Chapter 14
Strong Universal Consistent Estimate
of the Minimum Mean Squared Error

Luc Devroye, Paola G. Ferrario, Laszlé Gyorfi, and Harro Walk

Abstract Consider the regression problem with a response variable Y and a feature
vector X. For the regression function m(x) = E{Y | X = x}, we introduce new and
simple estimators of the minimum mean squared error L* = E{(Y —m(X))?}, and
prove their strong consistencies. We bound the rate of convergence, too.

14.1 Introduction

Let the label Y be a real-valued random variable and let the feature vector X =
(X1,...,X4) be a d-dimensional random vector. The regression function m is
defined by

m(x) = E{Y | X = x}.

L. Devroye (P<)

School of Computer Science, McGill University, 3480 University Street, Montreal, H3A OE9,
Canada

e-mail: lucdevroye @ gmail.com

P.G. Ferrario - H. Walk

Department of Mathematics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart,
Germany

e-mail: paola.ferrario @mathematik.uni-stuttgart.de; walk@mathematik.uni-stuttgart.de

L. Gyorfi

Department of Computer Science and Information Theory, Budapest University of Technology
and Economics, Stoczek u. 2, 1521 Budapest, Hungary

e-mail: gyorfi@cs.bme.hu

B. Scholkopf et al. (eds.), Empirical Inference, DOI 10.1007/978-3-642-41136-6__14, 143
© Springer-Verlag Berlin Heidelberg 2013


mailto:lucdevroye@gmail.com
mailto:paola.ferrario@mathematik.uni-stuttgart.de
mailto:walk@mathematik.uni-stuttgart.de
mailto:gyorfi@cs.bme.hu

144 L. Devroye et al.

The minimum mean squared error, called also variance of the residual Y — m(X), is
denoted by

L* = E{(Y ~m(X))’} = minE{(Y — f(X))"}.

The regression function m and the minimum mean squared error L* cannot be
calculated when the distribution of (X, Y') is unknown. Assume, however, that we
observe data D, = {(X,Y1),...,(X,, Y,)} consisting of independent and identi-
cally distributed copies of (X, Y). D, can be used to produce an estimate of L*.

For nonparametric estimates of the minimum mean squared error L* = E{(Y —

and Stadtmiiller [12], Neumann [14], Stadtmiiller and Tsybakov [15], and Miiller,
Schick and Wefelmeyer [13] and the literature cited there.

Devroye et al. [3] proved that without any tail and smoothness condition, L*
cannot be estimated with a guaranteed rate of convergence. They introduced a
modified nearest neighbour cross-validation estimate

. 1 & )
Ly=-3 (i=Yj@) nz2,

i=1

where Y ;) is the label of the modified first nearest neighbour of X; from among
X, X1, Xi 415 - - - Xpp. If Y and X are bounded, and m is Lipschitz continuous

m(x) —m(z)| < Cllx—z], (14.1)
then for d > 3, they proved that
E{|L, — L*|} < cin™V? 4+ e;n /4, (14.2)

Liitidinen et al. [9,11] introduced another estimate of the minimum mean squared
error L* by the first and second nearest neighbour cross-validation

n

1
Ly=—3 (Y =Ypi)(Yi = Yo, n=3,

i=1

where Y, ;1 and Y, ; » are the labels of the first and second nearest neighbours X, ; |
and X, ; » of X; from among X, ...,X;_j, and X; 4, ..., X,, resp. (In the sequel,
assume that for calculating the first and second nearest neighbours, ties occur with
probability 0. When X has a density, the case of ties among nearest neighbour
distances occurs with probability 0.) If ¥ and X are bounded and m is Lipschitz
continuous, then for d > 2, they proved the rate of convergence of order in the
inequality (14.2).
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In this chapter we introduce a non-recursive and a recursive estimator of
the minimum mean squared error L*, and prove their distribution-free strong
consistencies. Under some mild conditions on the regression function m and on
the distribution of (X, Y), we bound the rate of convergence of the non-recursive
estimate.

14.2 Strong Universal Consistency

One can derive a new and simple estimator of L*, considering the definition
L* = E{(Y —m(X))’} = E{Y?} - E{m(X)*}.

