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Abstract: Linear probing continues to be one of the best practical hashing algorithms due to its
good average performance, efficiency, and simplicity of implementation. However, the worst-case
performance of linear probing seems to degrade with high load factors due to a primary-clustering
tendency of one collision to cause more nearby collisions. It is known that the maximum cluster size
produced by linear probing, and hence the length of the longest probe sequence needed to insert
or search for a key in a hash table of size n, is Ω(log n), in probability. In this article, we introduce
linear probing hashing schemes that employ two linear probe sequences to find empty cells for the
keys. Our results show that two-way linear probing is a promising alternative to linear probing for
hash tables. We show that two-way linear probing has an asymptotically almost surely O(log log n)
maximum cluster size when the load factor is constant. Matching lower bounds on the maximum
cluster size produced by any two-way linear probing algorithm are obtained as well. Our analysis is
based on a novel approach that uses the multiple-choice paradigm and witness trees.

Keywords: open addressing hashing; linear probing; parking problem; worst-case search time;
two-way chaining; multiple-choice paradigm; randomized algorithms; witness tree; probabilistic
analysis

1. Introduction

In classical open addressing hashing [1], m keys are hashed sequentially and on-line
into a table of size n > m, (that is, a one-dimensional array with n cells which we denote
by the set T = {0, . . . , n− 1}), where each cell can harbor at most one key. Each key x has
only one infinite probe sequence fi(x) ∈ T , for i ∈ N. During the insertion process, if a
key is mapped to a cell that is already occupied by another key, a collision occurs, and
another probe is required. The probing continues until an empty cell is reached where a key
is placed. This method of hashing is pointer-free, unlike hashing with separate chaining
where keys colliding in the same cell are hashed to a separate linked list or chain. For a
discussion of different hashing schemes, see [2–4].

In classical linear probing, the probe sequence for each key x is defined by fi+1(x) =
fi(x) + 1 mod n, for i ∈ [[n]] := {1, . . . , n}. Linear probing is known for its good practical
performance, efficiency, and simplicity. It continues to be one of the best hash tables
in practice due to its simplicity of implementation, absence of overhead for internally
used pointers, cache efficiency, and locality of reference [5–8]. On the other hand, the
performance of linear probing seems to degrade with high load factors m/n, due to a
primary-clustering tendency of one collision to cause more nearby collisions. In particular,
the length of the longest probe sequence needed to insert (or search for) a key in a hash
table, with constant load factor, constructed by linear probing is proven [9] to be Ω(log n),
in probability.

The purpose of this paper is to design efficient open addressing hashing schemes that
improve the worst-case performance of classical linear probing. Our study concentrates
on schemes that use two linear probe sequences to find possible hashing cells for the
keys. Each key chooses two initial cells independently and uniformly at random, with

Algorithms 2023, 16, 500. https://doi.org/10.3390/a16110500 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16110500
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1109-106X
https://doi.org/10.3390/a16110500
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16110500?type=check_update&version=1


Algorithms 2023, 16, 500 2 of 27

replacement. From each initial cell, we probe linearly, and then cyclically whenever the last
cell in the table is reached, to find two empty cells which we call terminal cells. The key
then is inserted into one of these terminal cells according to a fixed strategy. We consider
strategies that utilize the greedy multiple-choice paradigm [10,11]. We show that some of the
trivial insertion strategies with two-way linear probing have unexpected poor performance.
For example, one of the trivial strategies we study inserts each key into the terminal cell
found by the shorter probe sequence. Another simple strategy inserts each key into the
terminal cell that is adjacent to the smaller cluster, where a cluster is an isolated set of
consecutively occupied cells. Unfortunately, the performances of these two strategies are
not ideal. We prove that, when any of these two strategies is used to construct a hash table
with constant load factor, the maximum unsuccessful search time is Ω(log n), with high
probability (w.h.p.). Indeed, we prove that, w.h.p., a giant cluster of size Ω(log n) emerges
in a hash table of constant load factor, if it is constructed by a two-way linear probing
insertion strategy that always inserts any key upon arrival into the empty cell of its two
initial cells whenever one of them is empty.

Consequently, we introduce two other strategies that overcome this problem. First, we
partition the hash table into equal-sized blocks of size β, assuming n/β is an integer. We
consider the following strategies for inserting the keys:

A. Each key is inserted into the terminal cell that belongs to the least crowded block, i.e.,
the block with the least number of keys.

B. For each block i, we define its weight to be the number of keys inserted into terminal
cells found by linear probe sequences whose starting locations belong to block i. Each
key, then, is inserted into the terminal cell found by the linear probe sequence that has
started from the block of smaller weight.

For strategy B, we show that β can be chosen such that, for any constant load factor α :=
m/n, the maximum unsuccessful search time is not more than c log2 log n, w.h.p., where c
is a function of α. If α < 1/2, the same property also holds for strategy A. Furthermore,
these schemes are optimal up to a constant factor in the sense that an Ω(log log n) universal
lower bound holds for any strategy that uses two linear probe sequences, even if the initial
cells are chosen according to arbitrary probability distributions.

Paper Scope

In the next section, we provide a summary of the related background and history. In
Section 3, we present our proposed two-way linear probing hashing algorithms. We prove
in Section 4 a universal lower bound of order of log log n on the maximum unsuccessful
search time of any two-way linear probing algorithm. We prove, in addition, that not
every two-way linear probing scheme behaves efficiently. We devote Section 5 to the
positive results, where we demonstrate that some of our two-way linear probing heuristics
accomplish O(log log n) worst-case unsuccessful search time. The simulation and the
comparison results of the studied algorithms are summarized in Section 6.

2. Background and History

For hashing with separate chaining, one can achieve O(log log n) maximum search
time by applying the two-way chaining scheme [10,12,13], where each key is inserted into the
shorter chain between two chains chosen independently and uniformly at random, with
replacement, breaking ties randomly. It is proven [10,14,15] that, when r = Ω(n) keys are
inserted into a hash table with n chains, the length of the longest chain upon termination is
log2 log n + r/n±O(1), w.h.p. Of course, this idea can be generalized to open addressing.
Assuming the hash table is partitioned into blocks of size β, we allow each key to choose
two initial cells, and hence two blocks, independently and uniformly at random, with
replacement. From each initial cell and within its block, we probe linearly and cyclically, if
necessary, to find two empty cells; that is, whenever we reach the last cell in the block and
it is occupied, we continue probing from the first cell in the same block. The key, then, is
inserted into the empty cell that belongs to the least full block. Using the two-way chaining
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result, one can show that, for suitably chosen β, the maximum unsuccessful search time is
O(log log n), w.h.p. However, this scheme uses probe sequences that are not totally linear;
rather, they are locally linear within the blocks.

2.1. Probing and Replacement

Open addressing schemes are determined by the type of the probe sequence, and
the replacement strategy for resolving the collisions. Some of the commonly used probe
sequences are as follows:

1. Random Probing [16]: For every key x, the infinite sequence fi(x) is assumed to be
independent and uniformly distributed over T . That is, we require to have an infinite
sequence fi of truly uniform and independent hash functions. If for each key x, the
first n probes of the sequence fi(x) are distinct, i.e., it is a random permutation, then
it is called uniform probing [1].

2. Linear Probing [1]: For every key x, the first probe f1(x) is assumed to be uniform
on T , and the next probes are defined by fi+1(x) = fi(x) + 1 mod n, for i ∈ [[n]]. So
we only require f1 to be a truly uniform hash function.

3. Double Probing [17]: For every key x, the first probe is f1(x), and the next probes
are defined by fi+1(x) = fi(x) + g(x) mod n, for i ∈ N, where f1 and g are truly
uniform and independent hash functions.

Random and uniform probings are, in some sense, the idealized models [18,19], and
their plausible performances are among the easiest to analyze, but obviously they are
unrealistic. Linear probing is perhaps the simplest to implement, but it behaves badly when
the table is almost full. Double probing can be seen as a compromise.

During the insertion process of a key x, suppose that we arrive at the cell fi(x), which
is already occupied by another previously inserted key y, that is, fi(x) = f j(y), for some
j ∈ N. Then a replacement strategy for resolving the collision is needed. Three strategies
have been suggested in the literature (see [20] for other methods):

1. FIRST COME FIRST SERVED (FCFS) [1]: The key y is kept in its cell, and the key x is
referred to the next cell fi+1(x).

2. LAST COME FIRST SERVED (LCFS) [21]: The key x is inserted into the cell fi(x), and
the key y is pushed along to the next cell in its probe sequence, f j+1(y).

3. ROBIN HOOD [22,23]: The key which traveled the farthest is inserted into the cell.
That is, if i > j, then the key x is inserted into the cell fi(x), and the key y is pushed
along to the next cell f j+1(y); otherwise, y is kept in its cell, and the key x tries its next
cell fi+1(x).

2.2. Average Performance

Evidently, the performance of any open addressing scheme deteriorates when the
ratio m/n approaches 1, as the cluster sizes increase, where a cluster is an isolated set of
consecutively occupied cells (cyclically defined) that are bounded by empty cells. Therefore,
we shall assume that the hash table is α-full, that is, the number of hashed keys m = b αn c,
where α ∈ (0, 1) is a constant called the load factor. The asymptotic average-case perfor-
mance has been extensively analyzed for random and uniform probing [1,16,18,19,24,25],
linear probing [3,26–28], and double probing [17,29–32]. The expected search times were
proven to be constants, more or less, depending on α only. Recent results about the average-
case performance of linear probing and the limit distribution of the construction time have
appeared in [33–36]. See also [37–39] for the average-case analysis of linear probing for
non-uniform hash functions.

