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We study the conditions for families of fringe or non-fringe subtrees to
exist with high probability (whp) in T gw

n

, a Galton-Walton tree of size n.
We first give a Poisson approximation of fringe subtree counts in T gw

n

, which
permits us to determine the height of the maximal complete r-ary fringe
subtree. Then we determine the maximal K

n

such that every tree of size
at most K

n

appears as fringe subtree in T gw

n

whp. Finally, we show that
non-fringe subtree counts are concentrated and determine, as an application,
the height of the maximal complete r-ary non-fringe subtree in T gw

n

.

1 Introduction

In this paper, we study the conditions for families of fringe or non-fringe subtrees to
exist whp (with high probability) in a Galton-Walton tree conditional to be of size n.
In particular, we want to find the height of the maximal complete r-ary fringe and non-
fringe subtrees. We also want to determine the threshold k

n

such that all trees of size at
most k

n

appear as fringe subtrees. In doing so, we extend Janson’s [20] result on fringe
subtrees counts and prove a new concentration theorem for non-fringe subtree counts.
Let T be the set of all rooted, ordered, and unlabeled trees, which we refer to as

plane trees. All trees considered in this paper belong to T. (See Janson [19, sec. 2.1] for
details.)
Given a tree T P T and a node v P T , let T

v

denote the subtree rooted at v. We call
T
v

a fringe subtree of T . If T
v

is isomorphic to some tree T 1 P T, then we write T 1 “ T
v
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1 Introduction

and say that T has a fringe subtree of shape T 1 rooted at v, or simply T contains T 1 as
a fringe subtree.
On the other hand, if T

v

can be made isomorphic to T 1 by replacing some or none of
its own fringe subtrees with leaves (nodes without children), then we write T 1 † T

v

and
say that T has a non-fringe subtree of shape T 1 rooted at v, or simply T contains T 1 as a
non-fringe subtree. (Note that T 1 “ T

v

implies that T 1 † T
v

.) We also use the notation
T 1 † T to denote that T has a non-fringe subtree of shape T 1 at its root.
Let ⇠ be a non-negative integer-valued random variable. The Galton-Watson tree

T gw with o↵spring distribution ⇠ is the random tree generated by starting from the root
and independently giving each node a random number of children, where the numbers
of children are all distributed as ⇠. The conditional Galton-Watson tree T gw

n

is T gw

restricted to the event |T gw| “ n, i.e., T gw has n nodes. The comprehensive survey by
Janson [19] describes the history and the basic properties of these trees.
In the study of conditional Galton-Watson trees, the following is usually assumed

throughout the paper:

Condition A. Let T gw

n

be a conditional Galton-Watson tree of size n with o↵spring dis-
tribution ⇠, such that E⇠ “ 1 and 0 † �2 :“ Var p⇠q † 8. Let T gw be the corresponding
unconditional Galton-Watson tree.

We summarize notations:
¨ T — the set of all rooted, ordered and unlabeled trees (plane trees)
¨ T — a tree in T
¨ T

v

— a fringe subtree of T rooted at node v P T
¨ ⇠ — a non-negative integer-valued random variable with E⇠ “ 1 and 0 † �2 :“
Var p⇠q † 8

¨ p
i

— P t⇠ “ iu
¨ h — the span of ⇠, i.e., gcdti • 1 : p

i

° 0u
¨ T gw — an unconditional Galton-Watson tree with o↵spring distribution ⇠
¨ T gw

n

— T gw given that |T gw| “ n
¨ T gw

n,v

— a fringe subtree of T gw

n

rooted at node v P T gw

n

¨ T gw

n,˚ — a fringe subtree of T gw

n

rooted at a uniform random node of T gw

n

¨ pT
n

q
n•1 — a sequence of trees

¨ T
n

— the set of all trees of size n
¨ S — a set of trees
¨ T`

§n

— the set tT P T : |T | § n,P tT gw “ T u ° 0u
¨ pA

n

q
n•1 — a sequence of sets of trees

¨ NSpT gw

n

q — the number of fringe subtrees of T gw

n

that belong to S
¨ ⇡pSq — P tT gw P Su
¨ Nnf

T

pT gw

n

q — the number of non-fringe subtrees of T gw

n

of shape T
¨ ⇡nf pT q — P tT † T gwu, the probability that T gw has a non-fringe subtree T at its root

Remark. If p1 “ 0, then there exist positive integers n such that P t|T gw| “ nu “ 0.
For such n, T gw

n

is not well-defined. But it is easy to show that P t|T gw| “ nu ° 0 for
all n • n0 with n ´ 1 ” 0 pmod hq, where h is span of ⇠ and n0 depends only on ⇠ (see
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1 Introduction

[19, cor. 15.6]). Therefore, in this paper, for all asymptotic results about T gw and T gw

n

,
the limits are always taken along the subsequence with n ´ 1 ” 0 pmod hq.
Extending a result by Aldous [1], Janson [19, thm. 7.12] proved the following theorem:

Theorem 1. Assume Condition A. The conditional distribution LpT gw

n,˚ |T gw

n

q converges

in probability to LpT gwq. In other words, for all T P T, as n Ñ 8,

N
T

pT gw

n

q
n

“ P
 
T gw

n,˚ “ T |T gw

n

(
pÑ P tT gw “ T u . (1)

Later Janson strengthened the above result, proving the asymptotic normality of
N

T

pT gw

n

q by studying additive functionals on T gw

n

[20].
A natural generalization of N

T

pT gw

n

q is to consider fringe subtree counts N
TnpT gw

n

q
where T

n

P T is a sequence of trees instead of a fixed tree T . Let Pop�q denote a Poisson
random variable with mean �. We have:

Theorem 2. Assume Condition A. Let ⇡pT q :“ P tT gw “ T u and let k
n

Ñ 8, k
n

“
opnq. Then

sup
T :|T |“kn

dTV

pN
T

pT gw

n

q,Popn⇡pT qqq “ O
`
pkn
max

k3{2
n

˘ “ op1q, (2)

where p
max

:“ max
i•0 pi and dTV

p ¨ , ¨ q denotes the total variation distance. Therefore,

letting T
n

be a sequence of trees with |T
n

| “ k
n

, we have as n Ñ 8:

(i) If n⇡pT
n

q Ñ 0, then N
TnpT gw

n

q “ 0 whp.

(ii) If n⇡pT
n

q Ñ µ P p0,8q, then N
TnpT gw

n

q dÑ Popµq.
(iii) If n⇡pT

n

q Ñ 8, then

N
TnpT gw

n

q ´ n⇡pT
n

qa
n⇡pT

n

q
dÑNp0, 1q,

where Np0, 1q denotes the standard normal distribution, and

dÑ denotes conver-

gence in distribution.

Theorem 2 can be partially generalized as follows:

Theorem 3. Assume Condition A. Let T
kn be the set of all trees of size k

n

, where

k
n

Ñ 8 and k
n

“ opnq. For S Ñ T
kn, let ⇡pSq :“ P tT gw P Su and NSpT gw

n

q :“∞
vPT gw

n
JT gw

n,v

P SK. Therefore, letting pA
n

q
n•1 be a sequence of sets of trees with A

n

Ñ
T

kn, we have:

(i) If n⇡pA
n

q Ñ 0, then NAnpT gw

n

q “ 0 whp.

(ii) If n⇡pA
n

q Ñ µ P p0,8q, then NAnpT gw

n

q dÑ Popµq.
(iii) If n⇡pA

n

q Ñ 8, then

NAnpT gw

n

q ´ n⇡pA
n

qa
n⇡pA

n

q
dÑNp0, 1q.

(iv) If ⇡pA
n

q{⇡pT
knq Ñ 0, then

lim
nÑ8

dTV

pNAnpT gw

n

q,Popn⇡pA
n

qqq “ 0.
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Remark. NSpT gw

n

q can also be interpreted as the number of fringe subtrees with certain
properties. For example, NTk

pT gw

n

q is the number of fringe subtrees of size k. The above
theorem together with Lemma 3 shows that, as long as k

n

“ opn3{2q then we have a
central limit theorem for NTkn

pT gw

n

q.
The proof of Theorem 2 is given in Section 3. It uses many ingredients from previous

results on fringe subtrees, especially from Janson [20]. (In particular, Lemma 6.2 of [20]
makes the computation of the variance of NTk

pT gw

n

q quite easy, which is crucial for the
proof.)
However, this approach cannot be adapted to prove the convergence of total variation

distance for NAnpT gw

n

q in (iv) of Theorem 3 without assuming that ⇡pA
n

q{⇡pT
knq Ñ 0.

In particular, it does not work for NTkn
pT gw

n

q, i.e., the number of fringe subtrees of size
k
n

. Therefore, to show (i)–(iii) of Theorem 3, we instead compute the factorial moments
of NAnpT gw

n

q. We sketch the proof of the theorem at the end of Section 3.
Binary search trees and recursive trees are also well-studied random tree models (see

Drmota [8]). Many authors have found results similar to Theorem 2 for these two types
of trees, see, e.g., [11, 15, 5, 6, 14]. For recent developments, see Holmgren and Janson
[18].
We say that a tree T is possible if P tT gw “ T u ° 0. As an application of Theorems 2

and 3, we ask the following question — when does T gw

n

contain all possible trees within a
family of trees (possibly depending on n). As shown in Subsection 4.1, this is essentially
a variation of the coupon collector problem.
In Subsection 4.2 we answer the above question for the set of complete r-ary trees. Let

H
n,r

be the maximal integer such that T gw

n

contains all complete r-ary trees of height
at most H

n,r

as fringe subtrees. Lemma 16 shows that H
n,r

´ log
r

log n converges in
probability to an explicit constant.
Let T`

§k

be the set of all possible trees of size at most k. Let K
n

“ maxtk : T`
§k

Ñ
Y

vPT gw
n

T gw

n,v

u, i.e., K
n

is the maximal k such that every tree in T`
§k

appears in T gw

n

as
fringe subtrees. In Subsection 4.3, we show that, roughly speaking, if the tail of the
o↵spring distribution does not drop o↵ too quickly, K

n

{ log n converges in probability
to a positive constant. Otherwise, we have K

n

{ log n pÑ 0. For example, for a random
Cayley tree, we have K

n

log logpnq{ logpnq pÑ 1. For many well-known Galton-Watson
trees, we also give the second order asymptotic term of K

n

.
Non-fringe subtrees are more complicated to analyze. However since on average fringe

subtrees in T gw

n

behave like unconditional Galton-Watson trees when n is large, the
number of non-fringe subtrees of shape T should be more or less nP tT † T gwu. The
following theorem is a precise version of this intuition.

Theorem 4. Assume Condition A. Let ⇡nf pT q :“ P tT † T gwu. Let Nnf

T

pT gw

n

q :“∞
vPT gw

n
JT † T gw

n,v

K. Let T
n

be a sequence of trees with |T
n

| “ k
n

where k
n

Ñ 8 and

k
n

“ opnq. We have

(i) If n⇡nf pT
n

q Ñ 0, then Nnf

Tn
pT gw

n

q pÑ 0.

(ii) If n⇡nf pT
n

q Ñ 8, then Nnf

Tn
pT gw

n

q{pn⇡nf pT
n

qq pÑ 1.
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2 Notations and Preliminaries

Chyzak et al. [4] studied non-fringe subtrees for various random trees, including simply

generated trees. They proved that if for all n we have T
n

“ T where T is fixed, then
Nnf

Tn
pT gw

n

q has a central limit theorem. However, Theorem 4 cannot be simply derived
from their result as our T

n

depends upon n.

Remark. It is tempting to try to prove that if n⇡nf pT
n

q Ñ µ P p0,8q, then we have

Nnf

Tn
pT gw

n

q dÑ Popµq, which is true for fringe subtrees. Unfortunately, this is not true in
general for non-fringe subtrees. See Lemma 26 in Section 5.2.