Obviously, E{Y?} can be estimated by 1 >"_ ¥, while we estimate the term

i

E{m(X)?} by 1 3" ¥;Y, ;1. Thus we estimate L* by
L = lzn:Y,Z_lZn:yY .
T i=1 Lo i=1 e
Theorem 14.1. Assume that ties occur with probability 0. If |Y | is bounded then

L,—L* as.

IfE{Y?} < oo then
L,:= ! Y Ly —» L* as
= k2=1 8.

Proof. This theorem says that, for bounded [Y|, the estimate L, is strongly
consistent, while the estimate L, is strongly universally consistent. The theorem is
an easy consequence of Ferrario and Walk [6] (Theorems 2.1 and 2.5), who proved
that, for bounded Y,

L,— L* (14.3)

a.s., and moreover, under the only condition E{Y?} < oo,

1 .
n
k=1
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a.s. We simply use the decomposition

U R 1 o
Ly=Ly=—3 Yi¥irt =3 YoiiYuia

i=1 i=1

Then, as in the proof of Theorem 2.1 in Ferrario and Walk [6], on the basis of (21)-
(25) in [9], one can show that, for bounded Y,

> ViYaia — BUm(X)') (14.5)

i=1
a.s. and
1 n
=Y YairYuiz > E{m(X)*} (14.6)
n
i=1

a.s. Similarly, as in the proof of Theorem 2.5 in [6], for E{¥ 2} < oo, one can show
that

k

1 <1

_ — Y Yy, L* 14.7
. kz fin —> (14.7)
k=1 i=1

a.s. and

11 &

=Y =Y YiiiYeia—> L (14.8)

nk=1ki=l ' '

a.s. Now the statements of the theorem follow from (14.3), (14.5), and (14.6), and
from (14.4), (14.7) and (14.8), respectively. O

Next we consider a recursive estimate

1 « 1 &
L;::;ZYiz_;ZYiYi,i,la n>2,

i=1 i=1

where Y ;1 := 0. It is really recursive since

1 1
Ll/‘l = (1 ) Ll/l—l + ;(Ynz - YnYn,n,l)'

o
Theorem 14.2. Assume that ties occur with probability 0. IFE{Y?} < oo then

L, —L* as.
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Proof. We have to show that
1 )
- E YiYiin —> Eim(X)"} as. (14.9)
n
i=1

For a > 0, introduce the truncation function

a ifz>a;
T.(z) =43z ifl|z] <a;
—a if z < —a.

As in to the proof of Theorem 2.5 in Ferrario and Walk [6], one can check that in
order to show (14.9), it suffices to prove that

1 n
=2 T DT 5 (Yiin) — Efm(X)?}
i=1

a.s. Let F;_; be the o-algebra generated by (X, Y1), ..., (X;=1, Yi—1). Introduce
the decomposition

1 n
=2 TrODT 5 (Yiin) = Iy + Jy,
i=1
where
1 n
In= =3 (T 5T (Vi) = BAT (00T i (Yiin) | Fir})
i=1
and
1 n
= EE{Tﬁ(mTﬁ(ml) | Fict}.
i=
I, is an average of martingale differences such that the a.s. convergence
I, -0 (14.10)

can be derived from the Chow [1] theorem if

i Var{Tﬁ(Yn)Tﬁ(Ynnl)} < 00

n2

(14.11)

n=1
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We have that

Var{T ;;(Y)T /i (Yon)} < E{T (Y (T s (Yan1))*}

- E{(T 5(Y)"} + EUT (Yo 1))}
< 5 :

Because of E{Y} < oo,

EE{(THY))Y S E{T(YY) & E{T.(Y)
>, ML) 5 Bty ROl <o

n? n? n?
n=1 n=1 n=1

Recall now the following useful lemma.

Lemma 14.1. (Gyorfi et al. [7], Corollary 6.1) Under the assumption that ties
occur with probability 0,

n

ZI{X is the first NN of X; in {X1. ... Xi_1.X. Xi41..... X, }} =74

i=1

a.s., where 1 denotes the indicator and y; < oo depends only on d.