It is worth noting that the average search time of linear probing is independent of
the replacement strategy; see [1,3]. This is because the insertion of any order of the keys
results in the same set of occupied cells, i.e., the cluster sizes are the same; hence, the total
displacement of the keys—from their initial hashing locations—remains unchanged. It is
not difficult to see that this independence is also true for random and double probings. That
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is, the replacement strategy does not have any effect on the average successful search time
in any of the above probings. In addition, since, in linear probing, the unsuccessful search
time is related to the cluster sizes (unlike random and double probings), the expected and
the maximum unsuccessful search times in linear probing are invariant to the replacement
strategy.

It is known that the LCFS [21,40] and ROBIN HOOD [20,22,23,35] strategies minimize
the variance of displacement. Recently, Janson [41] and Viola [42] have reaffirmed the effect
of these replacement strategies on the individual search times in linear probing hashing.

2.3. Worst-Case Performance

The focal point of this article, however, is the worst-case search time which is propor-
tional to the length of the longest probe sequence over all keys (LLPS, for short). Many
results have been established regarding the worst-case performance of open addressing.

The worst-case performance of linear probing with the FCFS policy was analyzed by
Pittel [9]. He proved that the maximum cluster size, and hence the LLPS needed to insert (or
search for) a key, is asymptotic to (α− 1− log α)−1 log n, in probability. As we mentioned
above, this bound holds for linear probing with any replacement strategy. Chassaing and
Louchard [43] studied the threshold of emergence of a giant cluster in linear probing. They
showed that, when the number of keys m = n− ω(

√
n), the size of the largest cluster is

o(n), w.h.p.; however, when m = n− o(
√

n), a giant cluster of size Θ(n) emerges, w.h.p.
Gonnet [44] proved that, with uniform probing and the FCFS replacement strategy, the

expected LLPS is asymptotic to log1/α n− log1/α log1/α n + O(1) for α-full tables. However,
Poblete and Munro [21,40] showed that, if random probing is combined with the LCFS

policy, then the expected LLPS is at most (1 + o(1))Γ−1(αn) = O(log n/ log log n), where Γ
is the gamma function.

On the other hand, the ROBIN HOOD strategy with random probing leads to a more
striking performance. Celis [22] first proved that the expected LLPS is O(log n). However,
Devroye, Morin, and Viola [45] tightened the bounds and revealed that the LLPS is indeed
log2 log n ± Θ(1), w.h.p., thus achieving a double logarithmic worst-case insertion and
search times for the first time in open addressing hashing. Unfortunately, one cannot ignore
the assumption in random probing about the availability of an infinite collection of hash
functions that are sufficiently independent and behave like truly uniform hash functions in
practice. On the other side of the spectrum, we already know that the ROBIN HOOD policy
does not affect the maximum unsuccessful search time in linear probing. However, ROBIN

HOOD may be promising with double probing.

2.4. Other Initiatives

Open addressing methods that rely on the rearrangement of keys were under investi-
gation for many years, see, e.g., [20,46–50]. Pagh and Rodler [51] studied a scheme called
cuckoo hashing that exploits the LCFS replacement policy. It uses two hash tables of size
n > (1 + ε)m, for some constant ε > 0, and two independent hash functions chosen from
an O(log n)-universal class—one function only for each table. Each key is hashed initially
by the first function to a cell in the first table. If the cell is full, then the new key is inserted
there anyway, and the old key is kicked out to the second table to be hashed by the second
function. The same rule is applied in the second table. Keys are moved back and forth until
a key moves to an empty location or a limit has been reached. If the limit is reached, new
independent hash functions are chosen, and the tables are rehashed. The worst-case search
time is at most two, and the amortized expected insertion time, nonetheless, is constant.
However, this scheme utilizes less than 50% of the allocated memory, has a worst-case
insertion time of O(log n), w.h.p., and depends on a wealthy source of provably good
independent hash functions for the rehashing process. For further details see [52–55].

The space efficiency of cuckoo hashing is significantly improved when the hash table
is divided into blocks of fixed size b ≥ 1 and more hash functions are used to choose k ≥ 2
blocks for each key where each is inserted into a cell in one of its chosen blocks using
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the cuckoo random walk insertion method [56–61]. For example, it is known [57,58] that
89.7% space utilization can be achieved when k = 2 and the hash table is partitioned into
non-overlapping blocks of size b = 2. On the other hand, when the blocks are allowed to
overlap, the space utilization improves to 96.5% [57,61]. The worst-case insertion time of
this generalized cuckoo hashing scheme, however, is proven [59,62] to be polylogarithmic,
w.h.p.

Many real-time static and dynamic perfect hashing schemes achieving constant worst-
case search time, and linear (in the table size) construction time and space were designed
in [63–70]. All of these schemes, which are based, more or less, on the idea of multilevel
hashing, employ more than a constant number of perfect hash functions chosen from an
efficient universal class. Some of them even use O(n) functions.

2.5. The Multiple-Choice Paradigm

Allocating balls into bins is one of the historical assignment problems [71,72]. We are
given r balls that have to be placed into s bins. The balls have to be inserted sequentially
and on-line, that is, each ball is assigned upon arrival without knowing anything about the
future coming balls. The load of a bin is defined to be the number of balls it contains. We
would like to design an allocation process that minimizes the maximum load among all
bins upon termination. For example, in a classical allocation process, each ball is placed into
a bin chosen independently and uniformly at random, with replacement. It is known [44,73–
75] that, if r = Θ(s), the maximum load upon termination is asymptotic to log s/ log log s,
in probability.

On the other hand, the greedy multiple-choice allocation process, which appeared in [76,77]
and studied by Azar et al. [10], inserts each ball into the least loaded bin among d ≥ 2 bins
chosen independently and uniformly at random, with replacement, breaking ties randomly.
Throughout, we will refer to this process as GREEDYMC(s, r, d) for inserting r balls into s
bins. Surprisingly, the maximum bin load of GREEDYMC(s, s, d) decreases exponentially to
logd log s±O(1), w.h.p., [10]. However, one can easily generalize this to the case r = Θ(s).
It is also known that the greedy strategy is stochastically optimal in the following sense.

Theorem 1 (Azar et al. [10]). Let s, r, d ∈ N, where d ≥ 2, and r = Θ(s). Upon termination
of GREEDYMC(s, r, d), the maximum bin load is logd log s ±O(1), w.h.p. Furthermore, the
maximum bin load of any on-line allocation process that inserts r balls sequentially into s bins where
each ball is inserted into a bin among d bins chosen independently and uniformly at random, with
replacement, is at least logd log s−O(1), w.h.p.

Berenbrink et al. [14] extended Theorem 1 to the heavily loaded case where r � s, and
recorded the following tight result.

Theorem 2 (Berenbrink et al. [14]). There is a constant C > 0 such that, for any integers
r ≥ s > 0, and d ≥ 2, the maximum bin load upon termination of the process GREEDYMC(s, r, d)
is logd log s + r/s± C, w.h.p.

Theorem 2 is a crucial result that we have used to derive our results; see Theorems 8
and 9. It states that the deviation from the average bin load, which is logd log s, stays
unchanged as the number of balls increases.

Vöcking [11,78] demonstrated that it is possible to improve the performance of the
greedy process, if non-uniform distributions on the bins and a tie-breaking rule are carefully
chosen. He suggested the following variant, which is called Always-Go-Left. The bins are
numbered from 1 to n. We partition the s bins into d groups of almost equal size, that is,
each group has size Θ(s/d). We allow each ball to select upon arrival d bins independently
at random, but the i-th bin must be chosen uniformly from the i-th group. Each ball is
placed on-line, as before, in the least full bin, but upon a tie, the ball is always placed
in the leftmost bin among the d bins. We shall write LEFTMC(s, r, d) to refer to this
process. Vöcking [11] showed that, if r = Θ(s), the maximum load of LEFTMC(s, r, d) is
log log s/(d log φd) +O(1), w.h.p., where φd is a constant related to a generalized Fibonacci
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sequence. For example, the constant φ2 = 1.61... corresponds to the well-known golden
ratio, and φ3 = 1.83. In general, φ2 < φ3 < φ4 < · · · < 2, and limd→∞ φd = 2. Observe the
improvement on the performance of GREEDYMC(s, r, d), even for d = 2. The maximum
load of LEFTMC(s, r, 2) is 0.72...× log2 log s + O(1), whereas in GREEDYMC(s, r, 2), it is
log2 log s + O(1). The process LEFTMC(s, r, d) is also optimal in the following sense.

Theorem 3 (Vöcking [11]). Let r, s, d ∈ N, where d ≥ 2, and r = Θ(s). The maximum bin
load of of LEFTMC(s, r, d) upon termination is log log s/(d log φd)±O(1), w.h.p. Moreover,
the maximum bin load of any on-line allocation process that inserts r balls sequentially into s bins
where each ball is placed into a bin among d bins chosen according to arbitrary, not necessarily
independent, probability distributions defined on the bins is at least log log s/(d log φd)−O(1),
w.h.p.

Berenbrink et al. [14] studied the heavily loaded case and recorded the following
theorem.

Theorem 4 (Berenbrink et al. [14]). There is a constant A > 0 such that, for any integers
r ≥ s > 0, and d ≥ 2, the maximum bin load upon termination of the process LEFTMC(s, r, d) is
log log s/(d log φd) + r/s± A, w.h.p.

For other variants and generalizations of the multiple-choice paradigm see [79–84]. The
paradigm has been used to derive many applications, e.g., in load balancing, circuit routing,
IP address lookups, and computer graphics [75,85–88].