In Section 5, we give a proof of Theorem 4 and apply it to study the maximal complete
r-ary non-fringe subtree in T gw

n

. The paper ends with some open questions in Section 6.

2 Notations and Preliminaries

2.1 Conditional Galton-Watson trees

The preorder of nodes in a tree T is the order in which they are visited through the
following Depth-First-Search procedure:

1. Let Q be an empty stack.
2. Put the root of T at the top of Q.
3. Remove a node v at the top of Q.
4. Add the children of v at the top of Q in order of appearance.
5. If Q is empty, terminate. Otherwise go to step 3.

Let v1, . . . , vk be the nodes of T in preorder. Let d
i

be the degree (the number of children)
of v

i

. We call pd1, d2, . . . , dkq the preorder degree sequence of T . Let N :“ t1, 2, . . .u and
let N0 :“ t0u Y N. It is well-known that (see Janson [19, lem. 15.2]):

Lemma 1. A sequence pd1, d2, . . . , dkq P Nk

0 is the preorder degree sequence of some tree

if and only if it satisfies#∞
j

i“1 di • j, p1 § j § k ´ 1q
∞

k

i“1 di “ k ´ 1.
(3)

Figure 1 gives a demonstration of Lemma 1.
Let D

k

Ñ Nk

0 be the set of all preorder degree sequences of length k. Observe:

Corollary 1. If pd1, d2, . . . , dkq P D
k

, then it is impossible that there exists 1 § k1 † k
such that pd1, d2, . . . , dk1q P D

k

1
.

Let ⇠n :“ p⇠n1 , . . . , ⇠nn q be the preorder degree sequence of T gw

n

. Let r⇠n :“ pr⇠n1 , . . . , r⇠n
n

q
be a uniform random cyclic rotation of ⇠n. Let ⇠1, ⇠2, . . . be i.i.d. copies of ⇠. Let
S
n

:“ ∞
n

i“1 ⇠i. The next lemma is a well-known connection between r⇠n and ⇠1, . . . , ⇠n
(see, e.g., Otter [23], Kolchin [21], Dwass [9] and Pitman [24]). For a complete proof,
see Janson [19, cor. 15.4].
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2.1 Conditional Galton-Watson trees

The degree sequence

pd1, . . . , d7q “ p2, 1, 0, 3, 0, 0, 0q

∞
j

i“1 di ´ j for j “ 1, . . . , 7

1 2 3 4 5 6 7

-1

0

1

2

3

Figure 1: Example of preorder tree degree sequence.

Lemma 2. Assume that P t|T gw| “ nu ° 0. We have

pr⇠n1 , . . . , r⇠n
n

q L“ p⇠1, . . . , ⇠n | S
n

“ n ´ 1q ,
where

L“ denotes “identically distributed” and the right-hand-side denotes p⇠1, . . . , ⇠nq
restricted to the event that S

n

“ n ´ 1.

Let p
i

:“ P t⇠ “ iu. Let h be the span of ⇠, i.e., h :“ gcdti • 1 : p
i

° 0u. We recall
the following result (see Janson [20, (4.3)] or Kolchin [21]):

Lemma 3. Assume Condition A. We have

P t|T gw| “ nu „ h?
2⇡�2

n´3{2,

as n Ñ 8 with n ´ 1 ” 0 pmod hq.
The following lemma is a special case of [20, lem. 5.1]. We nonetheless give a short

proof for later reference in the paper.

Lemma 4. Assume P t|T gw| “ nu ° 0. Let T P T
k

with 1 § k § n.
(i) Let N

T

pT gw

n

q :“ ∞
vPT gw

n
JT gw

n,v

“ T K. Then
E rN

T

pT gw

n

qs
n

“ ⇡pT qP tS
n´k

“ n ´ ku
P tS

n

“ n ´ 1u .

(ii) Let NTk
pT gw

n

q “ ∞
vPT gw

n
J|T gw

n,v

| “ kK. Then
E rNTk

pT gw

n

qs
n

“ ⇡pT
k

qP tS
n´k

“ n ´ ku
P tS

n

“ n ´ 1u .

Proof. Let pd1, . . . , dkq be the preorder degree sequence of T . Recall that p⇠n1 , . . . , ⇠nn q is
the preorder degree sequence of T gw

n

. Let

I
i

“ J⇠n
i

“ d1, ⇠
n

i`1 “ d2, . . . , ⇠
n

i`k´1 “ d
k

K,
where the indices are taken modulo n.
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2.2 Poisson Approximation

Note that if n ´ k ` 1 † i § n, then it is impossible that I
i

“ 1, because the length
of the preorder degree sequence of the fringe subtree T gw

n,vi
must be strictly less than

k. Therefore, if I
i

° 1 and n ´ k ` 1 † i § n, then there exists a k1 † k such that
pd1, d2, . . . , d1

k

q is also a preorder degree sequence, which is impossible by Corollary 1.
Therefore for all 1 § i § n, I

i

“ JT
vi “ T K and N

T

pT gw

n

q “ ∞
n

i“1 Ii. Recalling that

pr⇠n1 , . . . , r⇠n
n

q is a uniform random rotation of p⇠n1 , . . . , ⇠nn q and using Lemma 2, we have

E rN
T

pT gw

n

qs “ E

«
nÿ

i“1

I
i

�
“

nÿ

i“1

P
 
⇠n
i

“ d1, ⇠
n

i`1 “ d2, . . . , ⇠
n

i`k´1 “ d
k

(

“
nÿ

i“1

P t⇠
i

“ d1, ⇠i`1 “ d2, . . . , ⇠i`k´1 “ d
k

| S
n

“ n ´ 1u

“ nP t⇠1 “ d1, ⇠2 “ d2, . . . , ⇠k “ d
k

| S
n

“ n ´ 1u
“ n

P tr⇠1 “ d1, ⇠2 “ d2, . . . , ⇠k “ d
k

s X rS
n

“ n ´ 1su
P tS

n

“ n ´ 1u .

Since pd1, . . . dkq is a preorder degree sequence,
∞

k

i“1 di “ k ´ 1 by Lemma 1. Therefore,
using the fact that ⇠1, . . . , ⇠n are independent, the last expression equals

n
P tr⇠1 “ d1, . . . , ⇠k “ d

k

s X rS
n´k

“ n ´ ksu
P tS

n

“ n ´ 1u “ nP tT gw “ T u P tS
n´k

“ n ´ ku
P tS

n

“ n ´ 1u .

Thus part (i) is proved. Part (ii) follows by summing the equality in (i) over all T P
T

k

.

The following approximations are useful for estimating the expectation and the vari-
ance of the number of fringe subtrees.

Lemma 5 (Lemma 5.2 and 6.2 of Janson [20]). Assume Condition A and that ⇠ has

span 1. We have:

(i) Uniformly for all k with 1 § k § n{2,
P tS

n´k

“ n ´ ku
P tS

n

“ n ´ 1u “ 1 ` O

ˆ
k

n

˙
` o

`
n´1{2˘ .

(ii) Uniformly for all k with 1 § k § n{4,
P tS

n´2k “ n ´ 2k ` 1u
P tS

n

“ n ´ 1u ´
ˆ

P tS
n´k

“ n ´ ku
P tS

n

“ n ´ 1u
˙2

“ ´ 1

�2n
` o

ˆ
1

n

˙
` O

ˆ
k

n3{2 ` k2

n2

˙
.

Remark. As shown in the proof of Lemma 4, N
T

pT gw

n

q is equivalent to the number of
patterns d1, . . . , d|T | in the cycle r⇠n1 , . . . , r⇠n

n

. Thus if h (the span of ⇠) is greater than one,

we can divide d1, . . . , d|T | and r⇠n1 , . . . , r⇠n
n

by h without changing the value of N
T

pT gw

n

q.
Therefore, when studying subtree counts, we can always assume that h “ 1.

2.2 Poisson Approximation

Let Bipn, pq denote binomial pn, pq distribution. It is well known that if X
n

L“ Bipn,�{nq,
then X

n

converges in distribution to Pop�q. This follows from the following stronger
result (see [3, pp. 8] for a proof):
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2.2 Poisson Approximation

Lemma 6. If X
L“ Bipn, pq, then

dTV

pX,PopEXqq § p.

The following Lemma is a special case of Roos [25, thm. 1], which applies to mixed
Poisson distributions. Barbour et al. proved a similar result using Stein’s method [3,
thm. 1.C]. We include our proof for its simplicity.

Lemma 7. If X
L“ Popµq and Y

L“ Pop⌫q, then
dTV

pX, Y q § ˇ̌?
µ ´ ?

⌫
ˇ̌ “ |µ ´ ⌫|?

µ ` ?
⌫
.

Proof. Let x
i

“ P tX “ iu and y
i

“ P tY “ iu. We have

dTV

pX, Y q “ 1

2

8ÿ

i“1

|x
i

´ y
i

| “ 1

2

8ÿ

i“1

|?x
i

´ ?
y
i

|p?
x
i

` ?
y
i

q

§ 1

2

˜ 8ÿ

i“1

|?x
i

´ ?
y
i

|2
8ÿ

j“1

p?
x
j

` ?
y
j

q2
¸1{2

“ 1

2

˜˜
2 ´

8ÿ

i“1

2
?
x
i

y
i

¸ ˜
2 `

8ÿ

j“1

2
?
x
j

y
j

¸¸1{2

“
¨

˝1 ´
˜ 8ÿ

i“1

?
x
i

y
i

¸2
˛

‚
1{2

,

where the second step uses the Cauchy-Schwartz inequality. An easy calculation shows
that

8ÿ

i“1

?
x
i

y
i

“
8ÿ

i“1

e´µ`⌫
2

pµ⌫qi{2
i!

“ exp
´?

µ⌫ ´ µ ` ⌫

2

¯
“ exp

ˆ
´p?

µ ´ ?
⌫q2

2

˙
.

Thus we have

dTV

pX, Y q §
b
1 ´ exp

`´p?
µ ´ ?

⌫q2˘

§
b

p?
µ ´ ?

⌫q2 pby 1 ´ e´x § xq
“ ˇ̌?

µ ´ ?
⌫

ˇ̌
.

Combining the two, we have:

Lemma 8. Let X and M be non-negative integer-valued random variables. If condi-

tioned on the event M “ m, X is binomial pm, pq, then

dTV

pX,PopEXqq § p `
c
p
Var pMq

EM
.

8



3 Sequences of fringe subtrees

Proof. Let Z
L“ PopEXq. We have

dTV

pX,Zq
“ 1

2

ÿ

i•0

|P tX “ iu ´ P tZ “ iu|

§ 1

2

ÿ

i•0

ÿ

m•0

P tM “ mu |P tX “ i | M “ mu ´ P tZ “ iu|

“
ÿ

m•0

P tM “ mu dTV

pBipm, pq, Zq

§
ÿ

m•0

P tM “ mu dTV

pBipm, pq,Popmpqq `
ÿ

m•0

P tM “ mu dTV

pPopmpq,PopEXqq .

By Lemma 6, the first sum is at most p. Using Lemma 7 and the fact that EX “ pEM ,
the second sum is at most

ÿ

m•0

P tM “ mu |EX ´ mp|?
EX

“ ?
p

ÿ

m•0

P tM “ mu |EM ´ m|?
EM

“ ?
p

E r|EM ´ M |s?
EM

§ ?
p

c
Var pMq

EM
.