Lemma 14.1 implies that

E{(T /5 (Yon1)*)

n—1
=E {Z(TW(YJ))4I{X]~ is the first NN of X,, in {X{, ..., X,—1}} }

=1

= (- DE { (T D)L i the first NN of X, in {X). ... ,Xn_l}}}

= (- DE { (T L is the first NN of X, in {Xo. ... Xn}}}
n—1

_ 4
=E {(Tﬁ(yﬂ)) 21X, is the first NN of X in {Xl,...,xj_l,le,...,Xn}}}
j=1

< E{(T 56 va .-

Therefore

IA

OV E{(T s (Yun)y X yaB{T,2 (Y} 2\ E{T,(Y})}
Z fnz Z < n2 = Ya Z —I’lz 1 < 00,
n=1

n=1 n=1
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and so (14.11) is verified, which implies (14.10). Concerning the term J,, the
derivations below are based on the fact that the ordinary 1-NN regression estimate
is not universally consistent; however, it is strongly Cesaro convergent in the weak
topology, and for noiseless observations (¥; = m(X;)) it is strongly convergent in
L,. Introduce the notation

m;(x) = E{T ;(Y) | X =x}.

Let X;_;1(x) denote the 1-NN (first nearest neighbour) of x from among
{X1,...,X;—1} and Y;_1 1 (x) denote the corresponding label (x € RY, | > 2); then

Yicin (X)) = Yisn and Xi—p1(Xi) = X1
The representation
1 n
= X [ T @)
i=1

holds, where Yy 1(x) := 0. It remains to show that
J, = E{m(X)?} as. (14.12)

Before proving (14.12) we use two lemmas. Let p denote the distribution of X.

Lemma 14.2. IfE{Y?} < oo then

/ | m(Xe11 () = m(x) P u(dx) = 0 as.

Proof. The proof is in the spirit of the proof of Theorem 4.1 and Problems 4.5
and 6.3 in Gyorfi et al. [7]. |

The following lemma is a reformulation of a classic deterministic Tauberian theorem
of Landau [8] in summability theory. For a proof and further references, see
Lemma 1 in Walk [16].

Lemma 14.3. If the sequence a,, n = 1,2,... of real numbers is bounded from
below and satisfies

— < X,
n3

X_; (Zi=lai)

then

%iai — 0.
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Proof of (14.12). Tt suffices to show
1 n
J¥ = ;Z/ mX)T ;(Yi1.1(x)pu(dx) > E{fm(X)*} a.s. (14.13)
i=1 7R

In fact, we notice that for each o > 0

[ 1m0 =m0 17V 00) | (a0

11

<5 /R im0 =m0 P () + s /R T ().

If we can show
imsun 1S [ Tvs 02 2
lim sup Z T;(Yic11(x))u(dx) < cE{Y*} a.s., (14.14)
n
i=1

for some constant ¢, then this together with [, | m;(x) — m(x) |> u(dx) — 0
implies

hmsup%é [ 1m0 = m) | 7Y 90) | ) = JacBAYY as

But ¢ — 0 yields that left-hand side equals O a.s. This, together with (14.13),
implies (14.12). Therefore, to complete the proof it remains to show (14.14)
and (14.13). In the first part we show (14.14). Set r(x) := E{Y?|]X = x},
ri(x) := E{T;(Y?)|X = x}. In order to get (14.14) it is enough to show

1 n
3 [0 =X @) k@0 >0 as. (1415)
i=1
where 71 (Xo,1(x)) := 0, and
1 n
lim sup—Z/ri (Xi—1.1(X)u(dx) < cE{Y?} a.s.
i
The latter follows from

lim sup/rn(Xn_l,l(x)),u(dx) < lim/ r(X,—1.1(X)u(dx) = E{r(X)} = E{Y?}

a.s. (where the first equality holds by Lemma 14.2), which further yields that the
sequence
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/ (T (Va1 (02) — o (K1 (X)) (),

n = 1,2,..., is a.s. bounded from below. In order to get (14.15) and there-
fore (14.14) by Lemma 14.3, it suffices to show

o E{[X1) [ (TXim1®)) = 1 (Xim1 (00) @)}
> 3 <oco.  (14.16)
n=1

We now show (14.16). Set forit 4; ; := {x; Xi—11(x) = Xj} . We note

> [ (@) = 5K 00) (@
i=1

n i—1
= Z/Rd Zl{xi,l,l(x)=x,~}ﬂ(dx) (Ti(sz) - "i(Xj))
i=1 /R 2

) (T.orD) = r(x))