3. The Proposal

We design linear probing algorithms that accomplish double logarithmic worst-case
search time. Inspired by the two-way chaining algorithm [10] and its powerful performance,
we promote the concept of open addressing hashing with two-way linear probing. The
essence of the proposed concept is based on the idea of allowing each key to generate two
independent linear probe sequences and making the algorithm decide, according to some
strategy, at the end of which sequence the key should be inserted. Formally, each input key
x chooses two cells independently and uniformly at random, with replacement. We call
these cells the initial hashing cells available for x. From each initial hashing cell, we start a
linear probe sequence (with FCFS policy) to find an empty cell where we stop. Thus, we end
up with two unoccupied cells. We call these cells the terminal hashing cells. The question
now is: into which terminal cell should we insert the key x?

The insertion process of a two-way linear probing algorithm could follow one of
the strategies we mentioned earlier: it may insert the key at the end of the shorter probe
sequence, or into the terminal cell that is adjacent to the smaller cluster. Others may make
an insertion decision even before linear probing starts. In any of these algorithms, the
searching process for any key is basically the same: just start probing in both sequences
alternately, until the key is found or the two empty cells at the end of the sequences are
reached in the case of an unsuccessful search. Thus, the maximum unsuccessful search
time is at most twice the size of the largest cluster plus two.

We study the two-way linear probing algorithms stated above, and show that the hash
table, asymptotically almost surely, contains a giant cluster of size Ω(log n). Indeed, we
prove that a cluster of size Ω(log n) emerges, asymptotically almost surely, in any hash
table of constant load factor that is constructed by a two-way linear probing algorithm that
inserts any key upon arrival into the empty cell of its two initial cells whenever one of them
is empty.

We introduce two other two-way linear probing heuristics that lead to Θ(log log n)
maximum unsuccessful search times. The common idea of these heuristics is the marriage
between the two-way linear probing concept and a technique we call blocking where the
hash table is partitioned into equal-sized blocks. These blocks are used by the algorithm
to obtain some information about the keys allocation. The information is used to make
better decisions about where the keys should be inserted, and hence, lead to a more even
distribution of the keys.
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Two-way linear probing hashing has several advantages over the other proposed
hashing methods mentioned above: it reduces the worst-case behavior of hashing, it
requires only two hash functions, it is easy to parallelize, it is pointer-free and easy to
implement, and unlike the hashing schemes proposed in [51,58], it does not require any
rearrangement of keys or rehashing. Its maximum cluster size is O(log log n), and its
average-case performance can be at most twice the classical linear probing as shown in
the simulation results. Furthermore, it is not necessary to employ perfectly random hash
functions as it is known [6–8] that hash functions with a smaller degree of universality will
be sufficient to implement linear probing schemes. See also [31,32,51,53,70,76,89] for other
suggestions on practical hash functions.

Throughout, we assume the following. We are given m keys—from a universe set of
keys U—to be hashed into a hash table of size n such that each cell contains at most one
key. The process of hashing is sequential and on-line, that is, we never know anything
about the future keys. The constant α ∈ (0, 1) is preserved in this article for the load factor
of the hash table, that is, we assume that m = b αn c. The n cells of the hash table are
numbered 0, . . . , n− 1. The linear probe sequences always move cyclically from left to right
of the hash table. The replacement strategy of all of the introduced algorithms is FCFS. The
insertion time is defined to be the number of probes the algorithm performs to insert a key.
Similarly, the search time is defined to be the number of probes needed to find a key, or two
empty cells in the case of unsuccessful search. Observe that, unlike classical linear probing,
the insertion time of two-way linear probing may not be equal to the successful search
time. However, they are both bounded by the unsuccessful search time. Notice also that
we ignore the time to compute the hash functions.

3.1. Two-Way Linear Probing

To avoid any ambiguity, we consider this definition.

Definition 1. A two-way linear probing algorithm is an open addressing hashing algorithm that
inserts keys into cells using a certain strategy and does the following upon the arrival of each key:

1. It chooses two initial hashing cells independently and uniformly at random, with replacement.
2. Two terminal (empty) cells are then found by linear probe sequences starting from the initial

cells.
3. The key is inserted into one of these terminal cells.

To be clear, we give two examples of inefficient two-way linear probing algorithms.

x

x

Figure 1. An illustration of algorithm SHORTSEQ(n, m) in terms of balls (keys) and bins (cells). Each
ball is inserted into the empty bin found by the shorter sequence.

The Shorter Probe Sequence: SHORTSEQ Algorithm

Our first algorithm places each key into the terminal cell discovered by the shorter
probe sequence. More precisely, once the key chooses its initial hashing cells, we start two
linear probe sequences. We proceed, sequentially and alternately, one probe from each
sequence until we find an empty (terminal) cell where we insert the key. Formally, let f , g :
U → {0, . . . , n− 1} be independent and truly uniform hash functions. For x ∈ U , define the
linear sequence f1(x) = f (x), and fi+1(x) = fi(x) + 1 mod n, for i ∈ [[n]]; and similarly
define the sequence gi(x). The algorithm, then, inserts each key x into the first unoccupied
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cell in the following probe sequence: f1(x), g1(x), f2(x), g2(x), f3(x), g3(x), . . ., as shown
in Figure 1. We denote this algorithm that hashes m keys into n cells by SHORTSEQ(n, m),
for the shorter sequence.

The Smaller Cluster: SMALLCLUSTER Algorithm

The second algorithm inserts each key into the empty (terminal) cell that is the right
neighbor of the smaller cluster among the two clusters containing the initial hashing cells,
breaking ties randomly. If one of the initial cells is empty, then the key is inserted into it,
and if both of the initial cells are empty, we break ties evenly. Recall that a cluster is a group
of consecutively occupied cells whose left and right neighbors are empty cells. This means
that one can compute the size of the cluster that contains an initial hashing cell by running
two linear probe sequences in opposite directions starting from the initial cell and going
to the empty cells at the boundaries. So practically, the algorithm uses four linear probe
sequences. We refer to this algorithm by SMALLCLUSTER(n, m) for inserting m keys into n
cells (Figure 2).

x

x

Figure 2. Algorithm SMALLCLUSTER(n, m) inserts each key into the empty cell adjacent to the smaller
cluster, breaking ties randomly. The size of the clusters is determined by probing linearly in both
directions.

In Section 4.2, we show that algorithms SHORTSEQ and SMALLCLUSTER have unex-
pected poor performance. Indeed we prove that such algorithms, which always insert any
key upon arrival into the empty cell of its two initial cells whenever one of them is empty,
produce a cluster of size Ω(log n), asymptotically almost surely. To overcome the problems
of these algorithms, we introduce blocking.

3.2. Hashing with Blocking

The hash table is partitioned into equal-sized disjoint blocks of cells. Whenever a key
has two terminal cells, the algorithm considers the information provided by the blocks, e.g.,
the number of keys it harbors, to make a decision. Thus, the blocking technique enables
the algorithm to avoid some of the bad decisions the previous algorithms make. This
leads to a more controlled allocation process, and hence, to a more even distribution of
the keys. We use the blocking technique to design two two-way linear probing algorithms,
and an algorithm that uses linear probing locally within each block. The algorithms are
characterized by the way the keys pick their blocks to land in. The worst-case performance
of these algorithms is analyzed in Section 5 and proven to be O(log log n), w.h.p.

Note also that (for insertion operations only) the algorithms require a counter with
each block, but the extra space consumed by these counters is asymptotically negligible. In
fact, we will see that the extra space is O(n/ log log n) in a model in which integers take
O(1) space, and at worst O(n log log log n/ log log n) = o(n) units of memory, w.h.p., in a
bit model.

Since the block size for each of the following algorithms is different, we assume
throughout and without loss of generality that, whenever we use a block of size β, then n/β
is an integer. Recall that the cells are numbered 0, . . . , n− 1, and hence, for i ∈ [[n/β]], the
i-th block consists of the cells (i− 1)β, . . . , iβ− 1. In other words, the cell k ∈ {0, . . . , n− 1}
belongs to block number λ(k) := b k/β c+ 1.

Two-Way Locally Linear Probing: LOCALLYLINEAR Algorithm
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As a simple example of the blocking technique, we present the following algorithm,
which is a trivial application of the two-way chaining scheme [10]. The algorithm does not
satisfy the definition of two-way linear probing as we explained earlier, because the linear
probes are performed within each block and not along the hash table. That is, whenever the
linear probe sequence reaches the right boundary of a block, it continues probing starting
from the left boundary of the same block.

The algorithm partitions the hash table into disjoint blocks each of size β1(n), where
β1(n) is an integer to be defined later. We save with each block its load, that is, the number
of keys it contains, and keep it updated whenever a key is inserted in the block. For each key,
we choose two initial hashing cells, and hence two blocks, independently and uniformly
at random, with replacement. From the initial cell that belongs to the least loaded block,
breaking ties randomly, we probe linearly and cyclically within the block until we find an
empty cell where we insert the key. If the load of the block is β1, i.e., it is full, then we check
its right neighbor block and so on, until we find a block that is not completely full. We
insert the key into the first empty cell there. Notice that only one probe sequence is used to
insert any key. The search operation, however, uses two probe sequences as follows. First,
we compute the two initial hashing cells. We start probing linearly and cyclically within the
two (possibly identical) blocks that contain these initial cells. If both probe sequences reach
empty cells, or if one of them reaches an empty cell and the other one finishes the block
without finding the key, we declare the search to be unsuccessful. If both blocks are full
and the probe sequences completely search them without finding the key, then the right
neighbors of these blocks (cyclically speaking) are searched sequentially in the same way
mentioned above, and so on. We will refer to this algorithm as LOCALLYLINEAR(n, m) for
inserting m keys into n cells.

Two-Way Pre-Linear Probing: DECIDEFIRST Algorithm

In the previous two-way linear probing algorithms, each input key initiates linear
probe sequences that reach two terminal cells, and then the algorithms decide in which
terminal cell the key should be inserted. The following algorithm, however, allows each
key to choose two initial hashing cells, and then decides, according to some strategy, which
initial cell should start a linear probe sequence to find a terminal cell to harbor the key.
Therefore, technically, the insertion process of any key uses only one linear probe sequence,
but we still use two sequences for any search.