3 Sequences of fringe subtrees

In this section we prove Theorem 2 and sketch the proof of Theorem 3. Recall that
⇡pT q :“ P tT gw “ T u, and N

T

pnq :“ J
∞

vPT gw
n

T gw

n,v

“ T K. Let k “ k
n

. Theorem 2 states
that

sup
TPTk

dTV

pN
T

pT gw

n

q,Popn⇡pT qqq “ op1q,
whenever k “ opnq and k Ñ 8. If ⇡pT q “ 0, then dTV

pN
T

pT gw

n

q,Popn⇡pT qqq “ 0
deterministically. Thus we can assume that P tT gw P T

k

u “ P t|T gw| “ ku ° 0 for all
n, and that the above supremum is taken over all T P T

k

with ⇡pT q ° 0.
Recall that NTk

pT gw

n

q :“ J
∞

vPT gw
n

T
v

P T
k

K, i.e., NTk
pT gw

n

q is the number of fringe
subtrees of size k in T gw

n

. Also recall that ⇡pSq :“ P tT gw P Su. We first compute the
expectation and variance of NTk

pT gw

n

q. Then Lemma 8 can be applied to NTk
pT gw

n

q and
NSpT gw

n

q for S Ñ T
k

to show the following lemma, from which Theorem 2 follows easily:

Lemma 9. Assume that k “ k
n

“ opnq and k Ñ 8. We have as n Ñ 8,

sup
SÑTk

dTV

pNSpT gw

n

q,Popn⇡pSqqq
⇡pSq{⇡pT

k

q ` a
⇡pSq{⇡pT

k

q § 1 ` opk´3{2q ` O

ˆ
k1{4
?
n

˙
.

Lemma 10. Let k “ k
n

“ opnq. We have

sup
TPTk

ˇ̌
ˇ̌ENT

pT gw

n

q
n⇡pT q ´ 1

ˇ̌
ˇ̌ “ O

ˆ
k

n

˙
` o

`
n´1{2˘ ,

9



3 Sequences of fringe subtrees

and

sup
SÑTk

ˇ̌
ˇ̌ENSpT gw

n

q
n⇡pSq ´ 1

ˇ̌
ˇ̌ “ O

ˆ
k

n

˙
` o

`
n´1{2˘ .

Proof. Since k “ opnq, we have k † n{2 for n large. Thus by Lemma 4 and 5, uniformly
for all T P T

k

,ˇ̌
ˇ̌ENT

pT gw

n

q
n

´ ⇡pT q
ˇ̌
ˇ̌ “ ⇡pT q

ˇ̌
ˇ̌P tS

n´k

“ n ´ ku
P tS

n

“ n ´ 1u ´ 1

ˇ̌
ˇ̌ “ ⇡pT q

ˆ
O

ˆ
k

n

˙
` opn´1{2q

˙
.

Summing over all trees T with T P S gives the second part of the lemma.

Lemma 11. Assume that k “ k
n

“ opnq and k Ñ 8. We have

Var pNTk
pT gw

n

qq
ENTk

pT gw

n

q § 1 ` opk´3{2q ` O

˜c
k

n

¸
.

Proof. Recall that r⇠n :“ pr⇠n1 , . . . , r⇠n
n

q is a uniform random rotation of ⇠n, the preorder
degree sequence of T gw

n

. Let

rJ
i

:“ Jpr⇠n
i

, r⇠n
i`1, . . . r⇠n

i`k´1q P D
k

K.
Then with an argument simliar to Lemma 4, we have NTk

pT gw

n

q “ ∞
n

i“1
rJ
i

.

Using the fact that rJ1, . . . , rJ
n

are identically distributed, Lemma 4 and 5, we have

E rJ1 “ 1

n
ENTk

pT gw

n

q “ P t|T gw| “ ku P tS
n´k

“ n ´ ku
P tS

n

“ n ´ 1u .

Similar to the proof of Lemma 4, we have

E rJ1 rJ
k`1 “ P

!
pr⇠n1 , . . . , r⇠n

k

q P D
k

, pr⇠n
k`1, . . . , r⇠n2kq P D

k

)

“ P tp⇠1, . . . , ⇠kq P D
k

, p⇠
k`1, . . . , ⇠2kq P D

k

| S
n

“ n ´ 1u
“ ⇡pT

k

q2P tS
n´2k “ n ´ 2k ` 1u
P tS

n

“ n ´ 1u ,

where ⇠1, ⇠2, . . . are i.i.d. copies of ⇠ and S
m

:“ ∞
m

i“1 ⇠i.

Consider two indices i ‰ j. If |i ´ j| † k or |i ` n ´ j| † k, then E rJ
i

rJ
j

“ 0. This
is because two fringe subtrees of size k cannot overlap. So for such i and j we have

Cov
´

rJ
i

, rJ
j

¯
“ E

”
rJ
i

rJ
j

ı
´ E

”
rJ
i

ı
E

”
rJ
j

ı
§ 0.

On the other hand, if |i ´ j| ° k and |i ` n ´ j| ° k, i.e., pr⇠n
i

, . . . , r⇠n
i`k´1q and

pr⇠n
j

, . . . , r⇠n
j`k´1q do not overlap, then Cov

´
rJ
i

rJ
j

¯
“ Cov

´
rJ1 rJ

k`1

¯
since r⇠n is permutation

10



3 Sequences of fringe subtrees

invariant. By Lemma 3, we have ⇡pT
k

q “ ⇥pk´3{2q. Therefore
Cov

´
rJ1, rJ

k`1

¯
“ E

”
rJ1 rJ

k`1

ı
´ E

”
rJ1

ı
E

”
rJ
k`1

ı

“ P tS
n´2k “ n ´ 2k ` 1u
P tS

n

“ n ´ 1u ´
ˆ

P tS
n´k

“ n ´ ku
P tS

n

“ n ´ 1u
˙2

“ ⇡pT
k

q2
„

´ 1

�2n
` o

ˆ
1

n

˙
` O

ˆ
k

n3{2 ` k2

n2

˙⇢
pBy Lemma 5q

§ ⇡pT
k

q
n

„
opk´3{2q ` O

ˆ
k´3{2k?

n
` k´3{2k2

n

˙⇢

“ E rJ1
n

˜
o

`
k´3{2˘ ` O

˜c
k

n

¸¸
.

Therefore,

Var pNTk
pT gw

n

qq “
ÿ

1§i‰j§n

Cov
´

rJ
i

, rJ
j

¯
`

nÿ

i“1

Var
´

rJ
i

¯

§ n2Cov
´

rJ1, rJ
k`1

¯
` nE

”
rJ1

ı ´
1 ´ E

”
rJ1

ı¯

§ n2E rJ1
n

´
o

`
k´3{2˘ ` O

´a
k{n

¯¯
` nE

”
rJ1

ı

“
´
1 ` o

`
k´3{2˘ ` O

´a
k{n

¯¯
E rNTk

pT gw

n

qs .
The following observation allows us to apply Lemma 8 to finish the proof.

Lemma 12. Let event E
m

“ rNTk
pT gw

n

q “ ms. Conditional on E
m

, the m fringe

subtrees of size k in T gw

n

has the distribution of m i.i.d. copies of T gw

k

. Thus for S Ñ T
k

,

conditional on E
m

, NSpT gw

n

q is binomial pm, ⇡pSq{⇡pT
k

qq.
Proof. Conditional on E1, the probability that T gw

n

has T P T
k

as the only fringe subtree
of size k must be proportional to ⇡pT q. And since this fringe subtree can only have size k,
this probability in fact must be ⇡pT q{⇡pT

k

q. In other words, this fringe subtree has the
distribution of T gw

k

. It is not di�cult to extend this argument to E
m

with m ° 1.

Proof of Lemma 9. Let S Ñ T
k

. LetX “ NSpT gw

n

q,M “ NTk
pT gw

n

q and p “ ⇡pSq{⇡pT
k

q.
By Lemmas 8, 11, and 12, we have

dTV

pX,PopEXqq § p ` ?
p

c
Var pMq

EM
§ pp ` ?

pq
˜
1 ` opk´3{2q ` O

˜c
k

n

¸¸
.

11



3.1 The sketch of the proof of Theorem 3

By Lemma 7, we have

dTV

pPopEXq,Popn⇡pSqqq § |n⇡pSq ´ EX|a
n⇡pSq

“ a
n⇡pSq

ˆ
O

ˆ
k

n

˙
` o

`
n´1{2˘˙

(By Lemma 10)

§ a
n⇡pT

k

q
ˆ
O

ˆ
k

n

˙
` o

`
n´1{2˘

˙

“ O

ˆ
k1{4
?
n

˙
` opk´3{4q (By Lemma 3).

The lemma follows from triangle inequality.

Proof of Theorem 2. Let k “ k
n

. For T P T
k

, we have ⇡pT q § pk
max

. Therefore, by
Lemma 3, ⇡pT q{⇡pT

k

q § pk
max

{⇥pk´3{2q “ op1q. It follows from Lemma 9 that

dTV

pN
T

pT gw

n

q,Popn⇡pT qqq § p1 ` op1qq
˜

⇡pT q
⇡pT

k

q `
d

⇡pT q
⇡pT

k

q

¸
“ op1q.

Statements (i)–(iii) follows immediately.

3.1 The sketch of the proof of Theorem 3

Part (iv) of Theorem 3 follows directly from Lemma 7. However, to show (i)-(iii) of
Theorem 3, we instead need the following lemma (whose proof is quite similar to that
of Lemma 11):

Lemma 13. Let r “ r
n

“ op?
nq and k “ k

n

“ opn{r2
n

q with k Ñ 8. We have

sup
SÑTk

sup
s§r

ˇ̌
ˇ̌EpNSpT gw

n

qq
s

pn⇡pSqqs ´ 1

ˇ̌
ˇ̌ “ op1q,

where pxq
s

:“ xpx ´ 1q ¨ ¨ ¨ px ´ s ` 1q.
Thus if n⇡pA

n

q Ñ µ P r0,8q, then EpNAnpT gw

n

qq
s

Ñ µs, for all fixed s. It is well-

known that this implies NAnpT gw

n

q dÑ Popµq (see [26, thm. 2.4]). Part (i) and (ii) of
Theorem 3 follows immediately. And part (iii) comes from the following result:

Lemma 14 (Gao andWormald [16, thm. 1]). Let pX
n

q
n•1 be a sequence of integer-valued

random variables. If there exists a sequence µ
n

Ñ 8 such that

sup
s§?

µn

ˇ̌
ˇ̌EpX

n

q
s

µs

n

´ 1

ˇ̌
ˇ̌ Ñ 0,

then we have

X
n

´ µ
n?

µ
n

dÑNp0, 1q.

12



4 Families of fringe subtrees

4 Families of fringe subtrees

In this section, we apply Theorem 2 and 3 to study the conditions for T gw

n

to contain
every tree that belongs to a family of trees.

4.1 Coupon collector problem

As shown later, our problem is essentially a variation of the famous coupon collector
problem—if in every draw we get a coupon with a uniform random type among n types,
how many draws do we need to collect all n types of coupons? The next lemma is about
a generalization of this problem needed later. For the original problem, see Erdős and
Rényi [10] and Flajolet et al. [13]. For more about the generalized version defined below,
see Neal [22].

Lemma 15 (Generalized coupon collector). Let X
n

be a random variable that takes

values in t1, . . . , nu. Let p
n,i

:“ P tX
n

“ iu. Assume that p
n,i

° 0 for all 1 § i § n. Let

X
n,1, Xn,2, . . . be i.i.d. copies of X

n

. Let

N
n

:“ infti • 1 : |tX
n,1, Xn,2, . . . , Xn,i

u| “ nu.
Let m

n

be a sequence of real numbers. We have

1 ´
nÿ

i“1

p1 ´ p
n,i

qmn § P tN
n

§ m
n

u § 1∞
n

i“1p1 ´ p
n,i

qmn
.

Proof. Let m “ m
n

. Let Z
n,i

“ Ji R tX
n,1, . . . , Xn,m

uK. Then N
n

§ m if and only if
Z

n

:“ ∞
n

i“1 Zn,i

“ 0, i.e., P tN
n

§ mu “ P tZ
n

“ 0u “ 1 ´ P tZ
n

• 1u.
The first inequality of this lemma follows from the following:

P tZ
n

• 1u § EZ
n

“
nÿ

i“1

EZ
n,i

“
nÿ

i“1

P
 Xm

j“1Xn,j

‰ i
( “

nÿ

i“1

p1 ´ p
n,i

qm .

