
EXPECTED TIME ANALYSIS
FOR DELAUNAY POINT LOCATION

Luc Devroye, Christophe Lemaire and Jean-Michel Moreau

February 16, 2004

Abstract. We consider point location in Delaunay triangulations with the aid of simple

data structures. In particular, we analyze methods in which a simple data structure is

used to first locate a point close to the query point. For points uniformly distributed on

the unit square, we show that the expected point location complexities are Θ(
√
n) for the

Green-Sibson rectilinear search, Θ(n1/3) for Jump and Walk, Θ(n1/4) for BinSearch and

Walk (which uses a 1-dimensional search tree), Θ(n0.056...) for search based on a random

2-d tree, and Θ(logn) for search aided by a 2-d median tree.

Keywords and phrases. Delaunay triangulation, Voronoi diagram, point location,

computational geometry, expected time analysis, random tree, probabilistic analysis.

CR Categories: 3.74, 5.25, 5.5.

Research of the first author was sponsored by NSERC Grant A3456 and by FCAR Grant 90-ER-0291. Address: School
of Computer Science, McGill University, 3480 University Street, Montreal, Canada H3A 2K6. Email: luc@cs.mcgill.ca.

Introduction

Delaunay triangulations are fundamental geometric structures (Borouchaki and

George, 1997; Okabe, Boots and Sugihara, 1992; Boissonnat and Yvinec, (1995, 1998)).

Guibas and Stolfi (1985) described the basic data structure for storing such triangulations.

Fundamental operations include insertion, deletion and point location. In this paper, we

reconsider the point location problem, motivated by the numerical problems encountered

by many of the fancy solutions seen in some recent papers, and by the need to keep memory

use to a minimum. In particular, we analyze the expected time of some simple algorithms

that require elementary data structures. The present paper should be considered as a

companion paper of Devroye, Lemaire and Moreau (1999) where several of the algorithms

of this paper are experimentally compared with the major algorithms for data sets up

to 12 million in size. We present all the probabilistic results that serve to support and

explain these simulations.

The randomized algorithm of Guibas, Knuth and Sharir (1992), and the partially or

fully dynamic randomized algorithms of Devillers (2002), Boissonnat and Teillaud (1993),

and Devillers, Meiser and Teillaud (1992) all use a hierarchy of triangulations or space

partitions, with a point location search started at the root of the hierarchy. The bottom of

the hierarchy typically represents the full Delaunay triangulation. While these methods

yield optimal randomized query times of Θ(log n) for any data sets in the plane, they

are relatively complicated to implement, and use quite a bit of memory, Devillers (2002)

excepted. The present paper, in contrast, does not require any advanced data structure

beyond the Guibas-Stolfi implementation of the triangulation.

We assume throughout this paper that the data X1, . . . , Xn and the query point

X are independent and uniformly distributed on [0, 1]2. We will use the abbreviation

i.i.d. to denote independent and identically distributed random variables. The Delaunay

triangulation for X1, . . . , Xn will simply be called the random Delaunay triangulation. In

1978, Green and Sibson proposed rectilinear search, based on ideas of Lawson (1977).

Here one draws a data point at random, and walks in the Delaunay triangulation to X to

determine the triangle for X. It was conjectured there that the expected time is O(
√
n).

We will prove this.

The jump and walk method of Devroye, Mücke and Zhu (1998) offers good prospects

without any additional data structure: take a random sample of size n1/3, find the clos-

est point Y to the query point X, and walk along the Delaunay structure, following the

segment (Y,X) to determine the triangle for X. We will reprove that this takes O(n1/3)

expected time.

{2}

Minimal one-dimensional organization with the help of a one-dimensional search

tree reduces the expected time even further. For example, the binary search and walk

method developed by Lemaire (1997) will be shown to have expected time O(n1/4).

Dubbed BinSearch and Walk, the walk is started from a point Y that is found at a

cost of n1/4 using a 1-d search tree based on x-coordinates only.

Further improvements are possible if the data are organized by means of a random

2-d tree (Bentley, 1975). An algorithm is presented below whose expected point location

complexity is O(n0.056...), with further improvements unlikely with such a structure in view

of recent results of Chanzy, Devroye and Zamora-Cura (2001).

Finally, if we organize the data by means of a perfectly balanced 2d-tree, using

medians for splitting, and if we locate the leaf region for X, and let Y be the parent

of that leaf region, then the expected time for this search and the subsequent Delaunay

triangulation walk from Y to X is shown here to be O(logn).

Previous attempts at studying Delaunay edge crossings were sometimes restricted

by the model: for example, in infinite Poisson process models, the irregular behavior of

Delaunay triangulations near the perimeter of the support is avoided. Others consider a

finite model for the data, but assume that the query point is at least ε away from the rim

of the support (see, e.g., Bern, Eppstein and Yao, 1991, or Devroye, Lemaire and Moreau,

1999). The present analysis provides a global attack on the problem, which could serve

as an example for other similar analyses. The paper is rather technical, as the boundary

effect can be devastating for certain complexities. For example, we know that the convex

hull of n uniformly distributed points in the unit square has expected size Θ(logn). In

fact, the longest edge on that convex hull has expected value Θ(1). For point location

queries near the border of the square, walks from Y to X as described above will very likely

cut many of these long edges that are prevalent near the borders. Thus, in particular,

there is a difference between the expected worst case query time (when X is chosen as

a function of the data so as to make the point location time worst; this will be studied

elsewhere) and the expected uniform query time (when X is uniformly distributed on the

square and independent of the data). It is the latter situation we are dealing with here.

The first section sets up some useful auxiliary results. We will base several in-

equalities on the relationship between the Delaunay triangulation and the halfmoon graph

(Lemma 1). Lemma 2 states that Delaunay edges that have some point at least
√

log n/n

away from the border cannot exceed about
√

log n/n in length. So, this threshold defines

a rim beyond which the boundary effect is considerable. Lemma 4 for example shows

that a segment of length L away from the rim gets cut roughly by L
√
n Delaunay edges.

That Lemma suffices to establish the Green-Sibson result. Lemmas 5 through 7 give very

{3}

useful properties on the probability that all cells in a rectangular grid are occupied, and

on the maximal occupancy. These make the proof of Lemma 8 shorter, where we show

that the expected maximal degree is unlikely to be more than O(log2 n). Contrast this

with the observation that the expected degree of a node given that it is not in the rim is

O(1) (Lemma 9). The results on the degrees are essential for Theorems 2, 3 and 4.

¢ †

Properties of the random Delaunay triangulation

In this section, we give a short proof of some results related to the shape of a

random uniform Delaunay triangulation. Throughout this section, X1, . . . , Xn are i.i.d.

uniform [0, 1]2 random variables. We define a halfcircle supported by a segment (x, y) as

one of the two half circles of the circle with x and y on the perimeter at opposite ends,

and divided by the segment (x, y).

Lemma 1. Let x1, . . . , xn be points in the plane. If (xi, xj) is a Delaunay edge, then one

of two halfcircles supported by (xi, xj) cannot contain any other data point.

xi

xj

Figure 1. Proof of Lemma 1: if (xi, xj) is a De-

launay edge, then there exists a circle (shaded)

with those two points on its perimeter that

does not contain any other data point in its

interior. But this circle contains one of the two

halfcircles supported by (xi, xj), and thus one

of these has no data point in its interior.

{4}

We call the halfmoon graph for x1, . . . , xn the graph obtained by connecting xi
with xj when one of the two halfcircles supported by (xi, xj) contains no xk, k 6= i, j. By

Lemma 1, the Delaunay triangulation is a subgraph of the halfmoon graph. It is more

convenient to bound edge lengths in the halfmoon graph. Let
�
A denote the indicator

function of an event A, i.e., a function that is one if A is true and 0 otherwise.

Lemma 2. Consider a random Delaunay triangulation. Let Hn,u be the maximal edge

length among those edges of the halfmoon graph for which some point on the edge is at

distance at least u from the square’s perimeter. Then

� {Hn,u ≥ t} ≤ (ne)2e−
πn(min(u,t))2

8 .

Thus, for ε > 0, with tn = ((16 + ε) log n/πn)1/2,

lim sup
n→∞

� {Hn,tn ≥ tn} = 0 .

Let Ln,u be the length of the longest Delaunay edge emanating from a data point that is

at least distance u from the perimeter of the unit square. Then, for ` ≥ 2u:

� {Ln,u ≥ `} ≤ n2e−(n−2)u`
√

3/16 .

Proof. Let B = [u, 1− u]2, 0 < u < 1/2. Let X1, . . . , Xn be the data points. For fixed

Xi, Xj, let Xij = (Xi + Xj)/2, and note that if (Xi, Xj) intersects B (an event denoted

by Eij), then Xij is at least at distance min(u, ‖Xi −Xj‖/2) from the perimeter. By the

union bound, if we denote by Aij and Bij the two halfcircles supported by (Xi, Xj), we

see that
� {Hn,u ≥ t} ≤

∑

i6=j

� {Eij ∩ [‖Xi −Xj‖ ≥ t] ∩ [Aij is empty, or Bij is empty]}

≤ n(n− 1)
� {E12 ∩ [‖X1 −X2‖ ≥ t] ∩ [A12 is empty]}

= n(n− 1) �
{ �

E12

�
[‖X1−X2‖≥t] (1− � {X3 ∈ A12|E12, ‖X1 −X2‖ ≥ t})n−2} .