34 2 2 6 3 1
x

x

Figure 3. An illustration of algorithm DECIDEFIRST(n, m). The hash table is divided into blocks of
size β2. The number under each block is its weight. Each key decides first to land into the block of
smaller weight, breaking ties randomly, then probes linearly to find its terminal cell.

Formally, we describe the algorithm as follows. Let α ∈ (0, 1) be the load factor.
Partition the hash table into blocks of size β2(n), where β2(n) is an integer to be defined
later. Each key x still chooses, independently and uniformly at random, two initial hashing
cells, say Ix and Jx, and hence, two blocks which we denote by λ(Ix) and λ(Jx). For
convenience, we say that the key x has landed in block i, if the linear probe sequence used
to insert the key x has started (from the initial hashing cell available for x) in block i. Define
the weight of a block to be the number of keys that have landed in it. We save with each
block its weight and keep it updated whenever a key lands in it. Now, upon the arrival
of key x, the algorithm allows x to land into the block among λ(Ix) and λ(Jx) of smaller
weight, breaking ties randomly. Whence, it starts probing linearly from the initial cell
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contained in the block until it finds a terminal cell into which the key x is placed. If, for
example, both Ix and Jx belong to the same block, then x lands in λ(Ix), and the linear
sequence starts from an arbitrarily chosen cell among Ix and Jx.

We will write DECIDEFIRST(n, m) to refer to this algorithm for inserting m keys into n
cells. In short, the strategy of DECIDEFIRST(n, m) as illustrated in Figure 3 is: land in the
block of smaller weight, walk linearly, and insert into the first empty cell reached.

Two-Way Post-Linear Probing: WALKFIRST Algorithm

We introduce yet another hashing algorithm that achieves Θ(log log n) worst-case
search time, in probability, and shows better performance in experiments than DECIDEFIRST

algorithm as demonstrated in the simulation results presented in Section 6. Suppose that
the load factor α ∈ (0, 1/2), and that the hash table is divided into blocks of size

β3(n) :=
⌈

log2 log n + 8
1− δ

⌉
,

where δ ∈ (2α, 1) is an arbitrary constant. Define the load of a block to be the number of
keys (or occupied cells) it contains. Suppose that we save with each block its load and
keep it updated whenever a key is inserted into one of its cells. Recall that each key x
has two initial hashing cells. From these initial cells, the algorithm probes linearly and
cyclically until it finds two empty cells Ux and Vx, which we call terminal cells. Let λ(Ux)
and λ(Vx) be the blocks that contain these cells. The algorithm, then, inserts the key x into
the terminal cell (among Ux and Vx) that belongs to the least loaded block among λ(Ux)
and λ(Vx), breaking ties randomly. We refer to this algorithm of open addressing hashing
for inserting m keys into n cells as WALKFIRST(n, m) (Figure 4).

x

x

Figure 4. Algorithm WALKFIRST(n, m) inserts each key into the terminal cell that belongs to the least
crowded block, breaking ties arbitrarily.

4. Lower Bounds

We prove here that the idea of two-way linear probing alone is not always sufficient to
pull off a plausible hashing performance. We prove that a large group of two-way linear
probing algorithms have an Ω(log n) lower bound on their worst-case search time. We
shall first record a lower bound that holds for any two-way linear probing algorithm.

4.1. Universal Lower Bound

The following lower bound holds for any two-way linear probing hashing scheme, in
particular, the ones that are presented in this article.

Theorem 5. Let n ∈ N, and m = b αn c, where α ∈ (0, 1) is a constant. Let A be any two-way
linear probing algorithm that inserts m keys into a hash table of size n. Then upon termination of A,
w.h.p., the table contains a cluster of size of at least log2 log n−O(1).

Proof. Imagine that we have a bin associated with each cell in the hash table. Recall that,
for each key x, algorithm A chooses two initial cells, and hence two bins, independently
and uniformly at random, with replacement. Algorithm A, then, probes linearly to find
two (possibly identical) terminal cells, and inserts the key x into one of them. Now imagine
that after the insertion of each key x, we also insert a ball into the bin associated with the
initial cell from which the algorithm started probing to reach the terminal cell into which
the key x was placed. If both of the initial cells lead to the same terminal cell, then we
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break the tie randomly. Clearly, if there is a bin with k balls, then there is a cluster of size
of at least k, because the k balls represent k distinct keys that belong to the same cluster.
However, Theorem 1 asserts that the maximum bin load upon termination of algorithm A
is at least log2 log n−O(1), w.h.p.

The above lower bound is valid for all algorithms that satisfy Definition 1. A more
general lower bound can be established on all open addressing schemes that use two
linear probe sequences where the initial hashing cells are chosen according to some (not
necessarily uniform or independent) probability distributions defined on the cells. We
still assume that the probe sequences are used to find two (empty) terminal hashing cells,
and the key is inserted into one of them according to some strategy. We call such schemes
non-uniform two-way linear probing. The proof of the following theorem is basically similar
to Theorem 5, but by using instead Vöcking’s lower bound as stated in Theorem 3.

Theorem 6. Let n ∈ N, and m = b αn c, where α ∈ (0, 1) is a constant. Let A be any non-uniform
two-way linear probing algorithm that inserts m keys into a hash table of size n where the initial
hashing cells are chosen according to some probability distributions. Then the maximum cluster size
produced by A, upon termination, is at least log log n/(2 log φ2)−O(1), w.h.p.

4.2. Algorithms that Behave Poorly

We characterize some of the inefficient two-way linear probing algorithms. Notice
that the main mistake in algorithms SHORTSEQ(n, m) and SMALLCLUSTER(n, m) is that the
keys are allowed to be inserted into empty cells even if these cells are very close to some
giant clusters. This leads us to the following theorem whose proof utilizes Lemmas 4–6,
stated in Appendix A, regarding negative association of random variables. Throughout,
we write binomial(n, p) to denote a binomial random variable with parameters n ∈ N and
p ∈ [0, 1].

Theorem 7. Let α ∈ (0, 1) be constant. Let A be a two-way linear probing algorithm that inserts
m = b αn c keys into n cells such that, whenever a key chooses an empty and an occupied initial
cells, the algorithm inserts the key into the empty one. Then algorithm A produces a giant cluster of
size Ω(log n), w.h.p.

Proof. Let β =
⌊

b loga n
⌋

for some positive constants a and b to be defined later, and
without loss of generality, assume that N := n/β is an integer. Suppose that the hash table
is divided into N disjoint blocks, each of size β. For i ∈ [[N]], let Bi = {β(i− 1) + 1, . . . , βi}
be the set of cells of the i-th block, where we consider the cell numbers in a circular fashion.
We say that a cell j ∈ [[n]] is “covered" if there is a key whose first initial hashing cell is the
cell j and its second initial hashing cell is an occupied cell. A block is covered if all of its cells
are covered. Observe that, if a block is covered, then it is fully occupied. Thus, it suffices to
show that there would be a covered block, w.h.p.

For i ∈ [[N]], let Yi be the indicator that the i-th block is covered. The random vari-
ables Y1, . . . , YN are negatively associated which can been seen as follows. For j ∈ [[n]] and
t ∈ [[m]], let Xj(t) be the indicator that the j-th cell is covered by the t-th key, and set X0(t) :=
1− ∑n

j=1 Xj(t). Notice that the random variable X0(t) is binary. The zero-one Lemma
asserts that the binary random variables X0(t), . . . , Xn(t) are negatively associated. How-
ever, since the keys choose their initial hashing cells independently, the random variables
X0(t), . . . , Xn(t) are mutually independent from the random variables X0(t′), . . . , Xn(t′),
for any distinct t, t′ ∈ [[m]]. Thus, by Lemma 5, the union ∪m

t=1{X0(t), . . . , Xn(t)} is a set of
negatively associated random variables. The negative association of the Yi is assured now
by Lemma 6 as they can be written as non-decreasing functions of disjoint subsets of the
indicators Xj(t). Since the Yi are negatively associated and identically distributed, then

P{Y1 = 0, . . . , YN = 0} ≤ P{Y1 = 0} × · · · × P{YN = 0} ≤ exp(−NP{Y1 = 1}) .

Thus, we only need to show that NP{Y1 = 1} tends to infinity as n goes to infinity. To
bound the last probability, we need to focus on the way the first block B1 = {1, 2, . . . , β}
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is covered. For j ∈ [[n]], let tj be the smallest t ∈ [[m]] such that Xj(t) = 1 (if such exists),
and m + 1 otherwise. We say that the first block is “covered in order" if and only if
1 ≤ t1 < t2 < · · · < tβ ≤ m. Since there are β! orderings of the cells in which they can be
covered (for the first time), we have

P{Y1 = 1} = β! P{B1is covered in order} .

For t ∈ [[m]], let M(t) = 1 if block B1 is full before the insertion of the t-th key, and
otherwise be the minimum i ∈ B1 such that the cell i has not been covered yet. Let A be
the event that, for all t ∈ [[m]], the first initial hashing cell of the t-th key is either cell M(t)
or a cell outside B1. Define the random variable W := ∑m

t=1 Wt, where Wt is the indicator
that the t-th key covers a cell in B1. Clearly, if A is true and W ≥ β, then the first block is
covered in order. Thus,

P{Y1 = 1} ≥ β! P{[W ≥ β ] ∩ A} = β! P{A}P{W ≥ β | A} .

However, since the initial hashing cells are chosen independently and uniformly at random,
then for n chosen large enough, we have

P{A} ≥
(

1− β

n

)m
≥ e−2β ,

and for t ≥ dm/2 e,

P{Wt = 1 | A} = 1
n− β + 1

· t− 1
n
≥ α

4n
.

