
A Lecture on Cartesian Trees
Written by: Kaylee Kutschera, Pavel Kondratyev, Ralph Sarkis
Corrected by: Simran Awadia
Corrected by: Anna Brandenberger, Luc Devroye

December 9, 2021

This is the augmented transcript of a lecture given by Luc Devroye on
the 23rd of February 2017 for a Data Structures and Algorithms class
(COMP 252). The subject was Cartesian trees and quicksort.

Cartesian Trees

Definition 1. A Cartesian tree1 is a binary tree with the following 1 Vuillemin [1980]

properties:

1. The data are points in R2: (x1, y1), . . . , (xn, yn). We will refer to the
xi’s as keys and the yi’s as time stamps.

2. Each node contains a single pair of coordinates.

3. It is a binary search tree with respect to the x-coordinates.

4. All paths from the root down have increasing y-coordinate.

(0,1)

(10,2)

(3,4)

(7,8)

(15,3)

Figure 1: Example of a Cartesian tree
with 5 nodes. No other configuration
for these nodes will satisfy the proper-
ties of the Cartesian tree.

The Cartesian tree was introduced in 1980 by Jean Vuillemin in his
paper ”A Unifying Look at Data Structures.” It is easy to see that if
all xi’s and yi’s are distinct, then the Cartestian tree is unique — its
form is completely determined by the data.

Ordinary Binary Search Tree

An ordinary binary search tree for x1, . . . , xn can be obtained by
using the values 1 to n in the y-coordinate in the order that data was
given: (x1, 1), . . . , (xn, n). Unfortunately, this can result in a very
unbalanced search tree with height = n− 1.

Random Binary Search Tree (RBST)

Let (σ1, . . . , σn) be a random uniform permutation of (1, . . . , n). Then
the data of a RBST is (xσ1 , 1), . . . , (xσn , n) or equivalently (x1, τ1), . . . , (xn, τn),
where (τ1, . . . , τn) is the reverse permutation of (σ1, . . . , σn). This in-
verse permutation will also be random and uniform as there is a
1-to-1 relationship with the original permutation.



a lecture on cartesian trees 2

Treap

Suppose we have data x1, . . . , xn that we want to store. To build a
treap, we generate n independent random numbers T1, . . . , Tn called
random time stamps and pair each xi with a Ti, thus giving data
pairs (xi, Ti). The Ti’s can be considered as uniform [0,1] random
numbers. A treap is a combination of a binary search tree and a heap
where the xi’s are keys to the binary search tree and Ti’s are the keys
of the heap. Although treaps are not fully balanced trees, they have
expected height O(ln(n)) and form a typical Cartesian tree. The treap
was first described in Aragon and Seidel [1989]. Treaps are random
binary search trees, but are easier to maintain as data are added and
deleted.

Operations on Cartesian Trees

Compared to other data structures and especially other search trees
that we have seen in class, a Cartesian tree has a nice structure that
lets us define complex operations in terms of two atomic operations.
We will first see the two fix operations and then look at how they are
used to construct the others.2 2 In definition 1, the fourth property

comes from the heap data structure. We
give two simpler formulations for this
property (henceforth called the heap
property):

• For any node, the parent has a
smaller y coordinate.

• For any node, the children have a
greater y coordinate.

We will use these simpler formulations
because they correspond more to the
operations we will describe.

Atomic operations

Firstly, we informally define what we mean by a fix. The input is a
Cartesian tree in which only one node, v, does not satisfy the heap
property. We fix the Cartesian tree by moving v inside the tree, keep-
ing the invariant that only v does not satisfy the heap property. Dur-
ing this procedure, the node v can only move one way, either up-
wards (fix-up) or downwards (fix-down). Since a Cartesian tree is
finite, the procedure must halt and v must be fixed when this hap-
pens (it is not clear why at the moment but it will be explained in the
following paragraphs).

When we say that we are moving a node in the tree, we cannot
do this in an arbitrary manner. Each change we make in the tree
should keep the invariant mentioned above. We will use a simple
move called a tree rotation3 in order to either push a node above 3 More information on rotations in

Sleator et al. [1988]its parent or below its children. The particularity of the rotation is
that it maintains all the properties of the Cartesian tree. It is easier to
describe this pictorially so we refer to Figure 2.