For 1 § i ‰ j § n, we have

E rZ
n,i

Z
n,j

s ´ E rZ
n,i

s E rZ
n,j

s “ p1 ´ p
n,i

´ p
n,j

qm ´ p1 ´ p
n,i

qmp1 ´ p
n,j

qm

“ p1 ´ p
n,i

qm
„ˆ

1 ´ p
n,j

1 ´ p
n,i

˙
m

´ p1 ´ p
n,j

qm
⇢

† 0.

Therefore

Var pZ
n

q “
ÿ

1§i,j§n

E rZ
n,i

Z
n,j

s ´ E rZ
n,i

s E rZ
n,j

s

“
ÿ

1§i‰j§n

pE rZ
n,i

Z
n,j

s ´ E rZ
n,i

s E rZ
n,j

sq `
ÿ

1§i§n

`
E rZ

n,i

s ´ E rZ
n,i

s2˘ § EZ
n

.

Thus by Chebyshev’s inequality, as in the second moment method (see e.g., Alon and
Spencer [2, chap. 4]), we have

P tZ
n

“ 0u § P t|Z
n

´ EZ
n

| • EZ
n

u § Var pZ
n

q
pEZ

n

q2 § 1

EZ
n

“ 1∞
n

i“1p1 ´ p
n,i

qmn
.

13



4.2 Complete r-ary fringe subtrees

4.2 Complete r-ary fringe subtrees

A tree T is called possible if ⇡pT q ° 0. Let r ° 0 be a fixed integer and h
n

be a sequence
of positive integers. A simple application of Theorem 2 is to find su�cient conditions
such that whp every (or not every) possible complete r-ary tree appears in T gw

n

as fringe
subtrees.
Let h

n

Ñ 8 be a sequence of positive integers. Let A
hn,r be the set of all possible

complete r-ary trees of height at most h
n

. Let

H
n,r

“ max th : T gw

n

contains all trees in A
hn,r as fringe subtreesu .

Lemma 16. Assume Condition A and p
r

° 0 for some r • 2. Let

↵
r

“ log
r

ˆ
log

1

p0
` 1

r ´ 1
log

1

p
r

˙
.

Let !
n

Ñ 8 be an arbitrary sequence.

(i) If h
n

§ log
r

plog n ´ !
n

q ´ ↵
r

, then whp T gw

n

contains all trees in A
hn,r as fringe

subtrees.

(ii) If h
n

• log
r

plog n ` !
n

q ´ ↵
r

, then whp T gw

n

does not contain all trees in A
hn,r as

fringe subtrees.

Also,

H
n,r

´ log
r

log n
pÑ ´ ↵

r

.

Proof. Let T r-ary
hn

denote the complete r-ary tree of height h
n

. Note that if T r-ary
hn

appears
in T gw

n

as a fringe subtree, then every tree in A
hn,r also appears in T gw

n

as a fringe
subtree. The tree T r-ary

n

has `
n

:“ rhn leaves and v
n

:“ prhn ´1q{pr´1q “ p`
n

´1q{pr´1q
internal vertices, which all have degree r. Thus we have

⇡pT r-ary
hn

q :“ P
 
T gw “ T r-ary

hn

( “ pvn
r

p`n0 .

If h
n

§ log
r

plog n ´ !
n

q ´ ↵
r

, then

`
n

“ rhn § log n ´ !
n

r↵r
.

Therefore

log
1

⇡pT r-ary
hn

q “ v
n

log
1

p
r

` `
n

log
1

p0

“ `
n

´ 1

r ´ 1
log

1

p
r

` `
n

log
1

p0

“ `
n

ˆ
1

r ´ 1
log

1

p
r

` log
1

p0

˙
` Op1q

§ log n ´ !
n

r↵r
r↵r ` Op1q

“ log n ´ !
n

` Op1q.
Thus logpn⇡pT r-ary

hn
qq • !

n

` Op1q Ñ 8, which implies that n⇡pT r-ary
hn

q Ñ 8. It follows

from Theorem 2 that N
T

r-ary
hn

pT gw

n

q pÑ 8. Thus (i) is proved.

Similar computations show that with the assumptions of (ii), we have n⇡pT r-ary
hn

q Ñ 0,

14



4.3 All possible fringe subtrees

which implies that N
T

r-ary
hn

pT gw

n

q pÑ 0 by Theorem 2. The last statement of the lemma

follows directly from (i) and (ii).

We have a similar result for the set of 1-ary trees (chains) of height at most h. The
proof is virtually identical to the previous lemma and we leave it to the reader.

Lemma 17. Assume Condition A and p1 ° 0. Let !
n

Ñ 8 be an arbitrary sequence.

We have:

(i) If h
n

§ plog n ´ !
n

q{ log 1
p1
, then whp T gw

n

contains all trees in A
hn,1 as fringe

subtrees.

(ii) If h
n

• plog n ` !
n

q{ log 1
p1
, then whp T gw

n

does not contain all trees in A
hn,1 as

fringe subtrees.

Therefore

H
n,1

log1{p1pnq
pÑ 1.

4.2.1 Binary trees

Consider T gw

n

with a binomial p2, 1{2q o↵spring distribution, i.e., p0 “ p2 “ 1{4 and
p1 “ 1{2. Let T bin

n

be T gw

n

with each degree-one node labeled of having a left or a right
child uniformly and independently at random. Then T bin

n

is a tree in which nodes have
a left position and a right position where child nodes can attach, and each position can
be occupied by at most one child. We call such a tree a binary tree.
Let T bin

n

be a binary tree of size n that has n0, n1, n2 nodes of degree 0, 1, 2 respectively,
where n0`n1`n2 “ n. Let T

n

be T bin

n

with the di↵erence between left and right children
being forgotten. We have P

 
T bin

n

“ T bin

n

|T gw

n

“ T
n

( “ 1{2n1 , since there are in total
2n1 ways to label the n1 degree-one nodes of T

n

. Therefore

P
 
T bin

n

“ T bin

n

( “ P
 
T bin

n

“ T bin

n

|T gw

n

“ T
n

(
P tT gw

n

“ T
n

u
“ P

 
T bin

n

“ T bin

n

|T gw

n

“ T
n

( P tT gw “ T
n

u
P t|T gw| “ nu

“ 1

2n1

1

4n0n22n1

1

P t|T gw| “ nu “ 1

4nP t|T gw| “ nu .
In other words, as is well-known from the connection between simply generated trees
and Galton-Watson trees of size n, see, e.g., Janson [19, pp. 132], T bin

n

is uniformly
distributed among all binary trees of size n.
Thus our analysis of maximum r-ary fringe subtree in T gw

n

can be easily adapted to
uniform random binary trees. For example, an argument similar to Lemma 17 shows that
the maximum one-ary fringe subtree (chain) in T bin

n

that consists of only left children
has length about log4 n.

4.3 All possible fringe subtrees

Recall that T`
§k

denotes the set of all possible trees of size at most k, i.e.,

T`
§k

:“ tT P T : |T | § k,P tT gw “ T u ° 0u.
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4.3 All possible fringe subtrees

Also recall that

K
n

:“ maxtk : T`
§k

Ñ Y
vPT gw

n
tT gw

n,v

uu.
We would like to study the growth of K

n

with n.
Let Geppq denote Geometric p distribution, i.e., P tGeppq “ iu “ pp1 ´ pqi for i P

N0. Let Beppq denote Bernoulli p distribution and let Bipd, pq denote Binomial pd, pq
distribution. Recall that Pop�q is a Poissonp�q random variable. Table 1 shows five
types of well-known conditional Galton-Watson trees. See Janson [19, sec. 10] for more
examples.

Name Definition

Plane trees ⇠
L“ Gep1{2q p

i

“ 1{2i`1 pi • 0q
Full binary trees ⇠

L“ 2Bep1{2q p0 “ p2 “ 1{2
Motzkin trees ⇠ uniform in t0, 1, 2u p0 “ p1 “ p2 “ 1{3
d-ary trees ⇠

L“ Bipd, 1{dq p
i

“ `
d

i

˘ `
1 ´ 1

d

˘
i

`
1
d

˘
d´i p0 § i § dq

Labeled trees ⇠
L“ Pop1q p

i

“ e´1{i!
Table 1: Some well-known conditional Galton-Watson trees.

We can assume that P t|T gw| “ k
n

u ° 0 for all n P N. Otherwise, let k1
n

:“ maxti §
k
n

: P t|T gw| “ iu ° 0u. It is not di�cult to show that k
n

´ k1
n

§ h “ Op1q for k
n

large.
(See [19, lem. 12.3] for details.) Thus this assumption does not change results in this
subsection.
Janson showed that T gw

n,˚
dÑ T gw [19, thm. 7.12]. In other words, fringe subtrees on

average behave like unconditional Galton-Watson trees. Let Tmin

k

be a tree T P T`
§k

that minimizes P tT gw “ T u. Then Tmin

k

also is the least likely tree to appear in T gw

n

as fringe subtree among all trees in T`
§k

when n is large. So intuitively if whp Tmin

k

appears in T gw

n

, then every tree in T`
§k

should also appears whp. And if whp Tmin

k

does
not appear, then whp there is at least one tree in T`

§k

that is missing. Therefore, the
problem can be reduced to finding

pmin

k

:“ P
 
T gw “ Tmin

k

( “ min
TPT`

§k

P tT gw “ T u .

Lemma 18. Assume Condition A. If k
n

Ñ 8 and npmin

kn
{k

n

Ñ 8, then whp every tree

in T`
§kn

appears in T gw

n

.

Proof. Let k “ k
n

. Recall that p
max

:“ max
i•0 pi and p

max

† 1. Therefore pmin

k

§ pk
max

.
Thus we can assume that k § 2 logpnq{ logpp´1

max

q when k is large. Otherwise we have
npmin

k

§ n´1 Ñ 0, which contradicts the assumption.
Thus by Theorem 3, NTk

pT gw

n

q • y
n

:“ r 12nP tT gw “ |k|us whp. Let A
n

be the event
that T gw

n

contains all possible trees of size k as fringe subtrees. Let B
n

piq be the event
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4.3 All possible fringe subtrees

that NTk
pT gw

n

q “ i for given i • y
n

. Thus

P tA
n

u “ P tA
n

X rNTk
pT gw

n

q † y
n

su `
ÿ

i•yn

P tA
n

|B
n

piqu P tB
n

piqu

• P tA
n

|B
n

py
n

qu
ÿ

i•yn

P tB
n

piqu ,

“ P tA
n

|B
n

py
n

qu p1 ´ op1qq,
where the inequality comes from the obvious fact that P tA

n

|B
n

paqu • P tA
n

|B
n

pbqu
given that a • b. So it su�ces to prove that P tAc

n

|B
n

py
n

qu Ñ 0.
We can show that this is equivalent to a coupon collector problem. Let T gw

n

|B
n

py
n

q be
T gw

n

restricted to the event B
n

py
n

q. Let T ˚ be a random tree distributed as T gw

n

|B
n

py
n

q.
Replace each of its y

n

subtrees with an independent copy of T gw

k

. By Lemma 12, the
result is still a random tree distributed as T gw

n

|B
n

py
n

q.
So P tA

n

|B
n

py
n

qu equals the probability of that y
n

independent copies of T gw

k

contain
every tree in T`

§k

. It follows from Lemma 15 (the coupon collector) that

P tAc

n

|B
n

py
n

qu §
ÿ

TPT`
§k

p1 ´ P tT gw

k

“ T uqyn §
ÿ

TPT`
§k

exp t´y
n

P tT gw

k

“ T uu

§
ÿ

TPT`
§k

exp

"
´1

2
nP t|T gw| “ ku P tT gw “ T u

P t|T gw| “ ku
*

§ Op|T`
§k

|q exp  ´npmin

k

(
.