Therefore, for n that is sufficiently large, we obtain

NP{Y1 = 1} ≥ Nβ! e−2β P{binomial(dm/2 e, α/(4n)) ≥ β}

≥ Nβ! e−2β (m/2− β)β

β!

( α

4n

)β(
1− α

4n

)n

≥ N
(

α2

8e2

)β(
1− 2β

m

)β(
1− 1

4n

)n

≥ n
4β

(
α2

8e2

)β

,

which goes to infinity as n approaches infinity whenever a = 8e2/α2 and b is any positive
constant less than 1.

Clearly, algorithms SHORTSEQ(n, m) and SMALLCLUSTER(n, m) satisfy the condition
of Theorem 7. So this corollary follows.

Corollary 1. Let n ∈ N, and m = b αn c, where α ∈ (0, 1) is constant. The size of the largest
cluster generated by algorithm SHORTSEQ(n, m) is Ω(log n), w.h.p. The same result holds for
algorithm SMALLCLUSTER(n, m).

5. Upper Bounds

In this section, we establish upper bounds on the worst-case performance of the
two-way linear probing algorithms that use a blocking technique: LOCALLYLINEAR, DE-
CIDEFIRST, and WALKFIRST. We show that the block size can be chosen for each of these
algorithms to demonstrate that the maximum cluster size is O(log log n), w.h.p.

5.1. Two-Way Locally Linear Probing: LOCALLYLINEAR Algorithm

Recall that algorithm LOCALLYLINEAR(n, m) inserts keys into a hash table with dis-
joint blocks of size β1(n). We show next that β1 can be defined such that none of the blocks
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are completely full, w.h.p. This means that, whenever we search for any key, most of the
time, we only need to search linearly and cyclically the two blocks that the key chooses
initially.

Theorem 8. Let n ∈ N, and m = b αn c, where α ∈ (0, 1) is a constant. Let C be the constant
defined in Theorem 2, and define

β1(n) :=
⌊

log2 log n + C
1− α

+ 1
⌋

.

Then, w.h.p., the maximum unsuccessful search time of LOCALLYLINEAR(n, m) with blocks of
size β1 is at most 2β1, and the maximum insertion time is at most β1 − 1.

Proof. Notice the equivalence between algorithm LOCALLYLINEAR(n, m) and the allo-
cation process GREEDYMC(n/β1, m, 2) where m balls (keys) are inserted into n/β1 bins
(blocks) by placing each ball into the least loaded bin among two bins chosen independently
and uniformly at random, with replacement. It suffices, therefore, to study the maximum
bin load of GREEDYMC(n/β1, m, 2), which we denote by Ln. However, Theorem 2 says
that, w.h.p.,

Ln ≤ log2 log n + C + αβ1 < (1− α)β1 + αβ1 = β1 .

and similarly,

Ln ≥ log2 log n + αβ1 − C >
log2 log n + C

1− α
− 2C ≥ β1 − 2C− 1 .

5.2. Two-Way Pre-Linear Probing: DECIDEFIRST Algorithm

The next theorem describes the worst-case performance of algorithm DECIDEFIRST(n, m)
with blocks of size β2 showing that the size of the largest cluster produced by the algorithm
is Θ(log log n), w.h.p.

Theorem 9. Let n ∈ N, and m = b αn c, where α ∈ (0, 1) is a constant. There is a constant η > 0
such that, if

β2(n) :=

⌈
(1 +

√
2− α)√

2− α(1− α)
(log2 log n + η)

⌉
,

then, w.h.p., the worst-case unsuccessful search time of algorithm DECIDEFIRST(n, m) with blocks
of size β2 is at most ξn := 12(1− α)−2(log2 log n + η), and the maximum insertion time is at
most ξn/2.

Proof. Assume first that DECIDEFIRST(n, m) is applied to a hash table with blocks of
size β = d b(log2 log n + η) e, and that n/β is an integer, where b = (1 + ε)/(1− α), for
some arbitrary constant ε > 0. Consider the resulting hash table after termination of
the algorithm. Let M ≥ 0 be the maximum number of consecutive blocks that are fully
occupied. Without loss of generality, suppose that these blocks start at block i + 1, and let
S = {i, i + 1, . . . , i + M} represent these full blocks in addition to the left adjacent block
that is not fully occupied (Figure 5).

S

i i + 1 i + M

Figure 5. A portion of the hash table showing the largest cluster, and the set S, which consists of the
full consecutive blocks and their left neighbor.

Notice that each key chooses two cells (and hence, two possibly identical blocks)
independently and uniformly at random. Moreover, any key always lands in the block
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of smaller weight. Since there are n/β blocks, and b αn c keys, then by Theorem 2, there
is a constant C > 0 such that the maximum block weight is not more than λn := (αb +
1) log2 log n + αbη + α + C, w.h.p. Let An denote the event that the maximum block weight
is at most λn. Let W be the number of keys that have landed in S, i.e., the total weight of
blocks contained in S. Plainly, since block i is not full, then all the keys that belong to the M
full blocks have landed in S. Thus, W ≥ Mb(log2 log n + η), deterministically. Now, clearly,
if we choose η = C + α, then the event An implies that (M + 1)(αb + 1) ≥ Mb, because
otherwise, we have

W ≤ (M + 1)(αb + 1)
(

log2 log n +
αbη + α + C

αb + 1

)
< Mb(log2 log n + η) ,

which is a contradiction. Therefore, An yields that

M ≤ αb + 1
(1− α)b− 1

≤ 1 + εα

ε(1− α)
.

Recall that (αb + 1) < b = (1 + ε)/(1− α). Again, since block i is not full, the size of
the largest cluster is not more than the total weight of the M + 2 blocks that cover it.
Consequently, the maximum cluster size is, w.h.p., not more than

(M + 2)(αb + 1)(log2 log n + η) ≤ ψ(ε)

(1− α)2 (log2 log n + η) ,

where ψ(ε) := 3− α + (2− α)ε + 1/ε. Since ε is arbitrary, we choose it such that ψ(ε) is
minimum, i.e., ε = 1/

√
2− α; in other words, ψ(ε) = 3− α + 2

√
2− α < 6. This concludes

the proof as the maximum unsuccessful search time is at most twice the maximum cluster
size plus two.

Remark. We have showed that, w.h.p., the maximum cluster size produced by DECIDE-
FIRST(n, m) is in fact not more than

3− α + 2
√

2− α

(1− α)2 log2 log n + O(1) <
6

(1− α)2 log2 log n + O(1) .

5.3. Two-Way Post-Linear Probing: WALKFIRST Algorithm

Next, we analyze the worst-case performance of algorithm WALKFIRST(n, m) with
blocks of size β3. Recall that the maximum unsuccessful search time is bounded from above
by twice the maximum cluster size plus two. The following theorem asserts that upon
termination of the algorithm, it is most likely that every block has at least one empty cell.
This implies that the length of the largest cluster is at most 2β3 − 2.

Theorem 10. Let n ∈ N, and m = b αn c, for some constant α ∈ (0, 1/2). Let δ ∈ (2α, 1) be an
arbitrary constant, and define

β3(n) :=
⌈

log2 log n + 8
1− δ

⌉
.

Upon termination of algorithm WALKFIRST(n, m) with blocks of size β3, the probability that there
is a fully loaded block goes to zero as n tends to infinity. That is, w.h.p., the maximum unsuccessful
search time of WALKFIRST(n, m) is at most 4β3 − 2, and the maximum insertion time is at most
4β3 − 4.

For k ∈ [[m]], let us denote by Ak the event that after the insertion of k keys (i.e.,
at time k), none of the blocks is fully loaded. To prove Theorem 10, we shall show that
P{Ac

m} = o(1). We do that by using a witness tree argument; see e.g., [11,85,90–93]. We
show that, if a fully loaded block exists, then there is a witness binary tree of height β3 that
describes the history of that block. The formal definition of a witness tree is given below.
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Let us number the keys 1, . . . , m according to their insertion time. Recall that each key
t ∈ [[m]] has two initial cells which lead to two terminal empty cells belonging to two blocks.
Let us denote these two blocks available for the t-th key by Xt and Yt. Notice that all the
initial cells are independent and uniformly distributed. However, all terminal cells—and
so their blocks—are not. Nonetheless, for each fixed t, the two random values Xt and Yt are
independent.

The History Tree

We define for each key t a full history tree Tt that describes essentially the history of the
block that contains the t-th key up to its insertion time. It is a colored binary tree that is
labeled by key numbers except possibly the leaves, where each key refers to the block that
contains it. Thus, it is indeed a binary tree that represents all the pairs of blocks available
for all other keys upon which the final position of the key t relies. Formally, we construct
the binary tree node by node in Breadth-First-Search (BFS) order as follows. First, the root
of Tt is labeled t, and is colored white. Any white node labeled τ has two children: a left
child corresponding to the block Xτ , and a right child corresponding to the block Yτ . The
left child is labeled and colored according to the following rules:

(a) If the block Xτ contains some keys at the time of insertion of key τ, and the last key
inserted in that block, say σ, has not been encountered thus far in the BFS order of the
binary tree Tt, then the node is labeled σ and colored white.

(b) As in case (a), except that σ has already been encountered in the BFS order. We
distinguish such nodes by coloring them black, but they are given the same label σ.

(c) If the block Xτ is empty at the time of insertion of key τ, then it is a “dead end” node
without any label and it is colored gray.

Next, the right child of τ is labeled and colored by following the same rules but with
the block Yτ . We continue processing nodes in BFS fashion. A black or gray node in the
tree is a leaf and is not processed any further. A white node with label σ is processed in
the same way we processed the key τ, but with its two blocks Xσ and Yσ. We continue
recursively constructing the tree until all the leaves are black or gray. See Figure 6 for an
example of a full history tree.