We note that
� {X3 ∈ A12|E12, ‖X1 −X2‖ ≥ t} ≥ πmin(u, t)2/8, as the circle centered at

X12 of radius min(u, t)/2 is completely contained in [0, 1]2. Thus,

� {Hn,u ≥ t} ≤ (ne)2e−
nπmin(t,u)2

8 .

Consider the last part of the lemma. Fix a data pair Xi, Xj, with Xj at least u

away from the perimeter of the unit square, and with ‖Xi−Xj‖ ≥ `. Then the probability

that there is a Delaunay edge from Xi to Xj is maximized if ‖Xi−Xj‖ = `. If ` ≥ u, then

the probability is further maximized by placing Xi on the perimeter of the unit square.

{5}

Let R be the rectangle with Xi and Xj at opposite ends, and let T, T ′ be two triangles

of R obtained by splitting it along the diagonal (Xi, Xj). If (Xi, Xj) is to be a Delaunay

edge, then one of these triangles must not have any other data points. Given Xi, Xj, the

probability of this is bounded from above by 2(1− (1/2)u
√
`2 − u2)n−2. For ` ≥ 2u, this

is further bounded by

2(1− u`
√

3/16)n−2 ≤ 2e−(n−2)u`
√

3/16 .

We conclude by the union bound, as there are not more than n2 pairs.

Lemma 3. Consider n points uniformly distributed on the unit square. Let M1 be the

maximal edge length of any Delaunay triangulation edge emanating from the first point,

X1. Then, for 0 < r < 1/2,

sup
x∈[r,1−r]2

� {M1 ≥ r|X1 = x} ≤ 24e−3π(n−1)r2/96 .

{6}

Proof. Consider the circle C of radius r
√

3/2 centered at x ∈ [r, 1 − r]2. Partition C

into 24 equal cones of angle π/12 each. Let A be the event that one of the cones does not

receive one of the n− 1 other data points. Clearly, as C ⊆ [0, 1]2,

� {A} ≤ 24(1− 3πr2/96)n−1 ≤ 24e−
3π(n−1)r2

96 .

If M1 ≥ r, then by Lemma 1, there exists a halfcircle H on a diameter r with one end at

x that has no data point. We claim that H must necessarily contain one of the 24 cones,

and thus one of the 24 cones must be empty. Therefore,
� {M1 ≥ r|X1 = x} ≤ � {A}, and

we are done.

���������	��
���
������������

��

���
�

���

�

 �! � �

��"#�%$�����
���&��'��(�
��

)

�+* ,�

Figure 2.

Assume without loss of generality that x has coordinates (0, 0), and that H is supported

by ((0, 0), (r, 0)), and faces towards the positive y-axis. Let B be the cone containing

(r
√

3/2, 0). Let B′ be the next cone in counterclockwise order. To show that B ′ ⊆
H, it suffices to show that its topmost vertex is in H. This vertex has coordinates

r(
√

3/2)(cosα, sinα), where π/12 ≤ α ≤ π/6. The square of the distance from this vertex

to the center of H, (r/2, 0), is

r2
(

(3/4) sin2 α + (3/4) cos2 α + 1/4− (
√

3/2) cosα
)

= r2
(

1− (
√

3/2) cosα
)

≤ r2
(

1− (
√

3/2) cos(π/6)
)

= r2 (1− 3/4)

= (r/2)2 .

{7}

This concludes the proof of Lemma 3.

To see this Lemma at work, consider the following Lemma, which complements

results of Bose and Devroye (1998):

Lemma 4. Let ∆n denote a Delaunay triangulation for n points distributed uniformly in

the unit square, and let L be a line segment independent of ∆n, where L is completely

contained in B = [2r, 1− 2r]2 and r =
√

25 logn/πn. Let N denote the number of edges

of ∆n crossed by L. Then there exist constants ci such that

� {N} ≤ c1 + c2 � {‖X − Y ‖}√n .

Proof. We condition on L (i.e., we hold L fixed) and show that

� {N |L} ≤ c1 + c2‖L‖
√
n

for some universal constants ci. Let Mi be the maximal length of any Delaunay edge

emanating from Xi, and let Li denote its distance to L. Let S be the collection of indices

of data points that are such that a Delaunay edge from it reaches L. Clearly, any Delaunay

edge (Xi, Xj) cut by L must have i, j ∈ S. If G = [Hn,r ≤ r] holds (where Hn,r is as in

Lemma 2), then L can only be reached by edges starting from nodes in A = [r, 1 − r]2.

Thus, if G holds, then S = S ∩ T , where T is the set of indices of Xi’s in A. Let Gc be

the complement of G. By the planarity of the Delaunay triangulation, there are at most

3n Delaunay edges. We thus have, for n large enough,

� {N} ≤ 3n
� {Gc}+ 3 � {|S| �

G}
= 3n

� {Gc}+ 3 � {|S ∩ T | �
G}

≤ 3e2n−1/8 + 3n
� {G,X1 ∈ A,M1 > L1}

(by Lemma 2)

≤ o(1) + 3n
� {X1 ∈ A, r ≥M1 > L1}

= o(1) + 3n �
{ �

[X1∈A]
� {r ≥M1 > L1|X1}

}

≤ o(1) + 3n �
{ �

[X1∈A]24e−3π(n−1)L2
1/96
}

(by Lemma 3)

≤ o(1) + 72n �
{
e−nL

2
1/22
}

= o(1) + 72n

∫ 1

0

� {
L1 ≤

√
22 log(1/t)/n

}
dt

{8}

≤ o(1) + 72n

∫ 1

0

(
2‖L‖

√
22 log(1/t)/n+ 22π log(1/t)/n

)
dt

(because we have a uniform distribution, see Figure 3)

= o(1) + c1 + c2‖L‖
√
n

since both
√

log(1/t) and log(1/t) are integrable on [0, 1]. Note that the o(1) term and

the constants ci do not depend upon L. This concludes the proof of Lemma 4.

L

r
r

r

Figure 3. The area of the set of points within

distance r of a line of length ` is 2`r + πr2.

Throughout this section, X1, . . . , Xn are i.i.d. uniform [0, 1]2 random variables. For a

set A ⊆ [0, 1]2, we let µ(A) denote its probability or area, and we denote by µn(A) its

empirical probability:

µn(A) =
1

n

n∑

i=1

�
[Xi∈A] .

For what follows, a few key results on µn(A) are needed. These will make the analysis of

various quantities for the Delaunay triangulation particularly straightforward. We need

the notion of the Vapnik-Chervonenkis dimension V of a class A of sets: V is the smallest

positive integer such that there exists a set S of V points such that

|{S ∩ A : A ∈ A}| < 2V .

If this is not possible for any finite set S, then V = ∞. For example, if A is the class

of all Borel sets in a Euclidean space, then V = ∞. The class of all triangles in the

plane has V = 4 as the points (0, 0), (3, 0), (0, 3) and (1, 1) cannot be broken up into 16

sets by intersecting with triangles: the subset {(0, 0), (3, 0), (0, 3)} for example cannot be

obtained in this manner.

{9}

Lemma 5. Fix p ∈ (0, 1). Let A be a class of subsets of [0, 1]2 of equal area µ(A) = p,

and let V denote the Vapnik-Chervonenkis dimension of A. Then
� {every set A of A receives at least one point}

=
�
{

inf
A∈A

µn(A) > 0

}

≥ 1− 4(2en/V)V e−np/4 , n ≥ V/2.

Proof. The proof is based on an inequality of Vapnik and Chervonenkis (1971) which

states that t > 0,

�
{

sup
A∈A

µ(A)− µn(A)√
µ(A)

≥ t

}
≤ 4S2ne

−nt2/4 ,

where Sn is the maximal number of sets obtainable by intersecting a set of size n with

sets from A. Thus, Sn ≤ 2n, but one can do better. In fact,

Sn ≤ (en/V)V , n ≥ V.

As µ(A) = p in our case, we get, upon setting t =
√
p,

�
{

inf
A∈A

µn(A) ≤ 0

}
=

�
{

sup
A∈A

p− µn(A) ≥ p

}

=
�
{

sup
A∈A

p− µn(A)√
p

≥ √p
}

≤ 4(2en/V)V e−np/4 .

The previous Lemma is in fact valid for any distribution in any Euclidean space,

not just the uniform distribution on [0, 1]2. Other generalizations of that inequality may

be found in Panchenko (2002) and the references cited there. The next auxiliary results

are particular for the uniform distribution though.

Lemma 6. Let A be the k × k square cells of a regular grid that partitions [0, 1]2. Let

X1, . . . , Xn be i.i.d. and uniformly distributed on the unit square. Then

�
{

min
A∈A

µn(A) = 0

}
≤ k2e−n/k

2 ≤ 1/n3

when k ≤
√
n/4 logn, n ≥ 2.

{10}

Proof. The first inequality follows from
� {minA∈A µn(A) = 0} ≤ k2(1−1/k2)n. Replace

k formally in this bound by
√
n/4 logn and obtain the further upper bound 1/4n3 logn ≤

1/n3 for n ≥ 2.

We define the star set S(x, t) for x = (x1, x2) ∈ [0, 1]2, 1 > t > 0 as the set of all

z = (z1, z2) ∈ [0, 1]2 with the property that

|(z1 − x1)(z2 − x2)| ≤ t .

It is the set of points contained within four hyperbolae centered at x. Note that the

probability (area) of any star set is not more than

4(t+ t log(1/t)).

x

0 1
0

1

S(x,t)

Figure 4. The area of S(x, t)

does not exceed 4
∫ 1

0
min(1, t/x) dx.

