true. Parts (1) and (1i1) follow from
n n V] n o] €n
1 " 5
< = (en +nfG(t)dt)§e+6nG(en)=e+—en G(en); . m  (n-2)p; ,  (n-2)p; P
n €n € E(TIM, M,")= % [( ¥+ 1-—=)
. =1 p 14 14
i 2
and =n-2 + [(n-2)*~(n-2)] 3 (p:/p)
=1
1 . %
SE@nR* 6n)) 2 - [ 1-e 0O dt > (1-e7E0)), and the fact that
0
This proves that Iim sup zG(z) > 0 is equlvalent to
z—00 .
Ilm sup E (min(R *,6n))/n > O for all § > 0 or for some § > O; and that simllar m m B . " M. 2
ater Det=3 (f  /(Ba/m)Ry/mP < Refm) [ 17
statements are true for the limlt Infimum. This concludes the proof of Lemma Q=1 i=1 = M,
2.1.
Proof of Theorem 2.1 (i)
We are left with the proof of Theorem 2.1. This will be taken care of In We start from Lemma 2.2 (111). Let § > O be a sufficlently small number.
small steps. From the observatlon that conditlonal on M, , M, *, the N;’s are Then

binomlally distributed with parameters n -2, p; /p, we deduce the following:

Ti41

i p;’= é") (i 41— X f [ /@m0

=1 f==1
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Tl

> % Lr, [ f*R/me) o

i=1

¥

(where f (a,z) = z<l_lzl-f§y ,’; [ /ly-2])
M,

- .}n.R,, A{ f 3R, /m.z).

A9 00
Find values A (§) and 4 *(6) such that [ f2= ﬁj 2
3
A

—00
value B (8) such that

[1%a.5)> (1-§)ff2,auo < a < B

Thus, If A 1s the event [M, < A(8), M,* > A*(§)] and B Is the event
[R,/m < B(5)], we haveon A N B, for a =R, /m,

M-' o0 M

[ FHax)> [ [¥auz)- f2(a,x)—ff2(a,z)
M, M,* o0

> -9/ =222 =0-9ff*

Thus,
m 2 1
02> Iinp 1-8) —R, [f2.
f=1 m
‘We also have
m 2
X2 g CO)
1 =1
where

y
= suw Jrr.

A@Lz<y<at@)
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Note that as & | 0, we have B(§) — 0 and thus C(§) — 0. Combining these
bounds gives

S 57 2 Iy mn(-OR, [12, CO) =L Z(R,)

=1

where Z (R, ) Is an Increasing function of R,. By Gurland's Inequalitles (Gur-
land, 1968) we have E(I, Z(R,)) = P(A)E(Z(R,)). We also know that
P(A)—1for all § € (0,1). Thus, with a little extra manlpulation we obtaln the
following bound:

E(T)/n 2 (1+o(1)+E (mln(-;LR,. 1-6)f 1 % nC()))

> (1+ 0 (U)A+(1-HE (mln(%Rn [1%nC@)) .

This concludes the proof of Theorem 2.1 (1).

Proof of Theorem 2.1 (ii).
From Lemma 2.2, we have

E(T|M, M,*)/n < min(n, 14+(R, /(cap®N[ [ ?)

<1+ min(n (R, /(e 2N .

Let us take expectations on both sides of thls lnequality. For arbitrary € > 0 we
have

E(T)/n < 1+E(min(n (R, /(c,p*)f f *

< E(min(n (R, 1+6)/¢a)[ [ D) + 1+ n P(— > 1+¢)
14

< E(min(n (R, /ey ) [ [ D) + c—e-j/2+ n P <1/Vite) +1.



52 CHAPTER 2

The proof 1s complete If we can show that the last probability 1s o (1) for every
€ > 0. Let U,,U, be Independent uniform [0,1] random varlables, and note that
p 1s distributed as U,Y™ U,Y/(*-1) Thuys,

P(p < 1/Vit+e) K P(U\V™ < (14e)V4) + P(U,M/* ) < (1+4¢)/4)

< 2 (1+ey{r-V/4

and we are done.

2.3. A SUPERLINEAR NUMBER OF BUCKETS.

For many Infinite-talled distributions, we know precisely how E (T) varles
asymptotically. For example, for densitles covered by Theorem 2.3,

E(T)~n(+—ERy) [f?)

when m ~ ¢n. We also have In those cases, by the proof of Theorem 2.1 (1t),

1 €

< _— —_—
ETY<n(1+ 2(1%)("_1)/4 + .

E(R,
free 22 ppsy,

for arbltrary € > 0. Here ¢, = m /n. When we sort, there Is an additlonal cost
of the form Am for some constant A > O due to the time needed to Inltlalize
and concatenate the buckets. If £ (R, ) — oo, It is easy to see that In the upper
bound,

E(R
E(T)<n —%ﬁﬂ(mu»

n

provided that E(R,)/c, — co. If we balance the two contributlons to the cost
of searching with respect to m, then we will find that 1t 1S best to let m Increase

at a faster-than-llnear pace. For example, conslder the minimization of the cost
function

CHAPTER 2 ' 53

n E(R,)
am 4 ZEB) (o
(=)
n
The minimum Is attalned at
— Lid 2
m=n - frz,

and the minimal value of the cost function Is

2n\/AE (R,)[f?.