|
N

i=1j=1
n—1 n

=3 | 3w (nop -nexp) |
j=1 \i=j+1

where the (n—1) summands in brackets are orthogonal, because E{T; (Y jz)—r,- X)) |
Xi,....X,—1, Y/} = Oforalli andall j* # j (j, j" € {l,...,n—1}). Thus (14.16)
is equivalent to

o] 1 n—1 n 2
Y2 EN Y wap (T -nx)) | <o
n=1" j=1 i=j+1
Let the cones Cy, ..., C,, have top 0 and angle %, which cover R?, and let B; ;i be

thesubsetof C;; :=X; +C; (j =1,...,i —1; [ =1,...,y4) consisting of all x
that are closer to X; than the I-NN of X; in {Xy, ..., X;_1, X 41,.... Xi—1}NC;;.
For j <i — 1, a covering result of Devroye et al. [2], and also of pp. 489 and 490
in Gyorfi et al. [7], holds as follows:

Yd
(A ) < ZM(B:'JJ)-

=1
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It suffices to show, foreach [ € {1,...,v4},
2
9] 1 n—1 n
YD E ( 3 w(Bisa) (Ti(Y]?)—ri(xj))) <oco.  (14.17)
i=j+1

We have that

2
E{( > (B (Tf(Yfz)_rf(X-f))) }

i=j+1

=E{ 3 E{M(Bi,i,l)M(Bi',j,z)(ﬂ(sz)—ri(Xj))(ﬂ'(Y,-Z)—ri'(X/'))|X/'}}

=E{ 3 E{M(B,-,,-,I)MBf/,_f,z)|X/-}E{(T,(Yf)—r,-(x,-))(n/(Y,?)—rﬂ(xj))|x,~}}

iil=j+1

< / Z \/E{M(Bi.j.1)2|xj = X}\/E{M(Bi/.j.1)2|xj = x}

ii'=j+1

VE{(T:(Y2)2X = x}VE{(T(Y2)?|X = x}u(dx)

2
= / ( > VBB =x}/E{<n(Y2))2|X=x}) p(dx).
i=j+1

According to [2] and pp. 489 and 490 in [7], one has that P{u(B; ;) > ,/p} equals
the probability that a Binom(i — 2, ,/p)-distributed random variable takes the value

0,ie., (1—/p) (0 < p < 1). Thus,

2
E{( Y u(Bij) (Ti(sz)_”(Xf))) }

i=j+1

2
n 1
> \/ /0 P{M(Bi,,»,z)>ﬁ|xj=x}dpJE{<T,-(Y2))2|X=x}) p(dx)

i=j+1

IA
—

2
n 1
> (1= VP 2dp\JE{T (V)X = x} | u(dx)
0
i=j+1

Il
—

2
3 ﬁ\/lz{(mﬂ)wx:x}) ()

i=j+1
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2
<s ( ) ll\/E{(Tn(YZ))Hx:x}) (dx)
i=j+1
2
n
<s(n%) [E{@mo2yx =xju@

2
—3 (m ﬁ.) E{(Tn(Yz))Z}.
J
Thus the left-hand side of (14.17) is bounded by

— 1 E{(T, ( Yz) }<

8 Z - Z (ln —) E{(T,,(Y?))?} < 8 Constz

2
. -1 n
(because of E{Y?} < o00), our having used the fact that %Zj‘:l <ln 7) —

fol (In %)2 dt = fol (Int)?dt < oco. Thus (14.17), and therefore (14.14) is proved. In
the second part, it remains to show (14.13). In order to get it, according to the proof
of Lemma 23.3 in Gyorfi et al. [7] it suffices to show

limsup%Z/ | mX)T /;(Yi-11(x)) | n(dx) < c*E{Y?} as. (14.18)
i=1

for some constant ¢* and to show (14.13) for bounded Y. We prove first (14.18).
Notice that

[ 1mT s (Ve 0) L@ = 5 [ mPiatan + 5 [ 70 (Ve 0)? (e,

From [ m(x)’u(dx) < E{Y?} and from (14.14) we obtain (14.18), with ¢* =
% + %c. By boundedness of Y, from some index on we have that T ;(Y) = Y.
Therefore, and because of Lemma 14.2, it suffices to show