Notice that the full history tree is totally deterministic as it does not contain any
random value. It is also clear that the full history tree contains at least one gray leaf and
every internal (white) node in the tree has two children. Furthermore, since the insertion
process is sequential, node values (key numbers) along any path down from the root must
be decreasing (so the binary tree has the heap property), because any non-gray child of any
node represents the last key inserted in the block containing it at the insertion time of the
parent. We will not use the heap property, however.

Clearly, the full history tree permits one to deduce the load of the block that contains
the root key at the time of its insertion: it is the length of the shortest path from the root
to any gray node. Thus, if the block’s load is more than h, then all gray nodes must be at
a distance more than h from the root. This leads to the notion of a truncated history tree of
height h, that is, with h + 1 levels of nodes. The top part of the full history tree that includes
all nodes at the first h + 1 levels is copied, and the remainder is truncated.
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Figure 6. The full history tree of key 18. White nodes represent type (a) nodes. Black nodes are type
(b) nodes—they refer to keys already encountered in BFS order. Gray nodes are type (c) nodes—they
occur when a key selects an empty block.

We are in particular interested in truncated history trees without gray nodes. Thus, by
the property mentioned above, the length of the shortest path from the root to any gray
node (and as noted above, there is at least one such node) would have to be at least h + 1,
and therefore, the load of the block harboring the root’s key would have to be at least h + 1.
More generally, if the load is at least h + ξ for a positive integer ξ, then all nodes at the
bottom level of the truncated history tree that are not black nodes (and there is at least one
such node) must be white nodes whose children represent keys that belong to blocks with
load of at least ξ at their insertion time. We redraw these node as boxes to denote the fact
that they represent blocks of load at least ξ, and we call them “block" nodes.

The Witness Tree

Let ξ ∈ N be a fixed integer to be picked later. For positive integers h and k, where
h + ξ ≤ k ≤ m, a witness tree Wk(h) is a truncated history tree of a key in the set [[k]], with
h + 1 levels of nodes (thus, of height h) and with two types of leaf nodes, black nodes and
“block” nodes. This means that each internal node has two children, and the node labels
belong to the set [[k]]. Each black leaf has a label of an internal node that precedes it in BFS

order. Block nodes are unlabeled nodes that represent blocks with load of at least ξ. Block
nodes must all be at the furthest level from the root, and there is at least one such node in a
witness tree. Notice that every witness tree is deterministic. An example of a witness tree is
shown in Figure 7.

h

level 0

level h

70

65 61

64 60 58 56

60 58 46 58 46 45 45 52

40 40 40 44 46 48

33 27 21 22 20 19

22 19 21

Figure 7. A witness tree of height h which is a truncated history tree without gray nodes. The boxes
at the lowest level are block nodes. They represent selected blocks with load of at least ξ. The load of
the block that contains key 70 is at least h + ξ.

LetWk(h, w, b) denote the class of all witness trees Wk(h) of height h that have w ≥ 1
white (internal) nodes, and b ≤ w black nodes (and thus w− b + 1 block nodes). Notice
that, by definition, the classWk(h, w, b) could be empty, e.g., if w < h, or w ≥ 2h. However,
|Wk(h, w, b)| ≤ 4w2w+1wbkw, which is due to the following. Without the labeling, there are
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at most 4w different shape binary trees, because the shape is determined by the w internal
nodes, and hence, the number of trees is the Catalan number (2w

w )/(w + 1) ≤ 4w. Having
fixed the shape, each of the leaves is of one of two types. Each black leaf can receive one of
the w white node labels. Each of the white nodes obtains one of k possible labels.

Note that, unlike the full history tree, not every key has a witness tree Wk(h): the key
must be placed into a block of load of at least h + ξ − 1 just before the insertion time. We say
that a witness tree Wk(h) occurs, if upon execution of algorithm WALKFIRST, the random
choices available for the keys represented by the witness tree are actually as indicated in
the witness tree itself. Thus, a witness tree of height h exists if and only if there is a key that
is inserted into a block of load of at least h + ξ − 1 before the insertion.

Before we embark on the proof of Theorem 10, we highlight three important facts
whose proofs are provided in Appendix A. First, we bound the probability that a valid
witness tree occurs.

Lemma 1. Let D denote the event that the number of blocks in WALKFIRST(n, m) with load of at
least ξ, after termination, is at most n/(aβ3ξ), for some constant a > 0. For k ∈ [[m]], let Ak be
the event that, after the insertion of k keys, none of the blocks is fully loaded. Then for any positive
integers h, w and k ≥ h + ξ, and a non-negative integer b ≤ w, we have

sup
Wk(h)∈Wk(h,w,b)

P{Wk(h) occurs | Ak−1 ∩ D} ≤
4wβw+b−1

3
(aξ)w−b+1nw+b−1 .

The next lemma asserts that the event D in Lemma 1 is most likely to be true, for
sufficiently large ξ < β3.

Lemma 2. Let α, δ, and β3 be as defined in Theorem 10. Let N be the number of blocks with load of at
least ξ upon termination of algorithm WALKFIRST(n, m). If ξ ≥ δβ3, then P{N ≥ n/(aβ3ξ)} =
o(1), for any constant a > 0.

Lemma 3 addresses a simple but crucial fact. If the height of a witness tree Wk(h) ∈
Wk(h, w, b) is h ≥ 2, then the number of white nodes w is at least two, (namely, the root
and its left child); but what can we say about b, the number of black nodes?

Lemma 3. In any witness tree Wk(h) ∈ Wk(h, w, b), if h ≥ 2 and w ≤ 2h−η , where η ≥ 1, then
the number b of black nodes is ≥ η, i.e., I[ [b≥η]∪[w>2h−η ] ] = 1.

Proof of Theorem 10.

Recall that Ak, for k ∈ [[m]], is the event that after the insertion of k keys (i.e., at time
k), none of the blocks is fully loaded. Notice that Am ⊆ Am−1 ⊆ · · · ⊆ A1, and the event
Aβ3−1 is deterministically true. We shall show that P{Ac

m} = o(1). Let D denote the event
that the number of blocks with load of at least ξ, after termination, is at most n/(aβ3ξ), for
some constant a > 1 to be decided later. Observe that

P{Ac
m} ≤ P{Dc}+ P{Ac

m |D}
≤ P{Dc}+ P{Ac

m | Am−1 ∩ D}+ P
{

Ac
m−1 |D

}
...

≤ P{Dc}+
m

∑
k=β3

P{Ac
k | Ak−1 ∩ D} .

Lemma 2 reveals that P{Dc} = o(1), and hence, we only need to demonstrate that pk :=
P
{

Ac
k | Ak−1 ∩ D

}
= o(1/n), for k = β3, . . . , m. We do that by using the witness tree

argument. Let h, ξ, η ∈ [2, ∞) be some integers to be picked later such that h + ξ ≤ β3. If
after the insertion of k keys, there is a block with load of at least h + ξ, then a witness tree
Wk(h) (with block nodes representing blocks with load of at least ξ) must have occurred.
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Recall that the number of white nodes w in any witness tree Wk(h) is at least two. Using
Lemmas 1 and 3, we see that

pk ≤ ∑
Wk(h)

P{Wk(h) occurs | Ak−1 ∩ D}

≤
2h−1

∑
w=2

w

∑
b=0

∑
Wk(h)∈Wk(h,w,b)

P{Wk(h) occurs | Ak−1 ∩ D}

≤
2h−1

∑
w=2

w

∑
b=0
|Wk(h, w, b)| sup

Wk(h)∈Wk(h,w,b)
P{Wk(h) occurs | Ak−1 ∩ D}

≤
2h

∑
w=2

w

∑
b=0

2w+142wwbkwβw+b−1
3

(aξ)w−b+1 nw+b−1 I[ [b≥η]∪[w>2h−η ] ]

≤ 2n
aξβ3

2h

∑
w=2

(
32αβ3

aξ

)w w

∑
b=0

(
awξβ3

n

)b
I[ [b≥η]∪[w>2h−η ] ] .

Note that we disallow b = w + 1, because any witness tree has at least one block node. We
split the sum over w ≤ 2h−η , and w > 2h−η . For w ≤ 2h−η , we have b ≥ η, and thus

w

∑
b=0

(
awξβ3

n

)b
I[ [b≥η]∪[w>2h−η ] ] =

w

∑
b=η

(
awξβ3

n

)b

≤
(

awξβ3

n

)η ∞

∑
b=0

(
awξβ3

n

)b

< 2
(

awξβ3

n

)η

,

provided that n is so large that a2h+1ξβ3 ≤ n, (this insures that awξβ3/n < 1/2). For
w ∈ (2h−η , 2h], we bound trivially, assuming the same large n condition:

w

∑
b=0

(
awξβ3

n

)b
≤ 2 .

In summary, we see that

pk ≤ 4n ∑
w>2h−η

(
32αβ3

aξ

)w
+ 4
(

aξβ3

n

)η−1 2h−η

∑
w=2

(
32αβ3

aξ

)w
wη .

We set a = 32, and ξ = d δβ3 e, so that 32αβ3/(aξ) ≤ 1/2, because δ ∈ (2α, 1). With this
choice, we have

pk ≤
4n

22h−η
+ 4c

(
32β2

3
n

)η−1

,

where c = ∑w≥2 wη/2w. Clearly, if we put h = η + d log2 log2 nη e, and η = 3, then we
see that h + ξ ≤ β3, and pk = o(1/n). Notice that h and ξ satisfy the technical condition
a2h+1ξβ3 ≤ n, asymptotically. �

Remark. The restriction on α is needed only to prove Lemma 2 where the binomial tail
inequality is valid only if α < 1/2. Simulation results, as we show next, suggest that a
variant of Theorem 10 might hold for any α ∈ (0, 1) with block size

⌊
(1− α)−1 log2 log n

⌋
.
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5.4. Trade-offs

We have seen that, by using two linear probe sequences instead of just one, the
maximum unsuccessful search time decreases exponentially from O(log n) to O(log log n).
The average search time, however, could at worst double, as shown in the simulation
results. Most of the results presented in this article can be improved, by a constant factor
though, by increasing the number of hashing choices per key. For example, Theorems 5
and 6 can be easily generalized for open addressing hashing schemes that use d ≥ 2 linear
probe sequences. Similarly, all the two-way linear probing algorithms we design here can
be generalized to d-way linear probing schemes. The maximum unsuccessful search time
will, then, be at most d C logd log n + O(d), where C is a constant depending on α. This
means that the best worst-case performance is when d = 3 where the minimum of d/ log d
is attained. The average search time, on the other hand, could triple.