If we had picked m ~ cn, then the maln contribution to the sorting time would
have come from the selectlon sort, and It would have Increased as a constant
times n E (R, ). The balancing act reduces this to about n./E(R,), albelt at
some cost: the space requirements increase at a superlinear rate too. Futhermore,
for the balancing to be useful, one has to have a prior! Information about E (R, ).

Let us consider a few examples. For the normal distribution, we would

optimally need
n1/ 1 :;-?-logn
m A 7r b
2
Am ~E(T)~n\/A:;;logn.

For the exponential distribution, we have
m n L log n
V 24 ’
A
Am ~E(T)~n ?mgn.

and obtaln
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Similarly, for all distributions with fintte f|z|" f (z)dz, [f *(z)dz, we can
choose m such that

1

1
Am ~E(T)< Cn 2

for some constant C.

The 1dea of a superlinear number of buckets to reduce the expected time can
also be used advantageously when f f 2= o0 and f has compact support.
When preprocessing Is allowed, as In the case of searching, and space require-
ments are no obstacle, we could choose m so large that E (Dg) and E (Dy) are

both O (1). To llustrate this point, we use the bound for E(T) used In the
proof of Theorem 2.1 (i1), and the fact that

T 1
De = = 4+ =,
s 2n 2

Thus, when [ f? < oo, E(R, ) — 00, we can choose
m ~ nER,)ff?,

and conclude that

llmsupm—)-§2,
n

n =00

Ilm sup £ (Dg) < 3.
n —00 - 2

‘We stress agaln that the 1dea of a superiinear number of buckets seems more use-
ful In problems in which a lot of preprocessing 1s allowed, such as In ordinary
searching and In data base query problems.
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Chapter 3

MULTIDIMENSIONAL BUCKETING.

3.1. MAIN THEOREM.

Several algorithms In computer sclence operate on polnts In R¢ by first stor-
\ng the polnts In equal-sized cells, and then traveling from cell to cell, to obtaln
some solution. Often these algorithms have good expected tlme behavior when
the polnts are sufficlently smoothly distributed over R?¢. This will be lllustrated
here by exhibiting necessary and sufficlent conditions on the distribution of the
polnts for llnear expected tlme behavior.

Our model Is as follows: X ,, . . ., X, are Independent random vectors from
R*¢ with common density f . We let C, be the smallest closed rectangle cover-
ing X,,...,X,. Each side of C, 1s divided Into n’ = |n /4| equal-length
Intervals of the type [a,b ); the rightmost Intervals are of the type [a,b]. Let A
be the collection of all rectangles (cells) generated by taking d-fold products of
Intervals. Clearly, A has m cells where

n>m > (nY41)8 > n(1-dn V).

The cells will be called A, . . ., A,,, and N; will denote the number of X;’ s
in cell A;. Thus, to determine all the cell memberships takes time proportional
to n. Within éach cell, the data are stored In a linked list for the time belng.
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—— 8 by 8 grid
N I Lo 64 points
5 '- Cell A; has N, =3 points

Figure 3.1.

The cell structure has been used with some success In computational
geometry (see for example, Shamos (1978), Welde (1978), Bentley, Welde and Yao
(1980), and Asano, Edahlro, Imal, Irl and Murota (1985)). Often It sufflces to
travel to each cell once and to do some work In the i-th cell that takes time
g (IV;) for some function g (or at least, s bounded from above by ag (lV;) and
from below by bg ([V;) for some appropriate constants a,b: thls slightly more
general formulation will not be pursued here for the sake of simplicity).

For example, one heuristlc for the traveling salesman problem would be as
follows: sort the points within each cell accordlng to thelr y-coordinate, joln
these points, then joln all the cells that have the same x-coordinate, and filnally
Joln all the long strips at the ends to obtaln a travellng salesman path (see e.g.
Christofides (1976) or P”;apadlmltrlou and Stelglitz (1978)). It Is clear that the

work here 1s O(n)+ 3 g(&V;) for g (u)=u2 or g (u)=u log(u +1) depending

§==1
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upon the type of sorting algorithm that 1s used. The same serpentine path con-
structlon Is of use In minimum-welght perfect planar matching heuristics (see e.g.
Irl, Murota, and Matsul 1981, 1983).

If we need to find the two closest polnts among X,, ..., X, In [0,1)%, 1t
clearly suffices to consider all palrwise distances d (X ,X j) for X; and X j at most
a4 (a constant depending upon d only) cells apart, provided that the grid Is con-
structed by cutting each slde of LO,I]" Into n' =[n'/?| equal pleces. Using the
Inequailty (u,+u,+..4+1 )* < 257 (u %+..+4; %), 1t Is not hard to see that the

m
total work here Is bounded from above by O (n ) plus a constant times 37 N; Z,

=1
—— 8 by 8 grid
1. . .t 64 points
N |
. . L ] B
- s
A
Figure 3.2.

Range search problem: report all points in the
intersection of A and B. Grid to be used in solution is also shown.

For multldimensional sorting and searching, we refer to section 3.2. In sec-
tlon 3.2, a few brlef remarks about the polnt-location and polnt enclosure prob-
lems will be Inciuded. The polnt enclosure problem can be consldered as a speclal
case of range searchlng, l.e. the problem of retrieving all polnts satisfying certaln