Lemma 7. Let At, 1 > t > 0 be the class of all star sets S(x, t), x ∈ [0, 1]2. Then

�
{

sup
A∈At

µn(A) ≥ 2(4t+ 5/n)(1 + log(1/t))

}
≤ n2(e/4)4nt log(1/t).

{11}

Proof. Partition [0, 1] into a regular 1/n × 1/n grid, and let z denote the center of a

grid cell. Let x be an arbitary point in that cell. We claim that

S(x, t) ⊆ S(z, t + 5/(4n)).

Let y ∈ S(x, t). Then

|z1 − y1||z2 − y2| ≤ (|y1 − x1|+ 1/(2n))(|y2 − x2|+ (1/2n))

≤ |y1 − x1||y2 − x2|+ (1/2n)(|y1 − x1|+ |y2 − x2|) + 1/(4n2)

≤ t+ 1/n+ 1/(4n2)

≤ t+ 5/(4n).

Thus,

sup
A∈At

µn(A) ≤ sup
z
µn(S(z, t + 5/(4n))) .

Also, note that the maximal probability of any set S(z, t+ 5/(4n)) is nor more than

4(t + 5/(4n) + (t+ 5/(4n)) log(1/(t+ 5/(4n)))) ≤ (4t+ 5/n)(1 + log(1/t))
def
= p.

If Z denotes a binomial (n, p) random variable, we thus have by the union bound,

�
{

sup
z
µn(S(z, t+ 5/(4n))) ≥ 2p

}
≤
∑

z

� {µn(S(z, t + 5/(4n))) ≥ 2p}

≤
∑

z

� {Z − np ≥ np}

≤ n2(e/4)np ,

where we used an inequality due to Okamoto (1958): for u > p,

� {Z ≥ un} ≤
(

(1− p)1−upu

(1− u)1−uuu

)n
.

Set u = 2p, and use (1 + p/(1− 2p))1−2p ≤ ep to obtain the desired result. Finally, note

that np > 4t log(1/t).

We now have our first rough bound on the maximal degree of any node in the

Delaunay triangulation for X1, . . . , Xn, with constants explicitly shown.

{12}

Lemma 8. Let n ≥ 1000. Let Dx be the degree of x in the Delaunay triangulation for

x,X1, . . . , Xn. Then

�
{

sup
x∈[0,1]2

Dx ≥ 384 log2 n

}
≤ 13.66

n2
.

Furthermore, � {supxDx} ≤ 384 log2 n + 13.66/n. Let Di be the degree of Xi in the

Delaunay triangulation for X1, . . . , Xn. Then

�
{

sup
1≤i≤n

Di ≥ 384 log2 n

}
≤ 13.66

n
.

Finally, � {supiDi} ≤ 384 log2 n+ 13.66.

0 1
0

1

S(x,t)

x

Zj

Xj

Figure 5. Illustration of the proof of Lemma

8. The shaded triangles each have area t/2

and each receive at least one data point when

F is true. Therefore, the halfcircles sup-

ported by (x,Xj) are each occupied, and

(x,Xj) cannnot be a Delaunay edge.

Proof. Set t = 48 logn/n. Let A be the class of all triangles in [0, 1]2 with vertices

of the form (a, b), (a, z) and (w, b), of area t/2. Let F be the event that each of these

triangles receives a data point (from X1, . . . , Xn). Fix any j. For Xj, we either have that

F is false, or that Xj ∈ S(x, t) (with S as in Lemma 7), or that F ∩ [Xj 6∈ S(x, t)] is

true. The last case cannot happen though, because when we consider the two triangles in

the rectangle with x and Xj as opposite vertices and diagonal (x,Xj), then each of these

triangles contains a further triangle contained in A: indeed, let Zj be the place on the

{13}

boundary of S(x, t) that is crossed by the edge (x,Xj). Then define the triangles obtained

by splitting the rectangle defined by x and Zj about its diagonal (x, Zj). By definition

of S(x, t), the area of the rectangle is t, and thus both triangles are of area t/2. But

both of these triangles contain a data point when F is true, and both are contained in

the halfcircle supported by (x, Zj). Thus, both halfcircles supported by (x,Xj) contain a

data point and thus, no circle with x and Xj on its perimeter can be empty. That implies

that (x,Xj) cannot be a Delaunay edge. Thus,

Dx ≤ nµn(S(x, t)) + n
�

[F c] .

We can now apply Lemmas 5 and 7. Note that for n ≥ 1000,

2n(4t+ 5/n)(1 + log(1/t)) = (8× 48 logn+ 10) log(en/(48 logn))

≤ 384(logn+ 10/384)(logn− 4.8)

≤ 384 log2 n.

We have

�
{

sup
x
Dx ≥ 384 log2 n

}

≤ �
{

sup
x
Dx ≥ 2n(4t+ 5/n)(1 + log(1/t))

}

≤ � {F c}+
�
{

sup
x
µn(S(x, t)) ≥ 2(4t+ 5/n)(1 + log(1/t))

}

≤ 4(2en/4)4e−nt/8 + n2(e/4)4nt log(1/t)

(since V = 4 for triangles)

≤ 4(2e/4)4n−2 + n2(e/4)192 log n log(n/48 log n)

≤ 13.65n−2 + n2(e/4)192 log n

≤ 13.65n−2 + n−72

≤ 13.66n−2.

This proves the first part. Let Di be the degree of Xi in the Delaunay triangulation for

X1, . . . , Xn. Then, by the first part,

� {Di ≥ 384 log2(n− 1)} ≤ 13.66

n2
, n− 1 ≥ 1000.

The last part then follows by the union bound.

We also need a good estimate of the expected degree far from the border.

{14}

Lemma 9. Consider x ∈ [t, 1− t]2 with t =
√

8 logn/πn. If D1 is the degree of X1 in the

triangulation for X1, . . . , Xn, then

� {D1|X1 = x} ≤ 18 + o(1).

Proof. Using Lemma 1,

� {D1|X1 = x}
≤ n

� {(X2, X1)is a Delaunay edge, and ‖X2 −X1‖ > t|X1 = x}
+ n

� {(X2, X1)is a Delaunay edge, and ‖X2 −X1‖ ≤ t|X1 = x}
≤ 2n

(
1− πt2/8

)n−2
+ 2n �

{(
1− π‖X1 −X2‖2/8

)n−2 �
[‖X2−X1‖≤t]|X1 = x

}

(the first term argues by the emptiness of one halfcircle of diameter t)

(the second term argues by the emptiness of one halfcircle supported on (X1, X2))

≤ 2ne−(n−2) log n/n + 2n

∫ 1

0

� {(
1− π‖X1 −X2‖2/8

)n−2
> u|X1 = x

}
du

≤ 2ne−(n−2) log n/n + 2n

∫ 1

0

� {
e−(n−2)π‖X1−X2‖2/8 > u|X1 = x

}
du

= 2 + o(1) + 2n

∫ 1

0

� {
e−(n−2)π‖X1−X2‖2/8 > u|X1 = x

}
du

≤ 2 + o(1) + 2n

∫ 1

0

8 log(1/u)

(n− 2)
du

≤ 2 + o(1) + (16 + o(1))

∫ 1

0

log(1/u) du

= 18 + o(1) .

¢ †

{15}

Rectilinear search: the Green-Sibson method

Green and Sibson (1978) propose taking a random point, say X1, and performing a

walk to the random query point X. The complexity of Green-Sibson method is bounded

by D1, the degree of X1 in the Delaunay triangulation ∆n for X1, . . . , Xn (to find the

starting triangle in the Delaunay triangulation) plus N ∗, the number of triangles visited

by (X,X1) in ∆n.

Theorem 1. The expected complexity of the Green-Sibson method for a random Delau-

nay triangulation and an independent and uniformly distributed query point on [0, 1]2 is

Θ(
√
n).

Proof. We will only show the O(
√
n) upper bound. Let N be the number of triangles

visited by (X,X1) in the Delaunay triangulation for X2, . . . , Xn. Clearly, |N −N ∗| ≤ D1.

Thus,

| � {N} − � {N ∗} | ≤ 6 ,

because the expected degree of a randomly picked node in any Delaunay triangulation

on n nodes is less than 6 (the sums of the degrees being less than 6n). Therefore, the

expected complexity is bounded by 6 + � {N ∗} ≤ 12 + � {N}. We finish the proof by

showing that � {N} = O(
√
n).

����� ���	��
���
��

�

� �

� ��� ��������
�����
 �
� ��� ��������
�����
��

� ���
���

�
��� �

�
� �

� �

Figure 6.

To do so, define r =
√

25 log(n− 1)/(π(n− 1)), A = [r, 1−r]2, B = [2r, 1−2r]2 and

C = [3r, 1− 3r]2. Split L = (X,X1) into two parts, L′′ = L∩B and L′ = L∩Bc. Let N ′′

{16}

and N ′ denote the number of intersections of L′′ and L′ with the Delaunay triangulation

for X2, . . . , Xn. By Lemma 4,

� {N ′′} ≤ c1 + c2 � {‖L′′‖}√n ≤ c1 + c2

√
2n .

Define G = [Hn−1,r ≤ r]. Let Gc denote its complement. If G holds, then L′ can only

be reached by edges starting in points of Cc. Thus, under G, N ′ is bounded from above

by three times the cardinality of Cc (because it suffices to consider just the Delaunay

triangulation for the points in Cc and to note that this triangulation is planar). Therefore,

conditional on L, if N(Cc) denotes the number of data points among X2, . . . , Xn falling

in Cc,

� {N ′|L} ≤ � {3N(Cc)
�
G}+ � {3n �

Gc}
≤ 3 � {N(Cc)}+O(n−1/8)

≤ 36rn+O(n−1/8)

= O(
√
n log n) .