The performance of these algorithms can be further improved by using Vöcking’s
scheme LEFTMC(n, m, d), explained in Section 2.5, with d ≥ 2 hashing choices. The
maximum unsuccessful search time, in this case, is at most C log log n/ log φd + O(d), for
some constant C depending on α. This is minimized when d = o(log log n), but we know
that it cannot be better than C log2 log n + O(d), because limd→∞ φd = 2.

6. Simulation Results

We simulate all linear probing algorithms we discussed in this article with the FCFS

replacement strategy: the classical linear probing algorithm CLASSICLINEAR, the lo-
cally linear algorithm LOCALLYLINEAR, and the two-way linear probing algorithms
SHORTSEQ, SMALLCLUSTER, WALKFIRST, and DECIDEFIRST. For each value of n ∈{

28, 212, 216, 220, 222}, and constant α ∈ {0.4, 0.9}, we simulate each algorithm 1000 times
divided into 10 iterations (experiments). Each iteration consists of 100 simulations of the
same algorithm where we insert b αn c keys into a hash table with n cells. In each sim-
ulation, we compute the average and the maximum successful search and insert times.
For each iteration (100 simulations), we compute the average of the average values and
and the average of the maximum values computed during the 100 simulations for the
successful search and insert times. The overall results are finally averaged over the 10
iterations and recorded in the next tables. Similarly, the average maximum cluster size is
computed for each algorithm as it can be used to bound the maximum unsuccessful search
time, as mentioned earlier. Notice that in the case of the algorithms CLASSICLINEAR and
SHORTSEQ, the successful search time is the same as the insertion time.

Tables 1 and 2 contain the simulation results of the algorithms CLASSICLINEAR,
SHORTSEQ, and SMALLCLUSTER. With the exception of the average insertion time of the
SMALLCLUSTER algorithm, which is slightly bigger than the CLASSICLINEAR algorithm,
it is evident that the average and the worst-case performances of SMALLCLUSTER and
SHORTSEQ are better than CLASSICLINEAR. The SMALLCLUSTER algorithm seems to
have the best worst-case performance among the three algorithms. This is not a total
surprise to us, because the algorithm considers more information (relative to the other
two) before it makes its decision of where to insert the keys. It is also clear that there is a
nonlinear increase, as a function of n, in the difference between the performances of these
algorithms. This may suggest that the worst-case performances of algorithms SHORTSEQ

and SMALLCLUSTER are roughly of the order of log n.
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Table 1. The average and the maximum successful search and insert times averaged over 10 iterations
each consisting of 100 simulations of the algorithms. The best successful search time is shown in
boldface and the best insert time is shown in italic.

n α
CLASSICLINEAR SHORTSEQ SMALLCLUSTER SMALLCLUSTER

Insert/Search Time Insert/Search Time Search Time Insert Time

Avg Max Avg Max Avg Max Avg Max

28 0.4 1.33 5.75 1.28 4.57 1.28 4.69 1.50 9.96
0.9 4.38 68.15 2.86 39.72 3.05 35.69 6.63 71.84

212 0.4 1.33 10.66 1.28 7.35 1.29 7.49 1.52 14.29
0.9 5.39 275.91 2.90 78.21 3.07 66.03 6.91 118.34

216 0.4 1.33 16.90 1.28 10.30 1.29 10.14 1.52 18.05
0.9 5.49 581.70 2.89 120.32 3.07 94.58 6.92 155.36

220 0.4 1.33 23.64 1.28 13.24 1.29 13.03 1.52 21.41
0.9 5.50 956.02 2.89 164.54 3.07 122.65 6.92 189.22

222 0.4 1.33 26.94 1.28 14.94 1.29 14.44 1.52 23.33
0.9 5.50 1157.34 2.89 188.02 3.07 136.62 6.93 205.91

Table 2. The average maximum cluster size and the average cluster size over 100 simulations of the
algorithms. The best performances are drawn in boldface.

n α
CLASSICLINEAR SHORTSEQ SMALLCLUSTER

Avg Max Avg Max Avg Max

28 0.4 2.02 8.32 1.76 6.05 1.76 5.90
0.9 15.10 87.63 12.27 50.19 12.26 43.84

212 0.4 2.03 14.95 1.75 9.48 1.75 9.05
0.9 15.17 337.22 12.35 106.24 12.34 78.75

216 0.4 2.02 22.54 1.75 12.76 1.75 12.08
0.9 15.16 678.12 12.36 155.26 12.36 107.18

220 0.4 2.02 29.92 1.75 16.05 1.75 15.22
0.9 15.17 1091.03 12.35 203.16 12.35 136.19

222 0.4 2.02 33.81 1.75 17.74 1.75 16.65
0.9 15.17 1309.04 12.35 226.44 12.35 150.23

The simulation data of algorithms LOCALLYLINEAR, WALKFIRST, and DECIDEFIRST

are presented in Tables 3–5. These algorithms are simulated with blocks of
size

⌊
(1− α)−1 log2 log n

⌋
. The purpose of this is to show that, practically, the addi-

tive and the multiplicative constants appearing in the definitions of the block sizes stated
in Theorems 8–10 can be chosen to be small. The hash table is partitioned into equal-sized
blocks, except possibly the last one. The average and the maximum values of the success-
ful search time, inset time, and cluster size (averaged over 10 iterations each consisting
of 100 simulations of the algorithms) are recorded in the tables below where the best
performances are drawn in boldface.

Results show that the LOCALLYLINEAR algorithm has the best performance, whereas
WALKFIRST appears to perform better than DECIDEFIRST. Indeed, the sizes of the cluster
produced by WALKFIRST appears to be very close to that of LOCALLYLINEAR. This supports
the conjecture that Theorem 10 is, in fact, true for any constant load factor α ∈ (0, 1), and the
maximum unsuccessful search time of WALKFIRST is at most 4(1− α)−1 log2 log n + O(1),
w.h.p. The average maximum cluster size of DECIDEFIRST seems to be close to the other
ones when α is small, but it almost doubles when α is large. This may suggest that the
multiplicative constant in the maximum unsuccessful search time established in Theorem 9
could be improved.
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Table 3. The average and the maximum successful search time averaged over 10 iterations each
consisting of 100 simulations of the algorithms. The best performances are drawn in boldface.

n α
LOCALLYLINEAR WALKFIRST DECIDEFIRST

Avg Max Avg Max Avg Max

28 0.4 1.73 4.73 1.78 5.32 1.75 5.26
0.9 4.76 36.23 4.76 43.98 5.06 59.69

212 0.4 1.74 6.25 1.80 7.86 1.78 7.88
0.9 4.76 47.66 4.80 67.04 4.94 108.97

216 0.4 1.76 7.93 1.80 9.84 1.78 10.08
0.9 4.78 56.40 4.89 89.77 5.18 137.51

220 0.4 1.76 8.42 1.81 12.08 1.79 12.39
0.9 4.77 65.07 4.98 108.24 5.26 162.04

222 0.4 1.76 9.18 1.81 12.88 1.79 13.37
0.9 4.80 71.69 5.04 118.06 5.32 181.46

Table 4. The average and the maximum insert time averaged over 10 iterations each consisting of
100 simulations of the algorithms. The best performances are drawn in boldface.

n α
LOCALLYLINEAR WALKFIRST DECIDEFIRST

Avg Max Avg Max Avg Max

28 0.4 1.14 2.78 2.52 6.05 1.15 3.30
0.9 2.89 22.60 6.19 48.00 3.19 42.64

212 0.4 1.14 3.38 2.53 8.48 1.17 5.19
0.9 2.91 27.22 6.28 69.30 3.16 84.52

216 0.4 1.15 4.08 2.53 10.40 1.17 6.56
0.9 2.84 31.21 6.43 91.21 3.17 106.09

220 0.4 1.15 4.64 2.54 12.58 1.18 8.16
0.9 2.89 35.21 6.54 109.71 3.22 117.42

222 0.4 1.15 4.99 2.54 13.41 1.18 8.83
0.9 2.91 38.75 6.61 119.07 3.26 132.83

Table 5. The average and the maximum cluster sizes averaged over 10 iterations each consisting of
100 simulations of the algorithms. The best performances are drawn in boldface.

n α
LOCALLYLINEAR WALKFIRST DECIDEFIRST

Avg Max Avg Max Avg Max

28 0.4 1.57 4.34 1.65 4.70 1.63 4.81
0.9 12.18 33.35 12.54 34.40 13.48 47.76

212 0.4 1.62 6.06 1.68 6.32 1.68 6.82
0.9 12.42 48.76 12.78 51.80 13.45 94.98

216 0.4 1.62 7.14 1.68 7.31 1.68 8.92
0.9 12.66 59.61 12.98 62.24 13.53 125.40

220 0.4 1.65 8.25 1.71 8.50 1.71 10.76
0.9 12.83 67.23 13.11 69.45 13.62 145.30

222 0.4 1.62 8.90 1.71 8.95 1.71 11.46
0.9 12.72 65.58 13.19 73.22 13.66 164.45

Comparing the simulation data from all tables, one can see that the best average
performance is achieved by the algorithms LOCALLYLINEAR and SHORTSEQ. Notice that
the SHORTSEQ algorithm achieves the best average successful search time when α = 0.9.
The best (average and maximum) insertion time is achieved by the LOCALLYLINEAR
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algorithm. On the other hand, algorithms WALKFIRST and LOCALLYLINEAR are superior
to the others in worst-case performance. It is worth noting that surprisingly, the worst-case
successful search time of SMALLCLUSTER is very close to the one achieved by WALKFIRST

and better than that of DECIDEFIRST, although, it appears that the difference becomes
larger as n increases.