1

2 3

3

1 2

Figure 2: Example of a tree rotation
that would be done during a fix-
up operation. The black node is the
misplaced and should be above the gray
node.



a lecture on cartesian trees 3

In this diagram representing one iteration of a fix-up operation,
we have drawn two nodes and three subtrees which would be part
of a bigger tree. The tagged node (in black) is misplaced, namely, the
y-coordinate of its parent is bigger, however, all of its descendants are
well-sorted. We will use a rotation to try to fix it without messing the
x-wise order. We put the black node above the gray one by replacing
the left child of the tagged node with its parent. Then, we put sub-
tree 2 as the right child of the gray node. Hence, sub-tree 2 is to the
left of the black node and to the right of the gray node and the previ-
ous ordering is maintained. This is called a right rotation because the
tagged node is the right child of its parent. Nevertheless, by changing
the direction of the arrow and the colors of the node in the diagram
above, we obtain the completely symmetric left rotation.

Secondly, we will describe the fix-up operation in more depth
and argue about the correctness of the operation. As we mentioned
above, the input is a node v that has a parent with a larger y-coordinate.
Moreover, it is the only unsorted node in the sense that if you list all
y-coordinates from the root to a descendant leaf of v, you obtain a list
in increasing order with one unsorted element. Viewing it as a list
of y coordinates, the procedure is very similar to an insertion sort.
We will loop and halt when the y-coordinate of v is greater than that
of its parent or when v is the root of the tree. At each iteration, we
either do a right rotation or a left rotation to make the node v go up.

In terms of a Cartesian tree, the y-coordinate represents the timestamp
of a node. Hence, there are two possibilities for the loop to stop.

1. If timestamp[v] > timestamp[parent[v]]; then v must satisfy
the heap property because timestamp[v] is smaller than all the
timestamps of its descendants (which form a well ordered Carte-
sian tree) and it is greater than all the timestamps of its ancestors4 4 Recall the insertion sort comparison

(well ordered as well)

2. If v is at the root; then this means its timestamp is smaller than
every other node in the tree and hence v also satisfies the heap
property.

We will demonstrate its implementation below, u represents the
node which is out of order and t is the Cartesian tree we are study-
ing.

The following notation will be used: key[u], le f t[u], right[u],
time[u], parent[u].



a lecture on cartesian trees 4

FIX UP(u, t):

1 while u 6= root && time[parent[u]] > time[u]
2 w = parent[u]
3 if w 6= root then
4 z = parent[w]

5 if right[z] == w then right[z] = u else left[z] = u
6 if right[w] == u then
7 right[w] = left[u]
8 left[u] = w
9 parent[u] = parent[w]

10 parent[right[w]] = w
11 parent[w] = u
12 else
13 left[w] = right[u]
14 right[u] = w
15 parent[u] = parent[w]

16 parent[left[w]] = w
17 parent[w] = u

For the fix-down operation, we will use the same rotation as
described above but we want to make the tagged node move down,
as shown in Figure 3.

1

2 3

3

1 2

Figure 3: Example of a tree rotation
that would be done during a fix-down

operation. Note that the only difference
is that the tagged node is the parent at
first and goes down in the tree.

The algorithm for this operation is quite similar but it loops until
v becomes a leaf or until its y-coordinate (time) becomes smaller
than that of its children. Furthermore, there is a slight catch when
choosing to do a left rotation or right rotation. Since we will put
one of the children above the other, we must choose to rotate at the
child with the smallest y-coordinate in order to maintain the heap
property. We show the case illustrated above in the else block of the
following code.



a lecture on cartesian trees 5

FIX DOWN(u, t):

1 while u 6= leaf && time[u] > time[left[u]] OR time[u] > time[right[u]]
2 . We assume that the time of a non-existing node is ∞
3 if time[right[u]] > time[left[u]] then
4 w = left[u]
5 left[u] = right[w]

6 right[w] = u
7 parent[w] = parent[u]
8 parent[left[u]] = u
9 parent[u] = w

10 else
11 w = right[u]
12 right[u] = left[w]

13 left[w] = u
14 parent[w] = parent[u]
15 parent[right[u]] = u
16 parent[u] = w

Other operations

We will briefly describe four operations that follow almost imme-
diately from the two atomic operations. We leave the details of the
pseudocode as an exercise.

1. insert(t,(x, y)): Inputs are a Cartesian tree t and a node (x, y) to
be added to the tree. First, insert the node (x, ∞) just as you would
do it in a binary search tree, implying the node will be a leaf since
the heap property must be satisfied. Second, change the node to
(x, y) and use fix-up to fix the Cartesian tree.

2. delete(t, node): Inputs are a Cartesian tree t and a pointer node
to a node that will be removed. First, change node.y to ∞ and use
fix-down to move the node down the tree. It will end up as a leaf
so the second step is just to remove the node.