But then, as L′ is nonempty only if X or X1 fall outside B,

� {N ′} ≤ � {[X ∈ Bc] ∪ [X1 ∈ Bc]}O(
√
n log n) ≤ 16r × O(

√
n logn) = O(logn) .

This concludes the proof of Theorem 1.

¢ †

Jump and Walk

Jump and Walk (Devroye, Mücke and Zhu, 1998) proceeds by picking Y as the

nearest neighbor of X among X1, . . . , Xk, where k = bn1/3c, and walking in the triangu-

lation from Y to X. Devroye, Mücke and Zhu showed that if X is at least distance ε > 0

away from the border of the unit square, then the expected time of this method is Θ(n1/3).

The purpose of the Theorem below is to bring their results in line with the other ones in

this paper, assuming that X is uniformly distributed on [0, 1]2. Note that the result is

not true if X is allowed to depend upon the data or X is allowed to be deterministic and

placed anywhere in the unit square.

A note on the data structure for the Delaunay triangulation is in order here. At

each vertex, a list of incident triangles in clockwise order is maintained. One could organize

this list as a balanced search tree, but that is in fact not necessary for the results of the

previous, present and next sections. To start walking from Y to X in the Jump and

Walk algorithm takes an initial cost proportional to the degree d(Y) of Y for the list

structure andO(log d(Y)) for the search tree structure. As the maximal degree is O(log2 n)

{17}

in expected value (Lemma 8), this contribution is asymptotically negligible with either

implementation.

The distance from X to Y is roughly 1/
√
k = Θ(n−1/6). Then, the number of

triangles cut by (X, Y) should be about
√
n times that, or n1/3, by Lemma 4, provided

that (X, Y) does not approach the border of the unit square. When (X, Y) is near the

border, a special additional argument is needed to show that the expected number of

triangles met remains nevertheless O(n1/3).

Theorem 2. Let ∆n be a random Delaunay triangulation. If the query point is inde-

pendent of the data and also uniformly distributed on the unit square, then the expected

number of triangles visited by Jump and Walk and the expected complexity of the Jump

and Walk algorithm are both O(n1/3).

Proof. We will first show that � {D} = O(n1/3), where D is the degree of Y , and then

that � {N∗} = O(n1/3), where N∗ is the number of triangles visited by (X, Y). While in

fact, � {D} ≤ 42 (see Chazelle et al. (2001)), we opt for a self-contained paper. Clearly,

denoting by Di the degree of Xi,

D ≤ max
1≤i≤k

Di ≤
k∑

i=1

Di

so that � {D} ≤ 6k = O(n1/3). If we consider N , the number of triangles visited by

(X, Y) in the triangulation formed by Xk+1, . . . , Xn, then clearly,

N∗ ≤ N +
k∑

i=1

Di ,

as the last term bounds the number of triangles added if we enlarge the triangulation to

include X1, . . . , Xk as well. Here we used the property that adding a point to a Delaunay

triangulation can only remove existing edges, and add edges incident to the new point.

Hence,

� {N∗} ≤ � {N} + 6k = � {N}+O(n1/3) .

Observe that L = (X, Y) and the triangulation considered in N are independent.

We first compute � {‖L‖}. If t < 1/2, then at least 1/4-th of the circle of radius t

centered at any x ∈ [0, 1]2 is inside [0, 1]2. Thus,

� {‖L‖} =

∫ ∞

0

� {‖L‖ > t} dt

{18}

≤
∫ 1/2

0

(
1− πt2/4

)k
dt+

∫ √2

1/2

(1− π/16)k dt

≤
∫ ∞

0

e−πt
2k/4 dt+

√
2(1− π/16)k

=
1 + o(1)√

k

∼ n−1/6 .

We proceed as in the proof of Theorem 1. Define r =
√

25 log(n− k)/π(n− k), B =

[2r, 1 − 2r]2 and C = [3r, 1 − 3r]2. Split L = (X, Y) into two parts, L′′ = L ∩ B and

L′ = L ∩ Bc. Let N ′′ and N ′ denote the number of intersections of L′′ and L′ with the

Delaunay triangulation for Xk+1, . . . , Xn. By Lemma 4,

� {N ′′} ≤ c1 + c2 � {‖L′′‖}√n ≤ c1 + (c2 + o(1))n1/3 .

Define G = [Hn−k,r ≤ r]. Let Gc denotes its complement. If G holds, then L′ can only be

reached by edges starting in points of Cc. Let N(Cc) denotes the number of data points

among Xk+1, . . . , Xn falling in Cc, Thus, under G, N ′ is bounded from above by 3N(Cc)

because it suffices to consider just the Delaunay triangulation for the points in C c and to

note that this triangulation is planar. Therefore, conditional on L,

� {N ′|L} ≤ � {3N(Cc)
�
G}+ � {3n �

Gc}
≤ 3 � {N(Cc)}+O(n−1/8)

≤ 36rn+O(n−1/8)

= O(
√
n log n) .

But then, as L′ is nonempty only if X or Y fall outside B,

� {N ′} ≤ � {[X ∈ Bc] ∪ [Y ∈ Bc]}O(
√
n log n)

≤ 8r ×O(
√
n log n) +

� {Y ∈ Bc}O(
√
n log n)

= O(logn) +
� {Y ∈ Bc}O(

√
n log n) .

We conclude the proof by showing that
� {Y ∈ Bc} = O

(
n−29/105(logn)1/4

)
, so that

� {N ′} ≤ O
(
n47/210(log n)3/4

)
= o(n1/3). For the proof of this fact, let A = [d, 1 − d]2,

where d will be picked so that d > 4r for n large enough. Let 0 < a = o(n) be picked

further on. Consider the following:
� {Y ∈ Bc} ≤ � {X ∈ A, Y ∈ Bc}+

� {X ∈ Ac, ‖L‖ < a}+
� {X ∈ Ac, ‖L‖ > 1/2}

+
� {X ∈ Ac, Y ∈ Bc, ||L|| ∈ [a, 1/2]}

≤ � {‖L‖ ≥ d− 2r}+ 4dkπa2 + 4d
(
1− π(1/2)2/4

)k

+ 4d sup
x∈[0,1]2

� {Y ∈ Bc, ||L|| ∈ [a, 1/2]|X = x}

{19}

≤
(
1− π(d− 2r)2/4

)k
+ 4dkπa2 + 4d exp

(
−πk(1/2)2/4

)

+ 4d sup
x∈[0,1]2,`∈[a,1/2]

� {Y ∈ Bc|X = x, ‖L‖ = `}

≤ exp
(
−πkd2/16

)
+ 4dkπa2 + 4d exp

(
−πk(1/2)2/4

)

+ 4d sup
x∈[0,1]2,`∈[a,1/2]

� {Y ∈ Bc|X = x, ‖L‖ = `}

�

� �

�������
	�� ��
 �
	
���

�

���

�
��� � � �

������� �!�"��#%$'&(���
)*$+#
���-,
.
/ ��&(��02143�15143�1515143%176176815151

151
1

9;:

9'< �>= �@?

Figure 7.

We look at the last term and refer to Figure 7. Let B(x, `) be the circle centered

at x of radius `. Given ||L|| = ` and X = x, we note that Y is uniformly distributed on

the perimeter of B(x, `) constrained to the unit square. At least one quarter of this circle

is inside the square, so the probability in the last bound is bounded by the length of the

perimeter of B(x, `) constrained to Bc divided by π`/2. The part of the perimeter in Bc

is maximal when x = (`, `). Decompose the perimeter into two parts, one touching the

horizontal side of the unit square, and one touching the vertical side. Cut each part again

exactly in half. Each of the four pieces has length not exceeding 2r (for the perpendicular

distance to the side) plus
√
`2 − (`− 2r)2 ≤

√
4`r (for the distance parallel to the side of

the square), which for n large enough is not more than (8 + o(1))
√
`r < 9

√
`r, provided

that r = o(`). Therefore, if ` ∈ [a, 1/2],

� {Y ∈ Bc|X = x, ‖L‖ = `} ≤ 9
√
`r

π`/2
=

18

π

√
r

`
≤ 6

√
r

a
.

{20}

We conclude that

� {Y ∈ Bc} ≤ exp
(
−πkd2/16

)
+ 4dkπa2 + 4d exp

(
−πk(1/2)2/4

)
+ 24d

√
r

a
.

We now choose d = 1/n1/7 and a = 1/n7/30. Note that r = o(a) and r = o(d) as required.

We have for n large enough,

� {Y ∈ Bc} ≤ exp
(
−n1/21/6

)
+ 25n−11/420

√
r = O

(
n−29/105(log n)1/4

)
.

¢ †

Point location using 1-d binary search trees

Given are x1, . . . , xn, points distributed in [0, 1]2 all of whose coordinates are dif-

ferent. On top of a standard data structure for Delaunay triangulations, we maintain

a simple binary search tree for the x-coordinates, as proposed by Lemaire (1997) in his

thesis and subsequent work (Devroye, Lemaire and Moreau, 1999). The purpose of this

section is to analyze how the binary search tree helps in Delaunay point location in an

expected time sense. Lemaire’s method, BinSearch and Walk, requires a parameter k

which we shall set to bn1/4c, but we shall describe intermediate complexities in terms of

a general k.