It is well-known that the number of plane trees of size exactly k is 4k´1{?
⇡k3p1 ` op1qq

See, e.g., Flajolet and Sedgewick [12, pp. 406]. It follows that there exists a constant C
such that |T`

§k

| § ∞
k

j“1 C4j´1 § C4k for all k P N. Thus for large enough k, the last
expression above is at most

C4k exp
 ´npmin

k

( “ C exp
 
k logp4q ´ npmin

k

( Ñ 0.

Therefore we have P tAc

n

|B
n

py
n

qu Ñ 0.

Theorem 5. Assume Condition A. Assume that as k Ñ 8,

logp1{pmin

k

q „ �k↵plog kq�,
where ↵ • 1, � • 0, � ° 0 are constants. Let k

n

Ñ 8 be a sequence of positive integers.

Let m “ log n. Then for all constants � ° 0, we have:

(i) If k
n

§ p1 ´ �qrm{�plogm1{↵q�s1{↵, then whp T gw

n

contains all trees in T`
§kn

as

fringe subtrees.

(ii) If k
n

• p1`�qrm{�plogm1{↵q�s1{↵, then whp T gw

n

does not contain all trees in T`
§kn

as fringe subtrees.

As a result,

K
n

plog n{plog log nq�q1{↵
pÑ

ˆ
↵�

�

˙1{↵
.

The behavior of pmin

k

varies for di↵erent o↵spring distributions. But as mentioned
in the introduction, the types of trees that we are interested in all have pmin

k

that are

17



4.3 All possible fringe subtrees

covered by Theorem 5.

Proof. Let k “ k
n

. Part (i) assumes that

k § p1 ´ �q
„

m

�plogm1{↵q�
⇢1{↵

.

Taking a logarithm, we have

log k § logp1 ´ �q ` 1

↵
log

m

�plogm1{↵q� “ p1 ` op1qq logm1{↵.

Thus

log
1

pmin

k

„ �k↵plog kq� § p� ` op1qq p1 ´ �q↵m
�plogm1{↵q� plogm1{↵q� „ p1 ´ �q↵m.

Therefore, recalling m “ log n,

log npmin

k

“ m ´ log
1

pmin

k

• m ´ p1 ` op1qqp1 ´ �q↵m “ ⌦pmq.
It follows that

log k ´ log npmin

k

“ O plogmq ´ ⌦pmq Ñ ´8.

Thus npmin

k

{k Ñ 8 and it follows from Lemma 18 that whp T gw

n

contains every tree in
T`

§k

as a fringe subtree.
Similar computations show that if k • p1 ` �qrm{�plogm1{↵q�s1{↵ then npmin

k

Ñ 0. It
follows from Theorem 2 that N

T

min
k

pT gw

n

q pÑ 0. Thus whp T gw

n

does not contain every

tree in T`
§k

as a fringe subtree.

Remark. The above coupon collector approach can be also used for studying the su�-
cient conditions for T gw

n

to contain all r-ary trees of size k (not necessarily complete). We
can think of these r-ary trees as types of coupon that we need to collect and NTkn

pT gw

n

q
as the number of draws of coupons that we are allow to carry out.

The rest of this section is organized as follows. In the next subsection, we give a
general method of finding pmin

k

. Then we divide o↵spring distributions in two categories
and show that Theorem 5 is applicable to all the Galton-Watson trees listed in Table 1.

4.3.1 Computing pmin

k

Let I
k

:“ tj : 1 § j § k, p
j

° 0u. Let L1 :“ p0 and for k • 2 let

L
k

:“ min

#
p0

ˆ
p
i

p0

˙1{i
: i P I

k´1

+
.

Since L
k

is non-increasing, L :“ lim
kÑ8 L

k

exists. Equivalently, we have

L :“ inf

#
p0

ˆ
p
i

p0

˙1{i
: i P N, p

i

° 0

+
.

Theorem 6. Assume Condition A. We have ppmin

k

q1{k Ñ L as k Ñ 8, where the limit

is taken along the subsequence k with P t|T gw| “ ku ° 0. As a result, we have L † 1.

18



4.3 All possible fringe subtrees

In fact, we have a stronger result for the upper bound of ppmin

k

q1{k.

Lemma 19. Assume Condition A. For all fixed i with p
i

° 0, there exist constants

C
i

° 1 and C 1
i

, C2
i

, kpiq ° 0 such that for all k • kpiq with P t|T gw| “ ku ° 0, there are

at least k´C

1
iCk

i

trees T of size k with

0 † P tT gw “ T u § C2
i

«
p0

ˆ
p
i

p0

˙1{i�k

.

Proof. We give a proof assuming that there exists a j such that p
j

° 0 and that i and
j are coprime. The proof of the general case is similar. Let x “ pk ´ 1q mod i. By the
Chinese reminder theorem, there exists a smallest non-negative integer y such that#

y ” x pmod iq,
y ” 0 pmod jq.

Note that y depends only on i. Therefore, if k • kpiq :“ y ` 1, we can choose

n0 “ k ´ n
i

´ n
j

, n
j

“ y

j
, n

i

“ k ´ 1 ´ y

i
,

such that n0, ni

, n
j

are all non-negative integers with

n0 ` n
i

` n
j

“ k, and in
i

` jn
j

“ k ´ 1.

Let T
k

pn0, ni

, n
j

q be the set of plane trees of size k that has n0, ni

and n
j

nodes with
degree 0, i and j respectively. It is well-known that when the above two conditions hold,
we have

|T
k

pn0, ni

, n
j

q| :“ 1

k

ˆ
k

n0, ni

, n
j

˙
“ 1

k

k!

n0!ni

!n
j

!
.

(See [12, pp. 194].) Since i is a constant and y only depends on i, there exists a constant
C˚

i

such that

|n0 ´ kp1 ´ 1{iq| § C˚
i

, |n
i

´ k{i| § C˚
i

, n
j

§ C˚
i

.

Using these inequalities and Stirling’s approximation [12, pp. 407], it is easy to verify
that there exists a constant C 1

i

° 0 such that

|T
k

pn0, ni

, n
j

q| • k´C

1
i

˜ˆ
1

i

˙1{i ˆ
1 ´ 1

i

˙1´1{i¸´k

:“ k´C

1
iCk

i

.

And for every T P Spn0, ni

, n
j

q, we have

P tT gw “ T u § pni
i

pn0
0 § p

´C

˚
i

i

p
´C

˚
i

0 pk{i
i

pkp1´1{iq
0 :“ C2

i

«
p0

ˆ
p
i

p0

˙1{i�k

.

Proof of Theorem 6. Let T be a tree with |T | “ k and P tT gw “ T u ° 0, i.e., T P T`
§k

.
Let n

i

be the number of nodes of degree i in T . Note that if i ° 0 and i R I
k´1, then

n
i

“ 0. Since by (3) the sum of the degrees in a preorder degree sequence equals the
size of the tree minus one, we have

n0 ` n1 ` . . . n
k´1 “ k, and n1 ` 2n2 . . . ` pk ´ 1qn

k´1 “ k ´ 1.
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4.3 All possible fringe subtrees

Using the convention that 00 “ 1, we have for k • 2

P tT gw “ T u “ pn0
0 pn1

1 ¨ ¨ ¨ pnk´1

k´1

“ p
n0`n1`...`nk´1
0

ˆ
p1
p0

˙
n1

ˆ
p2
p0

˙
n2

¨ ¨ ¨ `
ˆ
p
k´1

p0

˙
nk´1

“ pk0
π

iPIk´1

«ˆ
p
i

p0

˙ 1
i

�
ini

• pk0

«
min
iPIk´1

ˆ
p
i

p0

˙ 1
i

�∞k´1
i“1 ini

“ p0L
k´1
k

• p0L
k´1. (4)

As a result lim inf
kÑ8 ppmin

k

q1{k • L.
To show the other way, let " ° 0 be a constant, and let ↵ “ minti : L

i`1 § L ` "u.
Therefore 0 † p0pp↵{p0q1{↵ § L ` ". By Lemma 19, there is at least one tree T of size k
such that

pmin

k

§ P tT gw “ T u § C
↵

«
p0

ˆ
p
↵

p0

˙ 1
↵

�
k

§ C
↵

pL ` "qk,

where C
↵

° 0 is constant. Thus lim sup
kÑ8 ppmin

k

q1{k § L ` ". Since " is arbitrary, we
have lim sup

kÑ8 ppmin

k

q1{k § L.
Recall that p

max

:“ max
i•0 pi † 1. For all trees T with size k, we have P tT gw “ T u §

pk
max

, i.e., ppmin

k

q1{k § p
max

. Thus L “ lim
kÑ8 ppmin

k

q1{k § p
max

† 1.

4.3.2 When L ° 0

If L ° 0, then by Theorem 6, logp1{ppmin

k

q1{kq „ logp1{Lqk “ logp1{Lqkplog kq0. Thus
we can apply Theorem 5 with � “ logp1{Lq, ↵ “ 1 and � “ 0 to get

K
n

logpnq
pÑ 1

log p1{Lq .
The following Lemma computes L for some well-known Galton-Watson trees. See Janson
[19, sec. 10] for more about these trees.

Lemma 20. (i) Full binary tree: If ⇠
L“ 2Bep1{2q, then L “ 1{2. (ii) Motzkin tree: If

p0 “ p1 “ p2 “ 1{3, then L “ 1{3. (iii) d-ary tree: If ⇠
L“ Bipd, 1{dq for d • 2, then

L “ pd ´ 1qd´1{dd. (iv) Plane tree: If ⇠
L“ Gep1{2q, then L “ 1{4.

Proof. (i): If ⇠ „ 2Bep1{2q, then p0 “ 1{2, p2 “ 1{2 and p
i

“ 0 for i R t0, 2u. Thus for
k • 3, we have

L
k

“ min
i:i†k,pi°0

p0

ˆ
p
i

p0

˙1{i
“ p0

ˆ
p2
p0

˙1{2
“ 1{2.

Therefore L “ lim
kÑ8 L

k

“ 1{2. (ii) and (iii) follow from similar simple calculations.
(iv): For all i • 1, we have

p0

ˆ
p
i

p0

˙1{i
“ 1

2

ˆ
1

2i

˙1{i
“ 1{4.

Therefore L
k

“ 1{4 for all k • 1, and L “ 1{4.
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4.3 All possible fringe subtrees

Define

 “
#
minti P N : L

i`1 “ Lu if L
j

“ L for some j,

8 otherwise.

If  † 8, then we call the Galton-Watson tree well-behaved. Examples of such trees
include those for which ⇠ is bounded, and those for which ⇠ has a polynomial or sub-

exponential tail. The case ⇠
L“ Gep1{2q is also well-behaved. Thus the four types of

Galton-Watson trees in Lemma 20 are well-behaved. The following theorem gives better
thresholds than Theorem 5.

Theorem 7. Assume Condition A and let the Galton-Watson tree be well-behaved. Then

for all constants � ° 0, we have:

(i) If k
n

§ plog n ´ p1 ` �q log log nq{ log 1
L

, then whp T gw

n

contains all trees in T`
§kn

as fringe subtrees.

(ii) If k
n

• plog n ´ p1 ´ �q log log nq{ log 1
L

, then whp T gw

n

does not contain all trees

in T`
§kn

as fringe subtrees.

Thus as n Ñ 8, we have

K
n

logp1{Lq ´ log n

log log n
pÑ ´ 1.

Remark. As can be seen from the proof of Lemma 19, among well-behaved Galton-
Watson trees of size k

n

, the least possible are those contain maximal number of degree
 nodes. These are the trees that do not appear in case (ii).

The main idea is that when  † 8, there are exponentially many trees of size k that
have small probability to appear as fringe subtrees in T gw

n

. Then we can use Lemma 15
(the coupon collector) to find the su�cient condition for one of them to not to appear
whp.