3. join(t1, t2): Inputs are two Cartesian trees that need to be joined
into a single tree. It is understood that all keys in t1 are smaller
than all keys in t2. First, create a temporary node (k,−∞) such
that maxX(t1) < k < minX(t2) and let its left child be the root
of t1 while its right child is the root of t2. Second, delete the node
and the tree will fix itself up.

4. split(t,k): Inputs are a Cartesian tree t and a value k that will split
the tree into two trees that have x coordinates smaller than k and



a lecture on cartesian trees 6

bigger than k, respectively. First, insert a temporary node (k,−∞)

(it will end up as a root) and after the procedure, the left subtree
and right subtree of the node are the trees we are looking for.

Treaps and Abacus

Another way to look at a Cartesian Tree is such that all the nodes
are attached to rods of an abacus. Following from left to right we
have the in-order numbering as shown below by the vertical dotted
lines and top to bottom we follow a min heap structure, represented
by the number inside each node. It is important to realize that we
can learn about the structure of the tree even without connecting the
nodes. Consider the node k, by noticing the time stamp of the node
following and preceding it in the in-order numbering, we can predict
that k would be a leaf. This is because both its neighbours m and n
have a timestamp lower than k and thus are both ancestors of k.

2

10

m

4

20

n

6

30

8

60

1

12

3

24

k

5

35

7

100

Figure 4: Treaps and Abacus

Probability review

To provide a probabilistic analysis of treaps, we have to provide
some background on probability.5 We define a sample space (usually 5 Geoffrey R. Grimmett [2001]



a lecture on cartesian trees 7

denoted as Ω) as a set of elementary events, or possible outcomes
of an experiment. We also denote S as the set of all events on Ω,
namely all subsets of Ω.

Example 2. If a coin is flipped: Ω = {H, T}, S = {{H}, {T}, {H, T}, ∅}

Definition 3. A probability (P) is a mapping from a sample space to
R satisfying the following properties:

1 ∀A ∈ S , P(A) ≥ 0

2 P(Ω) = 1

3 If Ai ∈ S ; i ∈N; and ∀i 6= j, Ai ∩ Aj = ∅ then P (∪i Ai) = ∑i P(Ai)

Example 4. Given the coin flip example from above, P({H}) = 1/2,
P({H, T}) = 1, P(∅) = 0.

Definition 5. A random variable is a function that associates each
outcome in the sample space with a real number.

Example 6. If we want to model an experiment with two outcomes
we can express this as P(X = 1) = p and P(X = 0) = 1− p. In
other words the probability of the first event happening is p, and the
probability of the second event is 1− p. This particular example is
often referred to as the Bernoulli random variable.

Lastly, we need to develop the idea of an expected value.

Definition 7. The expectation (we can think of this as the "mean" or
"average") of a random variable X is defined to be

E[X] =
∞

∑
n=1

xnP(X = xn).

Example 8. If X is the Bernoulli random variable(as above) (p ∈
(0, 1)), X ∈ {0, 1} then

E[X] = 0(1− p) + 1 · p = p.

Expected value analysis for treaps

In a treap, data is represented as (x1, T1), . . . , (xn, Tn), where the Ti

are random time stamps. Equivalently, and for simplicity, let the data
be (1, T1), . . . , (n, Tn) where 1, . . . , n will be refereed to as the rank of
the node/pair.

Define Dk to be the depth of the node with rank k, namely (k, Tk).
Since the depth of a node is equivalent to the number of ancestors it
has, let

Dk = ∑
j 6=k

Xjk where Xjk =

1, if j ancestor of k

0, otherwise



a lecture on cartesian trees 8

So next we wish to calculate the expected value for Dk. We will denote Hk to be the harmonic
number, ∑k

n=1
1
n = 1 + 1

2 + · · · + 1
k .

It can be approximated by ln(k) but
more importantly, it can be bounded as
follows Hk ∈ [ln(k + 1), ln(k) + 1].

E[Dk] = ∑
j 6=k

P((j, Tj) is an ancestor of (k, Tk))

= ∑
j 6=k

P(Tj is the smallest of Tj, Tj+1, · · · , Tk)

= ∑
j<k

1
k− j + 1

+ ∑
j>k

1
j− k + 1

=

(
1
2
+ · · ·+ 1

k

)
+

(
1
2
+ · · ·+ 1

n− k + 1

)
=(Hk − 1) + (Hn−k+1 − 1)

≤2 ln(n)

'1.39 log2(n).

If we set Tk = ∞, then

E[Dk] = Hk−1 + Hn−k.

Figure 5: Representation of a treap with
the expected height difference when
inserting a new node.