In the algorithm, we first perform BinSearch: locate the unique leaf for the query

point X in the tree, and find the order statistics whose ranks differ by the rank of the leaf

by at most k. The number of these order statistics returned is thus between k and 2k.

Among those points, keep only the k nearest (what is said below will also be true if this

selection step is omitted). In this subset of size k, find the point Y whose y-coordinate

is closest to the y-coordinate of the query point X. As this involves finding the O(k)

neighbors in a binary search tree, the time cost is O(k + h), where h is the height of the

tree (see Cormen, Leiserson and Rivest, 1990). Recall that for most brands of binary

search trees, h = O(logn) in the worst case. For the random binary search tree and the

treap, the expected height is O(logn) (Robson, 1979).

The bounded balance search trees of Nievergelt and Reingold (1973) showed fine

experimental results on large data sets in the study of Devroye, Lemaire and Moreau

(1999). First, we locate Y in the tree in logarithmic time. Then we determine the

location of Y in the Delaunay triangulation in constant time. Finally, we perform Walk:

we walk across the segment (Y,X) in the Delaunay triangulation to determine the triangle

for X. The extra time needed for this walk is O(1) plus the number of Delaunay edges

{21}

crossed by the walk, plus the degree of Y in the Delaunay triangulation (to start off,

we must perform binary search among the incident triangles). The latter contribution

has expected value O(log2 n) by Lemma 8. Thus, the expected time is O(n1/4) plus the

expected time number of triangles visited by (Y,X).

Theorem 3. Consider a random Delaunay triangulation. The expected number of De-

launay edges cut by (X, Y) (found by the procedure above after taking k = bn1/4c) does

not exceed O(n1/4). If one organizes the point location by using a binary search tree with

expected height O(n1/4), then the expected time for point location is O(n1/4).

{22}

Proof. We will make repeated use of the following fact. If (x, y) is a line segment

contained in a convex set C ⊆ [0, 1]2, then the number of Delaunay edges cut by (x, y)

for a Delaunay triangulation ∆n (which may or may not include x and/or y as vertices)

is bounded by 3(N +N ′), where N is the number of points of the Delaunay vertex set in

C, and N ′ is the number of Delaunay edges crossing C. To see this, mark all points in C

and all points outside C that have a Delaunay edge that crosses into C. The number of

these points does not exceed N +N ′. Form the Delaunay triangulation for these points.

By planarity, the number of edges of this triangulation crossing (x, y) (or any other line

segment contained in C) is not more than 3(N +N ′).

X

4k/n

C

0 1
0

1

Figure 8. Illustration of the construction

of two coupled samples. The square points

(outside C) are common to both samples.

The white and black round points are par-

ticular to one sample. On the strip C, the

samples differ, and off C, they are largely

identical. However, both are i.i.d. uniform

samples when considered separately.

Let X = (Xx, Xy) be the query point. Let C = [Xx − 2k/n,Xx + 2k/n] × [0, 1].

Let Y = Xi = (Yx, Yy) be the point among X1, . . . , Xn whose x-coordinate rank differs

from that of Xx by at most k and whose y-coordinate value is nearest to Xy. Let Dn
{23}

denote the data (X1, . . . , Xn). We need a closely related sample D′n (or X ′1, . . . , X
′
n). The

construction of both samples is now described (see Figure 8). Let p be the area of C,

a random variable between 0 and 4k/n. First generate two independent binomial (n, p)

random variables, N and N ′, denoting the number of data points in C in each sample

(before they are generated!). Let Z1, . . . , Zn be an i.i.d. sample drawn uniformly from

Cc ∩ [0, 1]2, and let W1, . . . ,Wn,W
′
1, . . . ,W

′
n be an i.i.d. sample drawn uniformly from C.

We start by setting Xi = Zi, i ≤ n − N , X ′i = Zi, i ≤ n − N ′ (so that Xi = X ′i for

i ≤ n −max(N,N ′)). Then, set Xn−N+i = Wi, i ≤ N , and X ′n−N ′+i = W ′
i , i ≤ N ′. This

completes the samples. Apply the same random permutation to both samples. We claim

that both samples are uniformly distributed on [0, 1]2. Also, for any i (after the random

permutation),
� {Xi 6= X ′i} = � {max(N,N ′)/n}. This is less than � {(N+N ′)/n} ≤ 8k/n.

We also have
� {Xi 6= X ′i|X} ≤ 8k/n. If N(X, Y,Dn) denotes the number of edges of the

Delaunay triangulation for Dn that meet (X, Y), and N(X, Y,D′n) denotes the quantity

for D′n, then

N(X, Y,Dn) ≤ N(X, Y,D′n) +
n∑

i=1

Di
�
[Xi 6=X′i]

+
n∑

i=1

D′i
�
[X′i 6=Xi]

where Di is the degree of Xi in the Delaunay triangulation Dn, and D′i is the degree of

X ′i in the Delaunay triangulation D′n. To see this, note that if we remove the points Xi

from Dn for which Xi 6= X ′i, and adjust the Delaunay triangulation after every point

removal, then the number of edges changed when removing Xi is equal to Di, the degree

of Xi just before its removal. This may increase the degrees of some other points, but the

edges causing such degree increases are already counted. Arguing in this way, the total

number of edges changed is not more than
∑n

i=1 Di
�
[Xi 6=X′i]

. Now, start adding points

X ′i (with Xi 6= X ′i) one by one to get D′n and note that these additions cause at most∑n
i=1 D

′
i

�
[X′i 6=Xi]

new edge creations. Taking expected values, we note that

� {N(X, Y,Dn)} ≤ � {N(X, Y,D′n)}+ 2 �

{
n∑

i=1

Di
�
[Xi 6=X′i]

}

= � {N(X, Y,D′n)}+ 2n �
{
D1

�
[X1 6=X′1]

}
.

We consider both terms in the bound separately. Turning to the last term, we condition

on the position of X1: X1 = x. Consider x ∈ [t, 1 − t]2 with t =
√

8 logn/πn, and note

that by Lemma 9, � {D1|X1 = x} ≤ 18 + o(1). Using this and Lemma 5, we have

2n �
{
D1

�
[X1 6=X′1]

}

= 2n �
{
D1

�
[X1 6=X′1]

�
[X1∈[t,1−t]2]

}
+ 2n �

{
D1

�
[X1 6=X′1]

�
[X1 6∈[t,1−t]2]

}

≤ 2n �
{ �

[X1∈[t,1−t]2] �
{
D1

�
[X1 6=X′1]|X1

}}
+ 2n �

{
�
[X1 /∈[t,1−t]2]

�
[X1 6=X′1] sup

x
Dx

}

{24}

(where Dx is the Delaunay degree of x for x,X2, . . . , Xn)

≤ 16k �
{ �

[X1∈[t,1−t]2] � {D1|X1}
}

+ 2n2 � {sup
x
Dx ≥ 384 log2 n}

+2n× 384 log2 n
� {X1 /∈ [t, 1− t]2, X1 6= X ′1}

≤ 16k �
{ �

[X1∈[t,1−t]2](18 + o(1))
}

+ 27.32 + 16k × 384 log2 n
� {

X1 /∈ [t, 1− t]2
}

(by Lemma 8, for n ≥ 1000)

≤ 16k(18 + o(1)) + 27.32 + 16k × 4t× (384 log2 n)

∼ 288k .

This leaves us with � {N(X, Y,D′n)}. To deal with this, we introduce the event

G = [N ≥ k] (which insures that the point Y is in C). Given G, (X, Y) and D′n are

independent, and D′n is a uniform sample on the unit square. Introduce the event H that

the vertical distance between X and Y is less than or equal to 2 logn/k, and the event

E = [X, Y ∈ [2r, 1− 2r]2], where r =
√

25 logn/πn. By Lemma 4, we have

�
{
N(X, Y,D′n)

�
[E]

�
[G]

} ≤ c1 + c2 � {‖X − Y ‖ �
[G]}
√
n

≤ c1 + c2 � {(4k/n+ 1/(k + 1))
�

[G]}
√
n

≤ c1 + c2(4k/n+ 1/k)
√
n

= O(n1/4),

where we used the fact that the expected vertical distance between X and Y is at most

1/(k + 1). Next,

�
{
N(X, Y,D′n)

�
[Gc]

}
≤ 3n

� {Gc}
≤ 3n

� {binomial(n, 4k/n) < k}
≤ 3ne−cn

1/4

by an exponential tail inequality for binomials (see, e.g., Angluin and Valiant, 1979).

Furthermore,

�
{
N(X, Y,D′n)

�
[Hc∩G]

}
≤ 3n

� {Hc ∩G}
≤ 3n (1− 2 logn/k)k

≤ 3ne−2 log n

=
3

n
.

Finally, note that if Ec ∩G ∩H hold, then X must have a y-coordinate that falls within

2r+ 2 logn/k of either 0 or 1, an event that has probability bounded by 4r+ 4 logn/k <

5 logn/n1/4 for n large enough. Let R be the rectangle centered at X of dimensions 4k/n

times 4 logn/k, intersected with the unit square. Under Ec∩G∩H, the segment (X, Y) is

completely contained in R. Let N ∗ be the number of Xi’s in D′n that have a Delaunay edge

{25}

emanating from it that has a nonempty intersection with R. By conditional independence

(given G) of

�
{
N(X, Y,D′n)

�
[Ec∩H∩G]

}
≤ 5 logn

n1/4
� {3N∗} .

X

4k/n

C

0 1

0

1

C/(
√
n logn)

C log2n/
√
n

(2 log n)/k

Figure 9. iIllustration of the construction of R and

T . All shaded areas together form T . The darkest

shading is reserved for the recatngle R centered at

X.