2 [0 (a0 =X ) ) =0 s
i=1

where m(Xg,1(x)) := 0. By boundedness, because of Lemma 14.3 it is enough to
show

Z E{[Z, 1 fRd m(x) (Yz Li(x) — m(Xz 1 I(X)))ﬂ(dx)]z}

n3

(14.19)

n=1
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Noticing

/R () (139 — (X1 (9)) (@)

i—1

- / m(x>21{x, L=x ) (V= m(X,)

=1
i—1
= Z/A mx)u(dx) (Y; —m(X;)).
j=l i,j

we obtain, with suitable constants ¢’ and ¢”, that the left-hand side of (14.19) equals

2

> L 5 [, moomian) (v = mes)

n=1 l 1j=1

o0 1 n—1 2
:Z;E Z m)u(dx) | (¥Y; —mX;))

f— =1 \i=j+174ij

o] 1 n—1 2
-y Ly Z/ mEu(dx) (Y, —m(X,))

! i=j+17 40

[e9) 1 n—1 n 2
< CIZF E Z w(Ai ;)
n=1 j=1 i=j+1
00 1 n—1 n 2
" .
<c Z ; Z (11’1 7) < 00;

n=1 j=1

the latter is as in the proof of (14.14). Thus (14.13) is proved for bounded Y.
Therefore (14.12) and thus the assertion have been verified. |

14.3 Rate of Convergence

Next we bound the rate of convergence:

Theorem 14.3. Assume that Y and X are bounded (|Y| < L, |X|| < K) and m is
Lipschitz continuous and ties occur with probability 0. In addition, suppose that
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(i) W has a Lipschitz continuous density f,
(ii) For any X from the support of p and 0 <r < 2K,

M(SX,I‘) 2 )/rd7
with y > 0.
Then for d > 2, we have that
E{|Z,, —L*} < Cln_l/2 + Czn_z/d.

Proof. Apply the decomposition

E{|Z’n _L*I} = E{|Z’n _E{in}” + IE{Z‘n} - L*| = V Var(in) + IE{Z‘n} - L*|

For the variance term Var(L,), introduce the notation

1 n
Ry=—==% Yi¥yir.

i=1
For bounded Y (|Y| < L), we show that

2(1 + 2y0)2L*
Var(R,) < 20 H2va) LT (14.20)
n

from which we get that

- 1 <&
Var(L,) = Var (; Z Y,-2 + Rn)

i=1
2L% N 4(1 4 2y4)*L*
n n ’

1 n
< 2Var (; > Y,?) +2Var (R,) <

i=1

and thus,

\/Var(i,n) < %

In the same way as in Liitidinen et al. [9], we show (14.20) using the Efron—Stein
inequality [5]. Replacement of (X;, Y;) by (X}, Y) for fixed j € {1,...,n} (where
X, 7),....X,.Y,), (X}, Y)),.... (X, Y,) are independent and identically dis-
tributed) leads to the estimator
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1
Rij=- YY)+ Y YY)
i#j

According to the Efron—Stein inequality we have that
Var(R,) < 2 YU BA(R, - Ry = BIR, — Ry
n) = ) s n n,i - B n n,l1 .

Evaluate the difference R, — R, ;:

1
Ry—Ryy=— YY1+ ) V¥ |- | VY, + > vy,
i#1 " i1
1
= (V1 Yo11 =YY, ) ; Yi(Yoin =Y, ).

One can check that |Y1Y, 1 — Y|Y, ul = 2L2. Introduce the following nota-
tions. Let n[i] be the index of the first nearest neighbour of X; from the set
{X1,Xo,..., X, }\{X;}. Similarly, let n[{] be the index of the first nearest neighbour
of X; from the set {X/, X, ..., X, } \ {X;}. For fixed i # 1, notice

Waia =Y, #0) C {nli] = U [i] = 13,

Thus
|ZYi(Yn,i,l n,1)|<LZ|Ynzl ntll
i#l i#l
<21? (Z Ljj=1+ 1n’[i]=l) < 2L (v +va) = 4L%ya
i#1 i#1

a.s., where in the last step we applied Lemma 14.1. Summarizing these bounds we
get that