So next we wish to see how many fix steps are expected when
inserting (k, Tk. Using the two results above, we find that it is equal
to

(Hk−1 + Hn−k)− (Hk + Hn−k+1 − 2) ≤ 2

Using Figure 4 and the above argument, we can see that it is expected
to take at most two steps to fix the Cartesian tree.

We have shown that search, insert, and delete take O(log(n)) ex-
pected number of steps, making the treap a viable data structure for
the abstract data type "dictionary".

Quicksort

Given a set of numbers, Quicksort6 picks a pivot at random from 6 This algorithm was first introduced by
Tony Hoare [1962] and a full analysis
of the algorithm was done by Robert
Sedgewick [1977] for his Ph.D. thesis.

the set, partitions the remaining numbers into elements smaller than
the pivot and elements bigger than the pivot and recurses into the
two new sets. There are many different algorithms to partition the
elements of the set but it must be done in O(n) time for a set of n
elements. A simple pseudocode follows.

One can see that the Quicksort procedure is equivalent to building
a random binary search tree. In fact, the number of comparisons
needed to build a random binary search tree is the same needed to
Quicksort.



a lecture on cartesian trees 9

Algorithm 1: QuickSort(list, low, high)

QUICKSORT(list, low, high):

1 . sort list between indices low and high
2 if low < high then
3 j = random index in the range [low, high]
4 x = key[j]
5 Determine all indices i in [low, high] with key[i] ≤ x.
6 Let their number be N.
7 Rearrange the items in list from [low, high] so that the N elements
8 are before the other ones.
9 QuickSort(list, low, low + N − 1)

10 QuickSort(list, low + N, high)

Comparison Complexity

Let Cn = # of comparisons = ∑n
i=1 Di.

E[Cn] =
n

∑
i=1

E[Di] =
n

∑
i=1

(Hi + Hn−i+1 − 2) = 2
n

∑
i=1

(Hi − 1)

=2
n

∑
i=1

Hi − 2n = 2
n

∑
i=1

i

∑
j=1

1
j
− 2n = 2

n

∑
j=1

1
j

n

∑
i=j

1− 2n

=2
n

∑
j=1

1
j
(n− j + 1)− 2n

=2(n + 1)Hn − 4n

∼2n ln(n)

=1.386294 . . . n log2(n).

It is noteworthy that this is about 39% worse than if we had used
mergesort, or indeed, the best possible comparison based sorting
method.

Improvements

One can improve Quicksort, by picking three random numbers and
taking the median of the three as the pivot. The resulting number of
comparisons would be approximately 12

7 n ln(n). If we take five rather
than three random numbers, the number of comparisons would be
approximately 60

37 n ln(n).

Exercise 9. Show that the expected number of fix-down rotations
needed for the operation join on two treaps of size m and n, respec-
tively, is Hn + Hm.



a lecture on cartesian trees 10

References

C. R. Aragon and R. G. Seidel. Randomized search trees. 30th Annual
Symposium on Foundations of Computer Science, pages 540–545, Oct
1989. doi: 10.1109/SFCS.1989.63531. URL http://faculty.

washington.edu/aragon/pubs/rst89.pdf.

David R. Stirzaker Geoffrey R. Grimmett. Probability and Random
Processes. Oxford University Press, 3rd edition, 2001. ISBN
9780198572237.

C. A. R. Hoare. Quicksort. The Computer Journal, 5:10–16, Jan 1962.
doi: 10.1093/comjnl/5.1.10. URL https://doi.org/10.1093/

comjnl/5.1.10.

Robert Sedgewick. The analysis of quicksort programs. Acta Informat-
ica, 7(4):327–355, 1977. ISSN 1432-0525. doi: 10.1007/BF00289467.

Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation
distance, triangulations, and hyperbolic geometry. Journal of the
American Mathematical Society, 1(3):647–681, 1988. ISSN 08940347,
10886834. URL http://www.jstor.org/stable/1990951.

Jean Vuillemin. A unifying look at data structures. Com-
munications of the ACM, 23:229–239, Apr 1980. doi:
10.1145/358841.358852. URL https://pdfs.semanticscholar.

org/1742/195ba5043ec45345d6a9c9ee65145d345ecd.pdf.

http://faculty.washington.edu/aragon/pubs/rst89.pdf
http://faculty.washington.edu/aragon/pubs/rst89.pdf
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
http://www.jstor.org/stable/1990951
https://pdfs.semanticscholar.org/1742/195ba5043ec45345d6a9c9ee65145d345ecd.pdf
https://pdfs.semanticscholar.org/1742/195ba5043ec45345d6a9c9ee65145d345ecd.pdf

	Cartesian Trees
	Operations on Cartesian Trees
	Probability review
	Expected value analysis for treaps
	Quicksort