We are done if we can show that � {N ∗} = O(
√
n/ logn). Let T be the set consisting

of all points of the unit square that are within distance C/
√
n logn from the perimeter

of the unit square, or at distance less than C log2 n/
√
n from R (thus, T includes R)

(see Figure 9). The area of T is not more than 4C/
√
n logn + 4C2 log4 n/n + (8k/n +

8 logn/k)C log2 n/
√
n, which for n large enough is not more than 5C/

√
n log n. For

such large n, the expected number of points of D′n in T is not more than 5C
√
n/ logn.

Let L be the length of the largest Delaunay edge emanating from a point not in T . If

L < C log2 n/
√
n, then any edge visiting R must start from a data point in T . So,

� {N∗} ≤ 5C
√
n

log n
+ n× � {L ≥ C log2 n/

√
n} .

By the last part of Lemma 2 and the definition of T , we bound the last term in the upper

bound by

n× n2e−
(n−2)C2 log n

√
3/16

n

{26}

for all n large enough. The last term is O(1) if we set C = 481/4. Putting everything

together, we have shown that

� {N(X, Y,D′n)} = O(n1/4) .

Using a proof method as in the present paper, it is possible to show that BinSearch

and Walk in 3d with parameter k ≈ n2/9 takes expected time Θ(n2/9) for data points and

a query point i.i.d. and uniformly distributed in the unit cube. The analysis could be

undertaken by combining and adapting the arguments from the present paper and from

Devillers, Pion and Teillaud (2001).

¢ †

Expected complexity of Delaunay point location with balanced 2d trees

The unit square is recursively partitioned by a perfectly balanced 2-d tree (Bentley,

1975), that is, the partitioning alternates directions between x and y, and member sets

in the partition are rectangles. Every node in the 2-d tree receives one data point, about

which the remaining points are split. Leaves correspond to empty rectangles. It is clear,

therefore, that there are n non-leaf nodes, and n+ 1 leaves. For a rectangle that properly

contains a collection of data points, if a vertical split is made, it is made at the x-median

of these points, where the x-median is uniquely defined if the number of points is odd,

and is the leftmost of the two candidate medians when n is even. Horizontal splits are

made about y-medians. A rectangle with one point is thus split about this point, and this

results in two empty leaf rectangles.

When splits alternate between horizontal and vertical, we end up with a rather

balanced 2-d tree. This structure is used in a static manner then for point location in

a Delaunay triangulation for x1, . . . , xn. We assume that the triangles incident to each

vertex are stored by using balanced search trees. Let x be a given query point. First,

we determine in O(log2 n) worst-case time the leaf region for x. Then we let y be the

node at the parent of this leaf. This node’s position in the Delaunay triangulation is of

course known (in O(1) time). Finally, we walk across the segment (y, x) in the Delaunay

triangulation to determine the triangle for x. The extra time needed for this walk is

O(1), plus O(logn) (for the binary search at y among the triangles incident to y), plus

N , the number of Delaunay edges crossed by the walk. Note that Lemma 8 implies that

without the search tree organization of the triangles, we would get an expected complexity

O(log2 n). However, that is not good enough here. In fact, the expected maximal degree

is O(logn), but that takes a much more careful argument not presented in this paper. It

{27}

would allow us to conclude that the next theorem is true even without the search trees at

each vertex.

It suffices thus to study N . To do so, we assume that the dataX1, . . . , Xn are drawn

uniformly at random from the unit square, and that X, the query point, is independent of

the data and also drawn uniformly from the unit square. The point at which the walk is

started is denoted by Y . We will prove that the expected complexity of a random query

is O(logn). The walk from Y to X crosses on the average O(1) Delaunay edges, so that

the expected complexity of the walk from Y to X takes O(1) expected time. However,

this result is rather delicate to prove, and it is much easier to show that the walk takes

O(logn) expected time. It is this proof we will present here. Note also that we do not

claim that the expected time from Y to a given X = x is O(logn) on the average. In fact,

this is not true, due to boundary effects in Delaunay triangulations.

Theorem 4. The expected value of the number of Delaunay edges crossed by (X, Y),

and the expected complexity of point location by the method described above, when

X1, . . . , Xn and X are i.i.d. and uniformly distributed in the unit square is O(logn).

X

VX

HX

Figure 10. The partition of space by

a balanced 2d tree. The dimensions of

the unique (leaf) rectangle to which X

belongs are called HX and VX .

{28}

Proof. Set C = 16, D = 17. Let X and Y be as in the algorithm: X is the query

point, and Y is the data point at which the walk is started. It is also the parent node

of the leaf region for X. Let VX and HX be the vertical and horizontal dimensions of

the leaf rectangle to which X belongs. We will need the following lemma about Vx,

proved in the appendix. As this rectangle has no other data points in its interior, the

only Delaunay edges that can possibly be crossed by the segment (X, Y) are those that

emanate from points outside the leaf rectangle. Let Ni denote the number of points from

among X1, . . . , Xn that fall in the i-th square. There are three situations:

A. miniNi = 0: in this case, we can cross at most 3n− 6 edges.

B. miniNi > 0, X is further than 2VX+2HX+2D
√

log n/n from the rim: in this case,

Y is at least 2D
√

log n/n from the rim as well (since Y is on the perimeter of the

leaf rectangle), so that any Delaunay edge that crosses (X, Y) can be of length at

most r
def
= C

√
logn/n by an argument as in Lemma 10 (see Appendix). Hence, the

Delaunay edges are always between points that are within distance C
√

log n/n of

the leaf rectangle ofX. Consider the rectangle of dimensions (2r+2HX)×(2r+2VX)

centered at X, and let NX be the number of data points in that rectangle, which

incidentally is entirely contained within the original square. Then (X, Y) cuts at

most 3NX Delaunay edges.

C. miniNi > 0, X is closer than 2VX + 2HX + 2D
√

log n/n from the rim. Define RX

as the set of all data points that are within distance 3VX+3HX+3D
√

log n/n from

the rim. Clearly, any Delaunay edge crossing (X, Y) must have both endpoints in

RX by Lemma 10. Let MX be the number of data points in RX . Then (X, Y) cuts

at most 3MX Delaunay edges.

Recapping the above, we see that the expected number of Delaunay edges cut does not

exceed

3n
� {min

i
Ni = 0}+ 3 � {NX}+ 3 � {MX

�
A}

where A is the event that X is closer than 2VX + 2HX + 2D
√

log n/n from the rim. By

Lemma 6, the first term is o(1). For x ∈ � 2, a > 0, let [x−a, x+a] denote the square with

opposite vertices (x− (a, a), x+ (a, a)). Let N(x, j) denote the number of data points in
[
x− 2r − 2

√
(j + 1) logn

n
, x+ 2r + 2

√
(j + 1) logn

n

]
.

Set

γj,n = sup
x

√√√√ �
{
Vx +Hx >

√
j log n

n

}
.

{29}

Observe that

3 sup
x

� {Nx} ≤ 3 sup
x

{ ∞∑

j=0

�
{

� [
Vx+Hx>

√
j log n
n

]N(x, j)

}}

≤ 3
∞∑

j=0

γj,n �
1
2

{
N(x, j)2

}

(by the Cauchy-Schwarz inequality)

≤ 3
∞∑

j=0

γj,n � {1 +N(x, j)}

(because for B binomial (n, p), � {B2} ≤ (1 + � {B})2)

≤ 4
∞∑

j=0

γj,n � {N(x, j)}

(as � {N(x, j)} ≥ r2n ≥ 3 for all n large enough)

≤ 64n
∞∑

j=0

γj,n

(
r +

√
(j + 1) logn

n

)2

= 64 logn
∞∑

j=0

γj,n

(
C +

√
j + 1

)2

≤ 128 logn
∞∑

j=0

γj,n
(
C2 + j + 1

)
.

Before we work this out, we turn to the third term, and argue similarly. Set r = D
√

log n
n

.

Now, let N(j) denote the number of data points within distance 3r + 3
√

(j+1) log n
n

from

the perimeter of the unit square. Let R be the set of all points in the unit square within

distance 2r + 2
√

(j+1) log n
n

from the perimeter. Then,

3 � {MX
�
A}

≤ 3

{ ∞∑

j=0

�
{
N(j)

� [
VX+HX>

√
j log n
n

] �
[X∈R]

}}

≤ 3
∞∑

j=0

� {X ∈ R} sup
x

�
{
N(j)

� [
Vx+Hx>

√
j log n
n

]
}

≤ 3
∞∑

j=0

4

(
2r + 2

√
(j + 1) logn

n

)
γj,n

(
1 + 4n

(
3r + 3

√
(j + 1) logn

n

))

(by the Cauchy-Schwarz inequality)

{30}

= 24
∞∑

j=0


r +

√
(j + 1) logn

n
+ 12n

(
r +

√
(j + 1) logn

n

)2

 γj,n

≤ 24
∞∑

j=0

(
r +

√
(j + 1) logn

n
+ 24nr2 + 24(j + 1) logn

)
γj,n

≤ 24
∞∑

j=0

(
25D2 log n+ 25(j + 1) logn

)
γj,n (as n ≥ 4, D ≥ 1)

≤ 600 logn
∞∑

j=0

(
D2 + j + 1

)
γj,n .

Thus, the three terms taken together are O(logn) provided that
∑∞

j=0 jγj,n = O(1). But

by Lemma 12 (see Appendix),

∞∑

j=0

sup
x
j

√√√√ �
{
Vx >

√
j log n

4n

}
= O(1) ,

and this implies the result .