2(1 4 2y4)*L*

1 1 2
Var(R,) < % (—2L2 + —4L2yd) =
n n n

a.s., and the proof of (14.20) is complete. For the bias term E{L,} — L*, notice that

E{L,} - L* = E{m(X)m(X,1.1)} — E{m(X))*}.
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Because of
MM 1) ~ (K1) = (K102~ m X)) — 3 K1) —m (X)),
the Lipschitz condition (14.1) implies that
IEGm (X (X, .00} — Efm(X))2)]
< S IBUm(X,1.)7) — Bm (X0} + 3B (X,,1.0) — m(X))')
< UM, 10~ )% + S B0~ X P

where C is the Lipschitz constant in (14.1). For d > 3, Lemma 6.4 in Gyorfi
et al. [7], and for d > 2, Theorem 3.2 in Liitidinen et al. [11] say that

E{|X,.1.1 — X1 [*} < esn™/.
Therefore
[E{m(X)m(Xu1.1)} — E{m(X1)?*}| < %|E{m(Xn,1,1)2} —E{m(X))?}| + can™,
and so we have to prove that
E{m (X110} — Eim(X)?*}| < can™ "2 + csn™?/4. (14.21)

In order to show (14.21), let’s calculate the density f, of (X1, X,,.1.1) with respect to
M x . We have that

P{Xl € A,X,,ql’l € B}

=) P{X;€A.X; € B.X, 11 =X}
i=2
= (n — 1)P {Xl S A,Xz S B7Xn,1,1 = Xz}
=m-DE{P{X, €4,X;eBX,1 =Xy |X,Xp}}
= (n— DE{P{N_{IXi = Xi || = X = Xo I} | X1, X0} Kix, ea.x0¢58} }

n—2
= (1= DE{(1 = 1(Sx,1xx)"~ Iixieaxoen | -
Therefore

frix) = (11— 1) (1= w(Se o))
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It implies that
E{m(X))’} = E{m(X1)> f, (X1, Xa)}
and
E{m(X,11)*} = Eim(X2)’ £,(X1,X0)} = E{m(X1) £,,(X2, X))}

Thus,

E{m(X,.1.1)*} — E{m(X,)*} = E{m(X0)*(f, (X2, X1) — £, (X1, X))},
and interchanging X, and X, we get that

E{m(X,1.1)*} — Eim(X1)*} = —E{m(X2)*(f, X2, X1) = (X1, X2))},

and so

E{m(X,11)*} —E{m(X))*} = %E{(m(xl)2 —m(X2)H) (f, (X2, X1) — £, (X1, X2))}.
(14.22)

m satisfies the Lipschitz condition (14.1). Therefore
im(x)* —m(2)*| < |m(x) = m(@)|(jmXx)| + |m(2)|) < 2LC||x -z,
and so (14.22) implies that
[E{m(X,.1.1)*} = E{m(X1)?}| < LCE{IX; = Xo| - | £, (X2, X1) = £ (X1, X)),
Forany 0 < a < b < 1, we have the inequality
0<(l—a)"—(1—=b)"<nb—a)(l—a)".
Therefore
[E{m(X,.11)*} — E{m(X1)*}]
< LCHZE{HXl = Xo | - | (Sx1x=xa 1) — #(SXs. %=X |

(e DS —x) 4 DSy —x)) }

If ¢4 := Vol(Sy,1) then condition (i) implies that

|1 (Sx, 1% =% 1) — (8% 1% —x )| < call X1 — Xa||? max | f(x) — f(z)]
Ix—zl|<2[1X; =Xz ||
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< ol X; — Xo |91

Because of condition (ii), both e~ "= 2#Gxiixi—x2) and e~ =2HSxax1—X21) are
upper bounded by e~ =YIXi=X2l" Therefore

—n— X, |4
[Bm(X,.1.1)% = Bim (X1 < cion’E {[X) =X |20 brixi—Xel?}

Note that the random variable R := || X; — X;|| has a density on [0, 2K] bounded
above by ¢;7?~!. Therefore

IA

2K
|E{m(Xn,1,1)2} —E{m(X1)2}| clznZ/ pd2o=nyrd pd=1,
0

IA

o0
clzn_z/d/ P12 de=rr gy
0
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