Proof. (i): Write m “ log n and k “ k
n

. Using (4), it is easy to verify that in this case
npmin

k

{k Ñ 8. Thus (i) follows from Lemma 18.
(ii): The proof is similar to the one of Lemma 18. As in that proof, we can assume

that k “ Oplog nq. Thus by Theorem 3, whp NTk
pT gw

n

q § y
n

:“ t 32nP t|T gw| “ kuu. Let
A

n

be the event that T gw

n

contains all possible trees of size k as fringe subtrees. Let
B

n

piq be the event that NTk
pT gw

n

q “ i for some i § y
n

. Then

P tA
n

u § P tNTk
pT gw

n

q ° y
n

u `
ÿ

i§yn

P tA
n

|B
n

piqu P tB
n

piqu

§ op1q ` P tA
n

|B
n

py
n

qu
ÿ

i§yn

P tB
n

piqu ,

§ op1q ` P tA
n

|B
n

py
n

qu .
Thus it su�ces to prove that P tA

n

|B
n

py
n

qu Ñ 0.
Using the same coupling as in the proof of Lemma 18, we have P tA

n

|B
n

py
n

qu equals
the probability that y

n

independent copies of T gw

k

do not contains all trees in T`
§k

. It
follows from Lemma 15 (the coupon collector) that P tA

n

|B
n

py
n

qu Ñ 0 if
∞

TPT`
§k

p1 ´
P tT gw

k

“ T uqyn goes to infinity.
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4.3 All possible fringe subtrees

By definition of , we have L “ p0pp


{p0q1{. It follows from Lemma 19 that there
exists constants C



° 1 and C 1


, C2


° 0 such that there are at least k´C

1
Ck



trees T in
T`

§k

with

P tT gw

k

“ T u “ P tT gw “ T u
P t|T gw| “ ku § C2



pp0pp


{p0q1{qk
P t|T gw| “ ku “ C2



Lk

P t|T gw| “ ku .
Therefore

ÿ

TPT`
§k

p1 ´ P tT gw

k

“ T uqyn • k´C

1
Ck



ˆ
1 ´ C2



Lk

P t|T gw| “ ku
˙

yn

.

Since L † 1 and P t|T gw| “ ku “ ⇥pk´3{2q, we have Lk{P t|T gw| “ ku “ op1q. Thus for
k large enough, the logarithm of the above is

k logpC


q ´ C 1


logpkq ` y
n

log

ˆ
1 ´ C2



Lk

P t|T gw| “ ku
˙

• 1

2
k logpC



q ´ y
n

C2


Lk

P t|T gw| “ ku
• 1

2
k logpC



q ´ 3

2
nC2



Lk “ 1

2
k logpC



q ´ OpnLkq.
By our assumptions, k “ ⌦plog nq and Lk § plog nq1´�{n. Since C



° 0, we have

1

2
k logpC



q ´ OpnLkq • ⌦plog nq ´ O

ˆ
n

plog nq1´�

n

˙
Ñ 8,

which implies P tA
n

|B
n

py
n

qu Ñ 0.

Remark. If L ° 0 and  “ 8, then Theorem 5 shows that K
n

{ logpnq pÑ 1{ logp1{Lq.
But the second order term of K

n

is sensitive to small modifications of the o↵spring
distribution, which makes it slightly more challenging to analyze the second order term.

4.3.3 When L “ 0

It is clear that L “ 0 if and only if ⇠ has infinite support and lim inf
iÑ8 p0ppi{p0q1{i “ 0,

which implies lim sup
iÑ8 logp1{p

i

q{i “ 8, along the subsequence with p
i

° 0. If in
addition we have p

i

° 0 for all i • 0 and logp1{p
i

q „ fpiq for some f : r0,8q Ñ r0,8q
with fpiq{i Ò 8, then we say that ⇠ has an f -super-exponential tail. We have the
following threshold for Galton-Watson trees with such a property.

Theorem 8. Assume Condition A and that ⇠ has an f -super-exponential tail. Let f´1

denote the inverse of f . Then for all constants � ° 0, we have

1. If k
n

§ f´1pp1 ´ �q log nq ` 1, then whp T gw

n

contains all trees in T`
§kn

as fringe

subtrees.

2. If k
n

• f´1pp1 ` �q log nq ` 1, then whp T gw

n

does not contain all trees in T`
§kn

as

fringe subtrees.

Therefore,

K
n

f´1plog nq
pÑ 1.
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4.3 All possible fringe subtrees

Proof. (i): Let k “ k
n

. Choose " ° 0 such that p1 ´ �qp1 ` "q † p1 ´ �{2q. Since
logp1{p

i

q „ fpiq, there exists an integer ip"q such that for all i ° ip"q,
log p

i

• ´p1 ` "{2qfpiq.
Let w

i

:“ log p0ppi{p0q1{i. We have as k Ñ 8,

min
ip"q†i†k

w
i

“ min
ip"q†i†k

"ˆ
1 ´ 1

i

˙
logpp0q ` log p

i

i

*

• logpp0q ´ max
ip"q†i†k

p1 ` "{2qfpiq
i

“ logpp0q ´ p1 ` "{2qfpk ´ 1q
k ´ 1

Ñ ´8,

where we use that fpiq{i Ò 8. Since min1§i§ip"q wi

is a constant, we have for large k,

logL
k

:“ min
1§i†k

w
i

• logpp0q ´ p1 ` "{2qfpk ´ 1q
k ´ 1

.

It follows from (4) that for k large enough,

log pmin

k

• logpp0Lk´1
k

q
• logpp0q ` pk ´ 1q log p0 ´ p1 ` "{2qfpk ´ 1q.
• ´p1 ` "qfpk ´ 1q,

where the last step uses fpkq{k Ò 8.
The assumption k ´ 1 § f´1pp1 ´ �q log nq implies that fpk ´ 1q § p1 ´ �q log n and

k “ Oplog nq. Thus
log pmin

k

• ´p1 ` "qp1 ´ �q log n • ´p1 ´ �{2q log n.
Thus npmin

k

• n�{2. We have npmin

k

{k Ñ 8. It follows from Lemma 18 that T gw

n

contains
all possible trees of size at most k as fringe subtree whp.
(ii): Let T star

k´1 be the tree in which one node has degree k ´ 1 and all other nodes
are leaves. Computations similar to above show that if k ´ 1 • f´1pp1 ` �q log nq, then
n⇡pT star

k´1 q Ñ 0. Therefore T gw

n

does not contain T star

k´1 whp.

Example (The discrete Gaussian distribution). When p
i

“ ce´c

1
i

2
for some appropriate

positive normalization constants c and c1, we have L “ 0, and Theorem 8 applies. Then
K

na
logpnq

pÑ 1?
c1 ,

as n Ñ 8.

Example (The Cayley trees). A better example is the Galton-Watson tree with o↵spring

distribution ⇠
L“ Pop1q, i.e., the Cayley tree. It has p

i

“ e´1{i! and logp1{p
i

q „ i logpiq.
It is easy to see that

K
n

log log n

log n
pÑ 1.

Using (4) it is not di�cult to verify that the tail drops so fast that the least possible
tree of size k is T star

k´1 . This is a special case of the following general observation.
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5 Non-fringe subtrees

Lemma 21. Assume Condition A. If p
i

° 0 for all i • 0 and p1{i
i

Ó 0, then for k large

enough, pmin

k

“ P
 
T gw “ T star

k´1

( “ pk´1
0 p

k´1. In particular, this is true for ⇠
L“ Pop1q.

In the latter case we have

log pmin

k

“ logppk´1
0 p

k´1q “ ´k log kp1 ` Op1{kqq.

5 Non-fringe subtrees

In this section we prove Theorem 4, the concentration of non-fringe subtree counts in
conditional Galton-Watson trees.
Given a tree T , let vpT q be the number of its internal nodes and let `pT q be the number

of its leaves. Recall that Nnf

T

pT gw

n

q :“ ∞
uPT gw

n
JT † T gw

n,u

K, and that r⇠n :“ pr⇠n1 , . . . , r⇠n
n

q is
a uniform random rotation of the preorder degree sequence of T gw

n

.
To simplify the notation, write v :“ vpT q and ` :“ `pT q. By Lemma 1, T has a

preorder degree sequence of the form

pa1, 0,a2, 0, . . . ,a`

, 0q :“
pa1,1, a1,2, . . . , a1,rp1q, 0, a2,1, a2,2, . . . , a2,rp2q, 0, . . . , a`,1, a2,2, . . . , a`,rp`q, 0q (5)

for non-negative integers rp1q, rp2q, . . . , rp`q and that

`ÿ

s“1

rpsq “ v, a
s,t

° 0,
`ÿ

s“1

a
s

:“
`ÿ

s“1

rpsqÿ

t“1

a
s,t

“ v ` ` ´ 1. (6)

Therefore, if T † T 1, then T 1 has a preorder degree sequence of the form

pa1, b1,a2, b2, . . . ,a`

, b
`

q (7)

where b1, . . . , b` are preorder degree sequences of some plane trees. Thus each non-
fringe subtree of shape T in T gw

n

corresponds to a segment of r⇠n of the form of (7). If
none of the segments overlap with each other, then we can permute them into the form
pa1, . . . ,a`

, b1, . . . , b`q. Recall that r⇠n is permutation invariant, i.e., if we permute r⇠n,
the result has the same distribution as r⇠n. Thus Nnf

T

pT gw

n

q should be almost distributed
like the number of the patterns pa1,a2, . . . ,a`

q in r⇠n.
The problem with this argument is that non-fringe subtrees can overlap. But as shown

later in this section, under the assumptions of Theorem 4, the e↵ect of such overlaps is
negligible.
We will use D

n

to denote the set of preorder degree sequences of trees with size n.
Let rD

n

be the set of sequences that are cyclic rotations of sequences in D
n

. Given
d :“ pd1, . . . , dnq P rD

n

, let deg
i

pdq :“ pd
i

, d
i`1, . . . , di`k´1q such that deg

i

pdq P D
k

for
some k • 1, where the indices are all modulo n. Lemma 1 guarantees that such deg

i

pdq
exists and is unambiguous. Let T

i

pdq be the tree with the preorder degree sequence
deg

i

pdq.
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5.1 Factorial moments

5.1 Factorial moments

Let pxq
r

:“ xpx ´ 1q ¨ ¨ ¨ px ´ r ` 1q. For a random variable X, EpXq
r

is called the
r-th factorial moment of X. We give exact formulas for the first and second factorial
moments of Nnf

T

pT gw

n

q in this subsection.

Lemma 22. Assume that P t|T gw| “ nu ° 0. Let T be a tree. We have

E
“
Nnf

T

pT gw

n

q‰

n
“ ⇡nf pT qP

 
S
n´vpT q “ n ´ vpT q ´ `pT q(

P tS
n

“ n ´ 1u .

Proof. Let v :“ vpT q and ` :“ `pT q. Let I
i

“ JT † T
i

pr⇠nqK. Then Nnf

T

pT gw

n

q “ ∞
n

i“1 Ii.

By the permutation invariance of r⇠n, we have E
“
Nnf

T

pT gw

n

q‰ “ E r∞n

i“1 Iis “ nP tI1 “ 1u.
Recall that T has a preorder degree sequence of the form pa1, 0, . . . ,a`

, 0q satisfying
(6). Let A Ñ rD

n

be the set of sequences such that r⇠n P A if and only if I1 “ 1. In
other words, d :“ pd1, d2, . . . , dnq P A if and only if deg1pdq “ pa1, b1, . . . ,a`

, b
`

q for
some b1, . . . , b` which are preorder degree sequences of trees. By permuting deg1pdq into
pa1,a2, . . . ,a`

, b1, b2, . . . , b`q, we get a new sequence d1 :“ pd1
1, d

1
2, . . . , d

1
n

q P A1 where

A1 :“
!

pe1, e2, . . . , enq P rD
n

: pe1, e2, . . . , evq “ pa1,a2, . . . ,a`

q
)
.

Such a permutation defines a mapping f : A Ñ A1.
For every d1 P A1, condition (6) implies that in d1 after pa1, . . . ,a`

q, there are at
least ` consecutive segments that are preorder degree sequences of trees, i.e., there is
a unique d P A with fpdq “ d1. Thus f is a one-to-one mapping. If d1 “ fpdq, then
P

!
r⇠n “ d

)
“ P

!
r⇠n “ d1

)
, since r⇠n is permutation invariant. Therefore we have

P tI1 “ 1u “ P
!

r⇠n P A
)

“ P
!

r⇠n P A1
)
.