¢ †

Nearest neighbor data structures

Assume that Y , the place at which the walk is started, is the nearest neighbor of

X among X1, . . . , Xn. We prove the following.

Theorem 5. If X,X1, . . . , Xn are independent and identically (but not necessarily uni-

formly) distributed with any density f on
� 2, then the expected time needed to walk from

Y to X in the Delaunay data structure for X1, . . . , Xn, where Y is the nearest neighbor

of X among X1, . . . , Xn, is O(1).

Proof. If the Delaunay structure would be updated to include X, then (X, Y) would

be a Delaunay edge in this new structure. To update that data structure takes time

proportional to the degree of X after the update. Now, the number of old Delaunay edges

crossed by (Y,X) is not more than this degree, because each crossed edge is necessarily

replaced and thus contributes ”one” to the degree of X. But by planarity, the number of

edges in the new Delaunay triangulation is not more than 3(n + 1) − 6 < 3n, and thus

{31}

the expected degree of X is not more than 6n/(n+ 1) < 6, because the n+ 1 data points

are i.i.d.

In other words, any nearest neighbor data structure would be useful for use in

Delaunay point location. To be considered in the context of this paper, it has to be

simple and efficient.

A particularly simple data structure is the grid. Assume that the data take values

in the unit square, and are hashed to a
√
n×√n grid embedded in [0, 1]2. Then, assuming

that the data are uniformly distributed, the nearest neighbor Y of X can be found in O(1)

expected time by spiral search—first search in the cell of X, then in cells at grid distance

one, and so forth (Bentley et al, 1980).

We may simplify this method, and stop as soon as a cell point is found (without

actually checking that it is the nearest neighbor). Then the distance from that point Y

to X is at most
√

2
(

2√
n

+ ∆
)

, where ∆ is the distance from X to its nearest neighbor.

It turns out that this is good enough, and that the expected time needed to go from Y to

X is still O(1), and that the expected time to find Y is O(1) as well, assuming hashing

in O(1) time. We will not give that simple analysis here.

¢ †

{32}

Conclusion

In a random 2-d tree for points uniformly distributed in the unit square, a nearest

neighbor algorithm was proposed by Chanzy, Devroye and Zamora-Cura (2001), whose

expected time (under the model studied in this paper) was shown to be O(nρ), where

ρ = (
√

17 − 4)/2 = 0.056 By Theorem 5, Delaunay point location can be done in

O(nρ) expected time as well, based on a preliminary nearest neighbor search.

If however we locate a leaf rectangle for X (as we did for balanced 2-d trees), let Y

be the parent for the leaf rectangle, and perform a Delaunay triangulation walk from Y

to X, then the analysis is slightly trickier. The length of the segment (X, Y) is bounded

by VX + HX . Chanzy, Devroye and Zamora-Cura (2001) showed that � {VX} = n1/2+ρ,

so that we obtain an expected complexity for point location of O(nρ), once again. The

details of the proof are omitted.

Other possible structures of varying complexity include the random quadtree (which

behaves as the random 2-d tree and yields similar expected times), the squarish 2-d tree

of Devroye, Jabbour and Zamora-Cura (2000) (for which the expected complexity is un-

known but probably O(log2 n)), and the random 2-d trie (or region quadtree).

The grid structure mentioned in the previous section would work fine for the uni-

form distribution on [0, 1]2, but when the distribution is smeared out over another set, its

performance deteriorates. The methods described in this paper adjust themselves auto-

matically and are to some extent less sensible to rescalings of the axes. Hence the interest

in them.

All results presented here, possibly with other constants, remain true for uniform

distributions in general convex sets in the plane. The boundary effect is minimal for the

uniform distribution on the circle, as there are about n1/3 convex hull points, and thus, the

edges on the convex hull are of length about n−1/3, only slightly longer than most edges

of the Delaunay triangulation (which are about 1/
√
n in length). On the other hand, the

uniform distribution on a convex k-gon with k fixed, has about Θ(k logn) convex hull

points. With high probability, there are some Delaunay edges of length Θ(1). In a sense

then, the boundary effects are worst for the uniform distribution on these polygons, and

the analysis presented here for the square thus shows how to deal with the worst situation.

Finally, nearly all methods presented here walk from a pre-selected point Y to the

query point X by following a straight line. Other walks are possible that may deviate

from the straight line, but their analysis is more cumbersome. An example is provided by

Devillers, Pion and Teillaud (2001).

¢ †{33}

Appendix

Lemma 10. Partition [0, 1]2 into a regular k × k grid of squares. Let Ni denote the

number of points from among X1, . . . , Xn that fall in the i-th square. Define C = 16,

D = 17. If (x, y) is a Delaunay edge, or a segment of a Delaunay edge, and miniNi > 0

with k = b
√
n/4 lognc, then either the length of (x, y) is less than C

√
log n/n, or both x

and y are within distance D
√

logn/n from the border of the unit square.

Proof. Let x and y be two points in the unit square at distance 2r ≥ 2r′ = C
√

log n/n

from each other. Consider the open circle S with x and y at opposite ends, and center

z = (x+ y)/2. Its radius is r. If (x, y) is a (piece of a) Delaunay edge, then clearly one of

the halfcircles S1 or S2 must be empty, where the halfcircles have radius r′, are centered

at z, and have (all of, or part of) (x, y) as supporting segment. Consider the point w in

S1 at distance r′/2 from z such that (w, z) is perpendicular to (x, y). Find the cell in the

k × k grid to which w belongs, if this is possible.

�

�

� ��� ���
	���
��������	���� ������� �

�

����

 "! �

$&%('*),+�-.�/%1032 4 5�6877

9 �:� � 9 	�
.�;��<
�<
�= #

> 2 4 5:6877

Figure 11.

Assume one of x or y is at distance at least D
√

log n/n from the rim. Then z is at distance

at least (D/2)
√

logn/n from the rim. And w is at distance at least ((D−C)/2)
√

log n/n

from the rim. Thus, w is in the square if D > C. We next claim that the entire grid

cell to which w belongs falls in the halfcircle, which shows that both x and y must be

{34}

within distance D
√

logn/n from the rim. Indeed, the maximal distance between z and

any point in the cell of w is at most

r′

2
+

√
2

k
≤ r′

2
+

√
2√

n
4 log n

− 1

≤ r′

2
+

2√
n

4 log n

(if n ≥ 64 logn)

= r′
(

1

2
+

8

C

)
≤ r′

since C = 16.

Lemma 11. Let x be arbitrary, and let Vx be the vertical dimension of the leaf rectangle

for x. Then
� {√nVx ≥ c} ≤ 9 log2(n)e− log2(c/2)/27

log(c/2)

when c ≥ 2e6.

Proof. Let n0 = n, n1, n2, . . . denote the number of points properly falling in the

rectangle to which x belongs as x moves down the 2-d tree, and let k be the first index

for which nk = 0. It is clear that ni/2 − 1 ≤ ni+1 ≤ ni/2. By induction, we have,

n/2i − 2 ≤ ni ≤ n/2i for all k ≥ i ≥ 0. As nk−1 ∈ {1, 2}, we see that n/4 ≤ 2k−1 ≤ n,

and thus, n/2 ≤ 2k ≤ 2n. The sizes are deterministically fixed of course. If we begin

with a vertical cut, then after the first horizontal cut, the vertical size of the rectangle

containing x is not more than max(B1, 1−B1), where B1 is the median of a sample of size

n1. Note that this is 1/2 + |B1− 1/2|. Write B1, B2, . . . for independent random variables

distributed as the medians of samples of sizes n1, n2, and so forth. As the sample in

the rectangle of x remains uniformly distributed conditional on the cut, we see that the

vertical size of the rectangle containing x is not more than

∏

i≥0,2i+1<k

(1/2 + |B2i+1 − 1/2|) ≤ e2
∑
i≥0,2i+1<k |B2i+1−1/2|

2
k−1

2

≤ 2e2
∑
i≥0,2i+1<k |B2i+1−1/2|
√
n

.

Thus, for any x,
√
nVx is bounded by a random variable distributed as

2 exp

{
2

∑

i≥0,2i+1<k

|B2i+1 − 1/2|
}

.

{35}

Let t ≥ 2 be fixed. Then, defining the event

A =
⋃

i≥0,2i+1<k

[
|B2i+1 − 1/2| ≥ t√

n/4i

]
,

we have

� {A} ≤
∑

i≥0,2i+1<k

�
{
|B2i+1 − 1/2| ≥ t√

n/4i

}

≤
∑

i≥0,2i+1<k,2t≤
√
n/4i

3e−2t2(4i/n)(n2i+1/2)

4(t2i/
√
n)
√
n2i+1/4

by Lemma 13 (see below), provided n2i+1/2 ≥ 2. That we may indeed apply Lemma 13

follows from this simple argument: let i be so large that 2i + 1 < k, yet n2i+1 < 4. Then

clearly, we must have k > 2i + 1 ≥ k − 2. Thus, n/4i ≤ n/4(k−3)/2 = 8n/2k ≤ 16 ≤ 4t2.

In the bound above, use n2i+1 ≥ n/22i+1 − 2 ≥ n/22i+1 − (1/2)n2i+1, and thus n2i+1 ≥
(1/3)n/4i for the i in the range of summation. This replacement shows

�
{ ⋃

i≥0,2i+1<k

[
|B2i+1 − 1/2| ≥ t√

n/4i

]}

≤
∑

i≥0,2i+1<k

3
√

12e−t
2/3

4t

≤ 3 log2(n)e−t
2/3

t

because k/2 ≤ log2 n. Bound
√
nVx by

√
n if A holds. On Ac, the complement of A, we

have
√
nVx ≤ 2 exp

{
2

∑

i≥0,2i+1<k

t2i√
n

}
≤ 2 exp

{
2t2k/2√

n

}
≤ 2et

√
8 < 2e3t .