7. Conclusions

In this research, we designed efficient open addressing hashing schemes that improve
the worst-case performance of classical linear probing. We proposed two-way linear
probing hashing schemes that use two independent linear probe sequences and accomplish
Θ(log log n) worst-case insertion and search times, w.h.p. The common idea of these
schemes is the successful marriage between the two-way linear probing concept and the
blocking technique where the hash table is partitioned into equal-sized blocks. Simulation
and comparison results supported our theoretical analyses of all algorithms discussed in
this research and illustrated that the worst-case and average performances of such schemes
are practically plausible. Thus, we conclude that two-way linear probing hashing with
blocking has several advantages over other proposed hashing methods as it reduces the
worst-case behavior of hashing, it requires only two hash functions, it is easy to parallelize,
it is pointer-free and easy to implement, and it does not require any rearrangement of keys
or rehashing. Its maximum cluster size is O(log log n), and its average-case performance
can be at most twice the classical linear probing as shown in the simulation results.

Furthermore, we also showed that not every two-way linear probing algorithm has a
good worst-case performance. We proved that, if the two-way linear probing algorithm
always inserts any key upon arrival into the empty cell of its two initial cells whenever one
of them is empty, then, w.h.p., a cluster of size Ω(log n) emerges in the hash table.

Our results suggest that two-way linear probing may be a more promising open
addressing hashing scheme than classical linear probing for many applications, including,
e.g., mobile networks [94,95].

It would be interesting to extend the result of Theorem 10 to any constant load factor
α ∈ (0, 1)—as is suggested by the simulation results—and to investigate its applications to
other problems in computer science.
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Appendix A

Appendix A.1. Lemmas Needed for Theorem 10

For completeness, we prove the lemmas used in the proof of Theorem 10.

Lemma 1. Let D denote the event that the number of blocks in WALKFIRST(n, m) with load of at
least ξ, after termination, is at most n/(aβ3ξ), for some constant a > 0. For k ∈ [[m]], let Ak be
the event that after the insertion of k keys, none of the blocks is fully loaded. Then for any positive
integers h, w and k ≥ h + ξ, and a non-negative integer b ≤ w, we have

sup
Wk(h)∈Wk(h,w,b)

P{Wk(h) occurs | Ak−1 ∩ D} ≤
4wβw+b−1

3
(aξ)w−b+1nw+b−1 .

Proof. Notice first that given Ak−1, the probability that any fixed key in the set [[k]] chooses
a certain block is at most 2β3/n. Let Wk(h) ∈ Wk(h, w, b) be a fixed witness tree. We
compute the probability that Wk(h) occurs given that Ak−1 is true, by looking at each node
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in BFS order. Suppose that we are at an internal node, say u, in Wk(h). We would like to
find the conditional probability that a certain child of node u is exactly as indicated in the
witness tree, given that Ak−1 is true, and everything is revealed except those nodes that
precede u in the BFS order. This depends on the type of the child. If the child is white or
black, the conditional probability is not more than 2β3/n. This is because each key refers
to the unique block that contains it, and moreover, the initial hashing cells of all keys are
independent. Multiplying just these conditional probabilities yields (2β3/n)w+b−1, as there
are w + b − 1 edges in the witness tree that have a white or black nodes as their lower
endpoint. On the other hand, if the child is a block node, the conditional probability is at
most 2/(aξ). This is because a block node corresponds to a block with load of at least ξ, and
there are at most n/(aβ3ξ) such blocks each of which is chosen with probability of at most
2β3/n. Since there are w− b + 1 block nodes, the result follows plainly by multiplying all
the conditional probabilities.

To prove Lemma 2, we need to recall the following binomial tail inequality [96]: for
p ∈ (0, 1), and any positive integers r, and t ≥ ηrp, for some η > 1, we have

P{binomial(r, p) ≥ t} ≤
(

ϕ

(
t

rp

))t
≤ (ϕ(η))t ,

where ϕ(x) = x−1e1−1/x, which is decreasing on (1, ∞). Notice that ϕ(x) < 1, for any
x > 1, because 1/x = (1− z) < e−z = e1/x−1, for some z ∈ (0, 1).

Lemma 2. Let α, δ, and β3 be as defined in Theorem 10. Let N be the number of blocks with load of at
least ξ upon termination of algorithm WALKFIRST(n, m). If ξ ≥ δβ3, then P{N ≥ n/(aβ3ξ)} =
o(1), for any constant a > 0.

Proof. Fix ξ ≥ δβ3. Let B denote the last block in the hash table, i.e., B consists of the cells
n− β3, . . . , n− 1. Let L be the load of B after termination. Since the loads of the blocks are
identically distributed, we have

E[ N ] =
n
β3

P{L ≥ ξ} .

Let S be the set of the consecutively occupied cells, after termination, that occur between
the first empty cell to the left of the block B and the cell n− β3; see Figure A1.

S

B

Figure A1. The last part of the hash table showing clusters, the last block B, and the set S.

We say that a key is born in a set of cells A if at least one of its two initial hashing cells
belong to A. For convenience, we write ν(A) to denote the number of keys that are born in
A. Obviously, ν(A) is binomial(m, 2|A|/n). Since the cell adjacent to the left boundary of
S is empty, all the keys that are inserted in S are actually born in S. That is, if |S| = j, then
ν(S) ≥ j. So, by the binomial tail inequality given earlier, we see that

P{|S| = j} = P{[ ν(S) ≥ j ] ∩ [ |S| = j ]} ≤ P{binomial(m, 2j/n) ≥ j} ≤ cj ,

where the constant c := ϕ(1/(2α)) = 2αe1−2α < 1, because α < 1/2. Let

` := logc
1− c

ξ2 = O(log β3) .
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and notice that, for n that is large enough,

ξ ≥ δβ3 ≥
δ2m(`+ β3)

(1 + `/β3)2αn
≥ y

2m(`+ β3)

n
,

where y = 1/2 + δ/(4α) > 1, because δ ∈ (2α, 1). Clearly, by the same property of S stated
above, L ≤ ν(S ∪ B); and hence, by the binomial tail inequality again, we conclude that, for
n that is sufficiently large,

P{L ≥ ξ} ≤ P{[ ν(S ∪ B) ≥ ξ ] ∩ [ |S| ≤ ` ]}+
m

∑
j=`

P{|S| = j}

≤ P{binomial(m, 2(`+ β3)/n) ≥ ξ}+ c`

1− c

≤ (ϕ(y))ξ +
c`

1− c
≤ 1

ξ2 +
1
ξ2 =

2
ξ2 .

Thence, E[ N ] ≤ 2n/(β3ξ2) which implies by Markov’s inequality that

P
{

N ≥ n
aβ3ξ

}
≤ 2a

ξ
= o(1) .

Lemma 3. In any witness tree Wk(h) ∈ Wk(h, w, b), if h ≥ 2 and w ≤ 2h−η , where η ≥ 1, then
the number b of black nodes is ≥ η, i.e., I[ [b≥η]∪[w>2h−η ] ] = 1.

Proof. Note that any witness tree has at least one block node at distance h from the root. If
we have b black nodes, the number of block nodes is at least 2h−b. Since w ≤ 2h−η , then
2h−η − b + 1 ≥ w− b + 1 ≥ 2h−b. If b = 0, then we have a contradiction. So, assume b ≥ 1.
But then 2h−η ≥ 2h−b; that is, b ≥ η.

Appendix A.2. Lemmas Needed for Theorem 7

The following definition and lemmas are used to prove Theorem 7.

Definition 1 (See, e.g., [97]). Any non-negative random variables X1, . . . , Xn are said to be
negatively associated, if for every disjoint index subsets I, J ⊆ [[n]], and for any functions
f : R|I| → R, and g : R|J| → R that are both non-decreasing or both non-increasing
(component-wise), we have

E
[

f (Xi, i ∈ I) g(Xj, j ∈ J)
]
≤ E[ f (Xi, i ∈ I) ] E

[
g(Xj, j ∈ J)

]
.

Once we establish that X1, . . . , Xn are negatively associated, it follows, by considering
inductively the indicator functions, that

P{X1 < x1, . . . , Xn,< xn} ≤
n

∏
i=1

P{Xi < xi} .

The next lemmas, which are proven in [97–99], provide some tools for establishing the
negative association.

Lemma 4 (Zero-One Lemma). Any binary random variables X1, . . . , Xn whose sum is one are
negatively associated.

Lemma 5. If {X1, . . . , Xn} and {Y1, . . . , Ym} are independent sets of negatively associated random
variables, then the union {X1, . . . , Xn, Y1, . . . , Ym} is also a set of negatively associated random
variables.
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Lemma 6. Suppose that X1, . . . , Xn are negatively associated. Let I1, . . . , Ik ⊆ [[n]] be disjoint
index subsets, for some positive integer k. For j ∈ [[k]], let hj : R|Ij| → R be non-decreasing
functions, and define Zj = hj(Xi, i ∈ Ij). Then the random variables Z1, . . . , Zk are negatively
associated. In other words, non-decreasing functions of disjoint subsets of negatively associated
random variables are also negatively associated. The same holds if hj are non-increasing functions.
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