Recall that by Lemma 2, r⇠n „ p⇠1, . . . , ⇠n|S
n

“ n´1q, where ⇠1, . . . , ⇠n are i.i.d. copies
of ⇠ and S

n

“ ∞
n

s“1 ⇠s. We have

P
!

r⇠n P A1
)

“ P
!

pr⇠n1 , r⇠n2 , . . . , r⇠n
v

q “ pa1,a2, . . . ,a`

q
)

“ P tp⇠1, ⇠2, . . . , ⇠vq “ pa1,a2, . . . ,a`

q, S
n

“ n ´ 1u
P tS

n

“ n ´ 1u
“ P tT † T gwu P tS

n´v

“ n ´ v ´ `u
P tS

n

“ n ´ 1u ,

where in the last step we use
∞

`

s“1 as

“ v ` ` ´ 1.

To compute EpNnf

T

pT gw

n

qq2, we enumerate all the cases that T can appear as overlap-
ping non-fringe subtrees by constructing a set of trees tT ‘ T u as follows. For trees T ,
S and node v P T , let T 1 “ SplaypT, v, Sq denote tree T with subtree T

v

replaced by S.
Thus T 1

v

“ S . Let VpT q denote the internal nodes of T . Then define the collection

tT ‘ T u “
»

–
§

vPVpT q:Tv †T

tSplaypT, v, T qu
fi

fl z tT u .
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5.1 Factorial moments

Note that |tT ‘ T u| † vpT q. Also note that given T 1 P tT ‘ T u we can always find a
unique node v P VpT q such that T 1 “ SplaypT, v, T q.
Lemma 23. Assume that P t|T gw| “ nu ° 0. Let T be a tree. We have

E
“pNnf

T

pT gw

n

qq2
‰ “ npn ´ 2vpT q ` 1q⇡nf pT q2P

 
S
n´2vpT q “ n ` 1 ´ 2pvpT q ` `pT qq(

P tS
n

“ n ´ 1u
` 2n

ÿ

T

1PtT‘T u
⇡nf pT 1qP

 
S
n´vpT 1q “ n ´ vpT 1q ´ `pT 1q(

P tS
n

“ n ´ 1u .

Proof. Let v “ vpT q and ` “ `pT q. Let I
i

be defined as in the proof of Lemma 22. Since
I1, . . . , In are indicator random variables and permutation invariant, we have

E
“pNnf

T

pT gw

n

qq2
‰ “

ÿ

1§i‰j§n

E rI
i

I
j

s “ n
nÿ

i“2

E rI1Iis .

The event I1Ii “ 1 happens if and only if T † T1pr⇠nq and T † T
i

pr⇠nq both happen.

Thus instead of summing E rI1Iis over i, we can sum P
!

r⇠n “ d
)

over pairs pi,dq P
t2, . . . , nu ˆ rD

n

that satisfy T † T1pdq and T † T
i

pdq, i.e.,
deg1pdq “ pa1, b1,a2, b2, . . . ,a`

, b
`

q, and deg
i

pdq “ pa1, b
1
1,a2, b

1
2, . . . ,a`

, b1
`

q,
where pa1, 0, . . . ,a`

, 0q is the preorder degree sequence of T and b1, b1
1, . . . , b`, b

1
`

are
preorder degree sequences of trees. Let A be the set of such pairs. Then

∞
i•2 E rI1Iis “

∞
pi,dqPA P

!
r⇠n “ d

)
.

For 1 § r § n, let I
r

pdq be the set of positions in d that are occupied by deg
r

pdq, i.e.,
I
r

pdq :“ tj mod n : r § j † r ` | deg
r

pdq|u .
Let I in

1 pdq Ñ I1pdq be the set of positions in d that are occupied by the parts of deg1pdq
that correspond to a1, . . . ,a`

. Let Iout

1 pdq “ I1pdqzI in

1 pdq. Define I in

i

pdq and Iout

i

pdq
accordingly. Let A1 Ñ A be the set of pi,dq in A such that

A1 “  pi,dq P A : I in

1 pdq X I in

i

pdq “ H(
.

Let A2 :“ AzA1.
If pi,dq P A2, then I in

1 pdq X I in

i

pdq ‰ H. In other words, either T
i

is fringe subtree of
T1 and T

i

is rooted at a node that corresponds to an internal node of T (regarding that
T1 is a non-fringe subtree of the shape T ), or vice versa. Thus there exists a T 1 P tT ‘T u
such that either T 1 † T1pdq or T 1 † T

i

pdq. By symmetry, we have
ÿ

pi,dqPA2
P

!
r⇠n “ d

)
“ 2

ÿ

T

1PtT‘T u
P

!
T 1 † T1pr⇠nq

)

“ 2
ÿ

T

1PtT‘T u
⇡nf pT 1qP

 
S
n´vpT 1q “ n ´ vpT 1q ´ `pT 1q(

P tS
n

“ n ´ 1u , (8)

where the last step follows from Lemma 22.
Now consider pi, pd1, . . . , dnqq P A1. Arrange pd1, . . . , dnq in a cycle. Paint the segment

deg1ppd1, . . . , dnqq red and the segment deg
i

ppd1, . . . , dnqq blue. One of the three cases
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5.1 Factorial moments

must be true: (i) I1pdq X I
i

pdq “ H — The red segment and the blue segment do
not overlap. (ii) I

i

pdq Ñ I1pdq — The red segment contains the blue segment. (iii)
I1pdq Ñ I

i

pdq — The blue segment contains the red segment. (Since deg1pdq and
deg

i

pdq are both preorder degree sequences, if I1pdq X I
i

pdq ‰ H then either (ii) or (iii)
must happen. And since i ‰ 1 we cannot have I

i

pdq “ I1pdq.) Figure 2 gives examples
of the three cases.

Figure 2: Examples of three cases in A2.

We permute pd1, . . . , dnq as follows. For (i) and (ii), we first permute the red segment
from pa1, b1, . . . ,a`

, b
`

q to pa1, . . . ,a`

, b1, . . . , b`q. Then we permute the blue segment
of from pa1, b1

1, . . . ,a`

, b1
`

q to pa1, . . . ,a`

, b1
1, . . . , b

1
`

q. It is clear this can be done in case
(i). And it is not di�cult to see that in case (ii) the positions that are occupied by the
blue segment is completely contained by the positions that are occupied by b

`

1 for some
1 § `1 § `. This means that T

i

is a fringe subtree of T1 and the root of T
i

does not
correspond to an internal node of T (regarding that T1 is a non-fringe subtree in the
shape of T ). So the first step of the permutation moves the blue segment but does not
change its contents and we can carry out the second step without problem.
In case (iii), we reverse the order of the two steps. After this the starting position

of the red segment may have changed. We rotate the new sequence such that the red
segment still starts from position 1.
In the end, we get a new pair pi1, pd1

1, . . . , d
1
n

qq such that pd1
1, d

1
2, . . . , d

1
v

q “ pa1, . . . ,a`

q
and pd1

i

1 , d1
i

1`1, . . . , d
1
i

1`v´1q “ pa1, . . . ,a`

q. Let B Ñ tv`1, . . . , nu ˆ rD
n

be the set of such
pairs. The above permutation defines a mapping f : A1 Ñ B. Since given pi1,d1q P B,
we can without ambiguity recover the red segment and blue segment of d1, the mapping
is reversible, i.e., f is one-to-one. Since r⇠n is permutation invariant, if pi1,d1q “ fpi,dq,
then P

!
r⇠n “ d

)
“ P

!
r⇠n “ d1

)
. Therefore

ÿ

pi,dqPA1
P

!
r⇠n “ d

)
“

ÿ

pi,dqPB
P

!
r⇠n “ d

)
.

Given pi, pd1, . . . , dnqq P B, we can move the segment pd
i

, . . . , d
i`v´1q to the position

v ` 1 to get a new sequence pd1
1, . . . , d

1
n

q P C, where

C :“
!

pe1, . . . , enq P rD
n

: pe1, . . . , e2vq “ pa1, . . . ,a`

,a1, . . . ,a`

q
)
.
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5.2 Sequence of non-fringe subtrees

Since there are n ´ 2v ` 1 possible values of i, this permutation gives us a pn ´ 2v ` 1q-
to-one mapping h : B Ñ C and if d1 “ hpi,dq, then P

!
r⇠n “ d

)
“ P

!
r⇠n “ d1

)
.

We obtain as usualÿ

dPC
P

!
r⇠n “ d

)
“ P

!
pr⇠n1 , . . . , r⇠n2vq “ pa1, . . . ,a`

,a1, . . . ,a`

q
)

“ P tp⇠1, . . . , ⇠2vq “ pa1, . . . ,a`

,a1, . . . ,a`

q | S
n

“ n ´ 1u
“ P tp⇠1, . . . , ⇠2vq “ pa1, . . . ,a`

,a1, . . . ,a`

qu
ˆ P tS

n´2v “ pn ´ 1q ´ 2pv ` ` ´ 1qu
P tS

n

“ n ´ 1u
“ ⇡nf pT q2P tS

n´2v “ n ` 1 ´ 2pv ` `qu
P tS

n

“ n ´ 1u .

It follows thatÿ

pi,dqPA1
P

!
r⇠n “ d

)
“

ÿ

pi1
,dqPB

P
!

r⇠n “ d
)

“ pn ´ 2v ` 1q
ÿ

dPC
P

!
r⇠n “ d

)

“ pn ´ 2v ` 1q⇡nf pT q2P tS
n´2v “ n ` 1 ´ 2pv ` `qu

P tS
n

“ n ´ 1u . (9)

The lemma follows by combining (8) and (9) with the following:

EpNnf

T

pT gw

n

qq2 “ n
nÿ

i“2

E rI1Iis “ n
ÿ

pi,dqPA
P

!
r⇠n “ d

)

“ n
ÿ

pi,dqPA1
P

!
r⇠n “ d

)
` n

ÿ

pi,dqPA2
P

!
r⇠n “ d

)
.

5.2 Sequence of non-fringe subtrees

Let T
n

be a sequence of trees. Let v
n

:“ vpT
n

q and `
n

:“ `pT
n

q. In this subsection we
prove Theorem 4, the concentration of Nnf

Tn
pT gw

n

q.
Lemma 24. Assume Condition A. If |T

n

| “ opnq, then E
“
Nnf

Tn
pT gw

n

q‰ {pn⇡nf pT
n

qq Ñ 1.

Proof. |T
n

| “ opnq implies that v
n

“ opnq and `
n

“ opnq. Therefore it follows Lemma 5
and 22 that

E
“
Nnf

Tn
pT gw

n

q‰

n⇡nf pT
n

q “ P tS
n´vn “ n ´ v

n

´ `
n

u
P tS

n

“ n ´ 1u Ñ 1.

Lemma 25. Assume Condition A. If |T
n

| “ opnq and n⇡nf pT
n

q Ñ 8, then

EpNnf

Tn
pT gw

n

qq2
pn⇡nf pT

n

qq2 Ñ 1.

Proof. Let v “ v
n

, ` “ `
n

and T “ T
n

. Since |T
n

| “ v ` `, we have v “ opnq and
` “ opnq. If T 1 P tT ‘ T u, then vpT 1q † 2v “ opnq and `pT 1q † 2` “ opnq. Therefore, it

28



5.2 Sequence of non-fringe subtrees

follows from Lemma 5 and 23 that

EpNnf

T

pT gw

n

qq2 “ npn ´ 2v ` 1q⇡nf pT q2P tS
n´2v “ n ` 1 ´ 2pv ` `qu

P tS
n

“ n ´ 1u
` 2n

ÿ

T

1PtT‘T u
⇡nf pT 1qP

 
S
n´vpT 1q “ n ´ vpT 1q ´ `pT 1q(

P tS
n

“ n ´ 1u
“ p1 ` op1qqpn⇡nf pT qq2 ` Opnq

ÿ

T

1PtT‘T u
⇡nf pT 1q.