Replace c = 2e3t and add the condition c ≥ 2e6. Thus,

� {√nVx ≥ c} ≤ 9 log2(n)e− log2(c/2)/27

log(c/2)

when c ≥ 2e6.

{36}

Lemma 12. Let x be arbitrary, and let Vx be the vertical dimension of the leaf rectangle

for x. Then
∞∑

j=0

sup
x
j

√√√√ �
{
Vx >

√
j log n

4n

}
= o(1) .

Proof. Apply the bound of Lemma 11. For the j-th term in the summation, replace c

in Lemma 11 by
√
j logn/4. Then note that the series

∞∑

j=1

j

√
9 log2(n)e− log2(

√
j log n/4)/27

log(
√
j log n/4)

≤
∞∑

j=1

j
3
√

log2(n)e− log2(j log n/16)/216

√
log(
√

logn/4)

≤ O(
√

log n)
∞∑

j=1

j

(j logn/16)
log(j log n/16)

216

= o(1)

by noting that for j ≤ e648, the sum is O((logn)−c log n) for some c > 0, and that for the

tail, each term is bounded for n large enough by c
√

log n/(j log n)2.

The following Lemma gives a tail inequality for medians of uniform samples of both

odd and even sizes. The beta (a, b) density, a > 0, b > 0, is the density on [0, 1] given by

f(x) =
xa−1(1− x)b−1

B(a, b)
, 0 < x < 1,

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function. The distribution of the k-th

smallest of n i.i.d. uniform [0, 1] random variables is beta (k, n− k + 1).

Lemma 13. Let B be a beta (n, n) or beta (n, n+ 1) random variable. Then, for u > 0,

n ≥ 2,

� {|B − 1/2| ≥ u} ≤ 3e−2nu2

4u
√
n/2

.

{37}

Proof. The simple tail inequality is derived directly from the form of the density of B.

Let B(., .) denote the beta function. Observe that B(n, n)/B(n, n+ 1) = 2, so that when

B is beta (n, n+ 1), its density is

B−1(n, n+ 1)xn−1(1− x)n ≤ 2B−1(n, n)xn−1(1− x)n−1 , 0 < x < 1 .

That is, at every x, it is at most twice the density of a beta (n, n) random variable. Thus,

assume that B is beta (n, n). Note that

B(n, n)

B(n+ 1, n+ 1)
= 4 +

2

n
≤ 4e

1
2n .

By iterating this, we obtain for n ≥ 3,

B−1(n, n) ≤ 4n−2e
∑n−1
j=2

1
2jB−1(2, 2) ≤ 4n−2e

log(n−1)
2 6 = 6× 4n−2

√
n− 1 .

This inequality is valid for n ≥ 2. Thus, for n ≥ 2,

� {|B − 1/2| ≥ u} = 2

∫ 1

1/2+u

B−1(n, n)(x(1− x))n−1 dx

= 2

∫ 1/2

u

B−1(n, n)

4n−1

(
1− 4y2

)n−1
dy

≤ 3
√
n− 1

∫ 1/2

u

e−4y2(n−1) dy

≤ 3
√
n− 1

∫ ∞

u

y

u
e−4y2(n−1) dy

= 3
√
n− 1

e−4u2(n−1)

8(n− 1)u

=
3e−4u2(n−1)

8u
√
n− 1

.

For n ≥ 2, we have n− 1 ≥ n/2. This concludes the proof of Lemma 13.

¢ †

Acknowledgment

The authors thank both eagle-eyed referees.

¢ †

{38}

References

D. Angluin and L. G. Valiant, “Fast probabilistic algorithms for Hamiltonian cir-

cuits and matchings,” Journal of Computer and System Sciences, vol. 18, pp. 155–

193, 1979.

J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Com-

munications of the ACM, vol. 18, pp. 509–517, 1975.

J. L. Bentley, B. W. Weide, and A. C. Yao, “Optimal expected-time algorithms for clos-

est point problems,” ACM Transactions on Mathematical Software, vol. 6, pp. 563–

580, 1980.

M. Bern, D. Eppstein, and F. F. Yao, “The expected extremes in a Delaunay triangu-

lation,” International Journal of Computational Geometry and its Applications, vol. 1,

pp. 79–91, 1991.

J.-D. Boissonnat and M. Teillaud, “On the randomized construction of the Delau-

nay tree,” Theoretical Computer Science, vol. 112, pp. 339–354, 1993.

J.-D. Boissonnat and M. Yvinec, Géométrie Algorithmique, Ediscience, Paris, 1995.

J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry, Cambridge University Press,

Cambridge, 1998.

H. Borouchaki and P. L. George, Triangulation de Delaunay et maillages, Hermès, 1997.

P. Bose and L. Devroye, “Intersections with random geometric objects,” Computa-

tional Geometry: Theory and Applications, vol. 10, pp. 139–154, 1998.

P. Chanzy, L. Devroye, and C. Zamora-Cura, “Analysis of range search for ran-

dom k-d trees,” Acta Informatica, vol. 37, pp. 355–383, 2001.

B. Chazelle, O. Devillers, F. Hurtado, M. Mora, V. Sacristan, and M. Teillaud, “Split-

ting a Delaunay triangulation in linear time,” Proceedings of the Ninth European Sympo-

sium on Algorithms, vol. 2161, pp. 312–320, Lecture Notes in Computer Science, Springer-

Verlag, 2001.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,

Boston, 1990.

O. Devillers, S. Meiser, and M. Teillaud, “Fully dynamic Delaunay triangulation in log-

arithmic expected time per operation,” Computational Geometry: Theory and Applica-

tions, vol. 2, pp. 55–80, 1992.

{39}

O. Devillers, S. Pion, and M. Teillaud, “Walking in a triangulation,” Proceedings of the

17th Annual Symposium on Computational Geometry, pp. 106–114, 2001.

O. Devillers, “The Delaunay hierarchy,” International Journal of the Foundations of Com-

puter Science, vol. 13, pp. 163–180, 2002.

L. Devroye, E. Mücke, and B. Zhu, “A note on point location in Delaunay triangula-

tions of random points,” Algorithmica, vol. 22, pp. 477–482, 1998.

L. Devroye, C. Lemaire, and J.-M. Moreau, Fast Delaunay point location with search struc-

tures, p. Vancouver, Canada, Eleventh Canadian Conference on Computational Geome-

try, 15-18 August 1999. 1999.

L. Devroye, J. Jabbour, and C. Zamora-Cura, “Squarish k-d trees,” SIAM Jour-

nal on Computing, vol. 30, pp. 1678–1700, 2000.

G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures,

Addison-Wesley, Workingham, England, 1991.

P. Green and R. Sibson, “Computing Dirichlet Tesselations in the plane,” The Com-

puter Journal, vol. 21, pp. 168–173, 1978.

L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions and

the computation of Voronoi diagrams,” ACM Transactions on Graphics, vol. 4, pp. 74–

123, 1985.

L. J. Guibas, D. E. Knuth, and M. Sharir, “Randomized incremental construction of De-

launay and Voronoi diagrams,” Algorithmica, pp. 381–413, 1992.

K. Hinrichs, J. Nievergelt, and P. Schorn, “An all-round sweep algorithm for 2-dimensional

nearest-neighbor problems,” Acta Informatica, vol. 29, pp. 383–394, 1992.

D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Read-

ing, Mass., 1981. 2nd Ed..

C. L. Lawson, “Software for C1 surface interpolation,” in: Mathematical Software III,

(edited by J. Rice), pp. 161–194, Academic Press, New York, 1977.

C. Lemaire, “Triangulation de Delaunay et Arbres Multidimensionnels,” Ph.D. Disserta-

tion, Université Jean Monnet, Saint-Étienne, France, 1997.

E. P. Mücke, I. Saias, and B. Zhu, “Fast randomized point location without prepro-

cessing in two- and three-dimensional Delaunay triangulations,” Computational Geome-

try: Theory and Applications, vol. 12, pp. 63–83, 1999.

{40}

J. Nievergelt and E. M. Reingold, “Binary search trees of bounded balance,” SIAM Jour-

nal on Computing, vol. 2, pp. 33–43, 1973.

A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations, John Wiley, New York, 1992.

M. Okamoto, “Some inequalities relating to the partial sum of binomial probabilities,” An-

nals of Mathematical Statistics, vol. 10, pp. 29–35, 1958.

D. Panchenko, “Some extensions of an inequality of Vapnik and Chervonenkis,” Elec-

tronic Communications in Probability, vol. 7, pp. 55–65, 2002.

E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Prac-

tice, Prentice Hall, Englewood Cliffs, N.J., 1977.

J. M. Robson, “The height of binary search trees,” The Australian Computer Jour-

nal, vol. 11, pp. 151–153, 1979.

R. F. Sproull, “Refinements to nearest-neighbor searching in k-dimensional trees,” Algo-

rithmica, vol. 6, pp. 579–589, 1991.

V. N. Vapnik and A. Ya. Chervonenkis, “On the uniform convergence of relative fre-

quencies of events to their probabilities,” Theory of Probability and its Applica-

tions, vol. 16, pp. 264–280, 1971.

{41}