Thus it su�ces to show that n
∞

T

1PtT‘T u ⇡
nf pT 1q “ opn⇡nf pT qq2.

Consider the superset A of tT ‘ T u that contains trees which can be obtained by
replacing a proper non-leaf subtree of T with another copy of T . (We do not restrict
where this replacement can happen as in the definition of tT‘T u.) Note that |A| “ v´1,
since T has v internal nodes and one of them is the root.
If T 1 P A, then T 1 contains T as a fringe subtree. Thus ⇡nf pT 1q § ⇡nf pT q. In the case

that v is bounded, we have

n
ÿ

T

1PA
P tT 1 † T gwu § nv⇡nf pT q “ Opn⇡nf pT qq “ opn⇡nf pT qq2.

Thus we can assume that v Ñ 8.
For T 1 P A, if T 1 has at least 3v{2 internal nodes, call T 1

big, otherwise call it small.
Let A

b

and A
s

be the sets of big and small trees in A respectively.
If T 1 P A

b

, then besides internal nodes that correspond to internal nodes of T , T 1

contains at least v{2 extra internal nodes. So we have P tT 1 † T gwu § ⇡nf pT qpv{2
max

.

Since v Ñ 8 and p
max

† 1, vpv{2
max

“ op1q. Using that |A| † v, we have

n
ÿ

T

1PAb

P tT 1 † T gwu § nv⇡nf pT qpv{2
max

“ opn⇡nf pT qq.

Let T
i,j

be a fringe subtree in T whose root is at depth i and is the j-th node of this
level. If replacing T

i,j

with a copy of T makes a new tree T 1
i

that has strictly less than
3v{2 internal nodes, then T

i,j

must contain more than v{2 internal nodes. Therefore, for
each i, there is at most one possible such j. For an example of T 1

i

, see Figure 3.

Figure 3: An example of T 1
1 for T with 7 internal nodes.

As T has v internal nodes, there are at most v ´ 1 possible i that can make T
i,j

a
proper and non-leaf subtree. Since T 1

i

has at least i internal nodes besides these in the

29



5.2 Sequence of non-fringe subtrees

copy of T that replaced T
i,j

, we have ⇡nf pT 1
i

q § ⇡nf pT qpi
max

. In summary, we have

n
ÿ

T

1PAs

⇡nf pT 1q § n
vÿ

i“1

⇡nf pT 1
i

q § n
vÿ

i“1

⇡nf pT qpi
max

§ Opn⇡nf pT qq.

Therefore,

n
ÿ

T

1PtT‘T u
P tT 1 † T gwu § n

ÿ

T

1PAb

P tT 1 † T gwu ` n
ÿ

T

1PAs

P tT 1 † T gwu

“ opn⇡nf pT qq ` Opn⇡nf pT qq “ opn⇡nf pT qq2.
The condition that n⇡nf pT

n

q Ñ 8 is necessary, as shown by the following lemma.

Lemma 26. Assume Condition A. Let L
hpnq be a chain (complete 1-ary tree) of height

hpnq. Let X
n

:“ Nnf

LhpnqpT gw

n

q. If nP
 
L
hpnq † T gw

( Ñ µ P p0,8q as n Ñ 8, then

EX
n

Ñ µ, Var pX
n

q Ñ µ
1 ` p1
1 ´ p1

, E
“pX

n

´ EX
n

q3‰ Ñ µ
3p21 ` 2p1 ` 1

p1 ´ p1q2 .

As a result, lim inf
nÑ8 dTV

pX
n

,Popµqq ° 0.

Proof. Let h “ hpnq. Since nP tL
h

† T gwu “ nph1 Ñ µ P p0,8q, we have h “ log1{p1 n `
Op1q. L

h

has h internal nodes and one leaf. Thus it follows from Lemma 22 and 5 that

EX
n

“ n⇡nf pL
h

qP tS
n´h

“ n ´ h ´ 1u
P tS

n

“ n ´ 1u Ñ µ.

Since tL
h

‘ L
h

u “ tL
h`i

: 1 § i § h ´ 1u, by Lemma 5,

⇣1 :“ 2n
ÿ

T

1PtLh‘Lhu
⇡nf pT 1qP

 
S
n´vpT 1q “ n ´ vpT 1q ´ `pT 1q(

P tS
n

“ n ´ 1u

“ 2n
h´1ÿ

i“1

⇡nf pL
h`i

qP tS
n´h´i

“ n ´ h ´ i ´ 1u
P tS

n

“ n ´ 1u

“ p1 ` op1qq2n
h´1ÿ

i“1

ph`i

1 “ p1 ` op1qq2nph1
h´1ÿ

i“1

pi1 Ñ 2µ
p1

1 ´ p1
.

We also have by Lemma 5,

⇣2 :“ npn ´ 2hq⇡nf pL
h

q2P tS
n´2h “ n ` 1 ´ 2ph ` 1qu

P tS
n

“ n ´ 1u Ñ µ2.

Therefore, it follows from Lemma 23 that

EpX
n

q2 “ ⇣1 ` ⇣2 Ñ 2µ
p1

1 ´ p1
` µ2.

Thus

Var pX
n

q “ E rpX
n

q2s ` E rX
n

s ´ E rX
n

s2 Ñ µ
1 ` p1
1 ´ p1

.

So we have
Var pX

n

q
E rX

n

s Ñ 1 ` p1
1 ´ p1

° 1.
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5.2 Sequence of non-fringe subtrees

With an argument similar to Lemma 23, we can compute E rpX
n

q3s, which yields

E
“pX

n

´ EX
n

q3‰ Ñ µ
3p21 ` 2p1 ` 1

p1 ´ p1q2 .

Since

E
“|X

n

´ EX
n

|3‰ “ 2E
“|X

n

´ EX
n

|3 ˆ JX
n

† EX
n

K
‰ ` E

“pX
n

´ EX
n

q3‰

§ 2pEX
n

q3 ` E
“pX

n

´ EX
n

q3‰
,

the above limit implies that

C :“ lim sup
nÑ8

E
“|X

n

´ EX
n

|3‰ † 8.

Now we can finish by following the method of Barbour et al. [3, thm. 3B]. Let

Z
n

L“ PopEX
n

q be a coupling of X
n

that minimizes P tZ
n

‰ X
n

u. Therefore we have
dTV

pX
n

,PopEX
n

qq “ P tZ
n

‰ X
n

u. Thus
Var pX

n

q ´ E rX
n

s “ E
“pX

n

´ EX
n

q2‰ ´ E
“pZ

n

´ EX
n

q2‰

“ E
“rpX

n

´ EX
n

q2 ´ pZ
n

´ EX
n

q2s ˆ JX
n

‰ Z
n

K
‰

§ E
“pX

n

´ EX
n

q2 ˆ JX
n

‰ Z
n

K
‰

§ P pX
n

‰ Z
n

q1{3pE “|X
n

´ EX
n

|3‰q2{3,

where in the last step we use Hölder’s inequality [17, pp. 129]. So

dTV

pX
n

,PopEX
n

qq “ P tX
n

‰ Z
n

u •
ˆ

Var pX
n

q ´ EX
n

Ep|X
n

´ EX
n

|3qq2{3

˙3

.

Therefore

lim inf
nÑ8

dTV

pX
n

,PopEX
n

qq • 1

C2

ˆ
1 ` p1
1 ´ p1

˙3

° 0.

Since EX
n

Ñ µ, we also have lim inf
nÑ8 dTV

pX
n

,Popµqq ° 0.

Remark. For the Possion distribution to be a good approximation of a sum of indicator
random variables, it is necessary that these indicators are almost independent. But
for L

hpnq, this is not true—if we find a chain of length hpnq at position i, then with
probability p1 we will find another such chain at position i ` 1. This explains why
Poisson approximation fails in this case.

Proof of Theorem 4. (i): Since |T
n

| “ v
n

` `
n

, we have v
n

“ opnq and ` “ opnq. So by
Lemma 24, ENnf

Tn
pT gw

n

q „ n⇡nf pT
n

q. Thus n⇡nf pT
n

q Ñ 0 implies Nnf

Tn
pT gw

n

q pÑ 0.
(ii): It follows from Lemma 24 and Lemma 25 that

Var
`
Nnf

Tn
pT gw

n

q˘ “ EpNnf

Tn
pT gw

n

qq2 ` ENnf

Tn
pT gw

n

q ´ pENnf

Tn
pT gw

n

qq2
“ p1 ` op1qqpn⇡nf pT

n

qq2 ` p1 ` op1qqpn⇡nf pT
n

qq ´ p1 ` op1qqpn⇡nf pT
n

qq2
“ opn⇡nf pT

n

qq2 “ opENnf

Tn
pT gw

n

qq2.
Thus Nnf

Tn
pT gw

n

q{pn⇡nf pT
n

qq pÑ 1.

31
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5.3 Complete r-ary non-fringe subtrees

Theorem 4 allows us to find the maximal complete r-ary non-fringe subtree in T gw

n

. We
omit the proofs of the following results due to their similarities to Lemma 16 and 17:

Lemma 27. Assume Condition A and that p
r

° 0 for some r • 2. Let

sH
n,r

be the

height of the maximal complete r-ary non-fringe subtree in T gw

n

. Then as n Ñ 8,

sH
n,r

log
r

plog nq
pÑ 1.

Lemma 28. Assume Condition A and that p1 ° 0. Let sH
n,1 be the height of the maximal

chain (complete 1-ary) non-fringe subtree in T gw

n

. Then as n Ñ 8,

sH
n,1

log1{p1 n
pÑ 1.

Example (The binary tree). Recall that when p0 “ p2 “ 1{4 and p1 “ 1{2, T gw

n

is
equivalent to a uniform random binary tree of size n. It follows from Lemma 28 that
sH
n,1{ log2 n pÑ 1. This result was previously proved by Devroye et al. [7].

6 Open questions

Part (iv) of Theorem 3 shows that dTV

pNAnpT gw

n

q,Popn⇡pA
n

qqq “ op1q, given that
⇡pA

n

q{⇡pT
knq Ñ 0. We believe this condition may not be necessary. However, to prove

it seems to require a very di↵erent method.
Theorem 4 shows that if n⇡nf pT

n

q Ñ 8, then Nnf

Tn
pT gw

n

q{n⇡nf pT
n

q pÑ 1. We believe

that it is also true that pNnf

Tn
pT gw

n

q ´ n⇡nf pT
n

qq{a
n⇡nf pT

n

q converges in distribution to
a standard normal distribution. (Janson [20, thm. 1.9] has shown that this is indeed the
case when vpnq is bounded.) As shown in Section 5.2, the overlapping of subtrees does
not a↵ect the second moment of non-fringe subtree counts much. Thus we may be able
to compute high moments in similar ways and apply Lemma 14 to prove a central limit
theorem.
Theorem 3 generalizes Theorem 2 by considering the number of fringe subtrees whose

shapes belong to a set of trees T
kn instead of being a single tree T

n

. It may be possible
to generalize Theorem 4 in similar way, i.e., we consider the non-fringe subtrees whose
shapes belong to a set of trees T

kn instead of being a single tree T
n

.
Another problem may be of interest is to get a non-fringe version of Theorem 5, i.e.,

what are the su�cient conditions for all (or not all) trees of size at most k to appear in
T gw

n

as non-fringe subtrees.
Let T be a tree and v be a node of T . Recall that T

v

denotes the fringe subtree rooted
at v. If by removing some or none the subtrees of T

v

, we can make it isomorphic to
another tree T 1, then we say that T contains an embedded subtree of the shape T 1 at
v. A more challenging open question is to determine the size of the maximum complete
r-ary embedded subtree in large conditional Galton-Watson trees.
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