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Abstract

We study protected nodes in various classes of random rooted trees by putting them
in the general context of fringe subtrees introduced by Aldous (1991). Several types
of random trees are considered: simply generated trees (or conditioned Galton–
Watson trees), which includes several cases treated separately by other authors, bi-
nary search trees and random recursive trees. This gives unified and simple proofs
of several earlier results, as well as new results.
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1 Introduction

Several recent papers study protected nodes in various classes of random rooted
trees, where a node is said to be protected if it is not a leaf and, furthermore, none of
its children is a leaf. (Equivalently, a node is protected if and only if the distance to any
descendant that is a leaf is at least 2; for generalizations, see Section 5.) See Cheon and
Shapiro [5] (uniformly random ordered trees, Motzkin trees, full binary trees, binary
trees, full ternary trees), Mansour [18] (k-ary trees), Du and Prodinger [10] (digital
search trees), Mahmoud and Ward [16] (binary search trees), Mahmoud and Ward [17]
(random recursive trees), Bóna [4] (binary search trees).

The purpose of the present paper is to extend and sharpen some of these results by
putting them in the general context of fringe subtrees introduced by Aldous [1].

If T is any rooted tree, and v is a node in T , let Tv be the subtree rooted at v. By
taking v uniformly at random from the nodes of T , we obtain a random rooted tree
which we call the random fringe subtree of T and denote by T∗.

Note that a node v is protected if and only if the subtree Tv has a protected root.
Hence, if Epr is the set of trees that have a protected root, then v is protected in T if and
only if Tv ∈ Epr. In particular, taking v uniformly at random, for any given tree T ,

ppr(T ) := P(a uniformly random node v is protected) = P(T∗ ∈ Epr). (1.1)

and we immediately obtain results for protected nodes from more general results for
fringe subtrees, see Section 3.
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Protected nodes and fringe subtrees

When T is a random tree, we can think of T∗ in two ways, called annealed and
quenched using terminology from statistical physics. In the annealed version we take
a random tree T and a uniformly random node v in it, yielding a random fringe subtree
T∗.

In the quenched version we do the random choices in two steps. First we choose
and fix a random tree T . We then choose v ∈ T uniformly at random, yielding a random
fringe subtree T∗ depending on T . We thus obtain for every choice of T a probability
distribution L(T∗) on the set T of all rooted trees; this distribution depends on the ran-
dom tree T and is thus a random probability distribution. In other words, we consider
the conditional distribution L(T∗ | T ) of T∗ given T . We can now study properties of this
random probability distribution. Averaging over T , we obtain the distribution of T∗ in
the annealed version, so results in the quenched version are generally stronger than in
the annealed version.

Returning to protected nodes, we see that in the quenched point of view, we con-
sider npr(T ), the number of protected nodes in a tree T , and ppr(T ) = npr(T )/|T |, the
probability that a randomly chosen node in T is protected, and we regard these func-
tions of T as random variables depending on a random tree T . Thus (1.1) can now be
written

ppr(T ) = P(T∗ ∈ Epr | T ). (1.2)

In the annealed version we more simply consider the probability that a random node in
a random tree T is protected, which equals the expectation

E ppr(T ) = P(T∗ ∈ Epr). (1.3)

The first class of random trees that we consider in this paper are the simply gener-
ated random trees; these are defined using a weight sequence (wk)∞k=0 which we regard
as fixed, see Section 2 for the definition and the connection to conditioned Galton–
Watson trees. It is well-known that suitable choices of (wk)∞k=0 yield several important
classes of random trees, see e.g. Aldous [2], Devroye [6], Drmota [9], Janson [14] and
Section 4.

Let

Φ(t) :=

∞∑
k=0

wkt
k (1.4)

be the generating function of the weight sequence, and let ρ ∈ [0,∞] be its radius of
convergence. We define an important parameter τ > 0 by:

(i) τ is the unique number in [0, ρ] such that

τΦ′(τ) = Φ(τ) <∞, (1.5)

if there exists any such τ .

(ii) If (1.5) has no solution, then τ := ρ.

See further [14, Section 7], where several properties and equivalent characterizations
are given. (For example, τ is the minimum point in [0, ρ] of Φ(t)/t. Furthermore, Φ(τ) <

∞ also in case (ii), and τ > 0 ⇐⇒ ρ > 0.)
We define another weight sequence (πk)∞k=0 by

πk :=
wkτ

k

Φ(τ)
; (1.6)

this weight sequence has the generating function

Φτ (t) := Φ(τt)/Φ(τ). (1.7)
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Protected nodes and fringe subtrees

Note that
∑∞
k=0 πk = 1; thus (πk)∞k=0 is a probability distribution on the non-negative

integers Z>0 := {0, 1, 2, . . . }.
Theorem 1.1. Let Tn be a simply generated random tree with n nodes. Then, with
notations as above, the following holds as n→∞.

(i) (Annealed version.) The probability pn = E ppr(Tn) that a random node in a random
tree Tn is protected tends to a limit p∗, with

p∗ := Φτ (1− π0)− π0 =
Φ
(
τ − τw0/Φ(τ)

)
− w0

Φ(τ)
. (1.8)

(ii) (Quenched version.) The proportion of nodes in Tn that are protected, i.e. ppr(Tn) =

npr(Tn)/n, converges in probability to p∗.

The main idea of this paper, viz. to study protected nodes by studying fringe sub-
trees, applies also to other types of random trees. We consider binary search trees in
Section 6 and random recusive trees in Section 7.

Protected nodes have been studied also for digital search trees [10] and tries [11],
[12]. As far as we know, the fringe subtrees of these random trees have not been studied
in general; this will be dealt with elsewhere.

2 Simply generated trees and Galton–Watson trees

All trees in this paper are rooted and ordered (= plane). (For unordered trees, see
Example 4.2.) We denote the outdegree of a node v ∈ T by d+(v). Note that a tree
is uniquely determined by its sequence of outdegrees, taken in e.g. breadth-first order.
See further e.g. [9] and [14]. We let T denote the set of all ordered rooted trees, and
Tn := {T ∈ T : |T | = n} the set of all ordered rooted trees with n nodes. By a random
tree we mean a random element of T with some given but arbitrary distribution. (No
uniformity is implied unless we say so.)

Given a weight sequence (wk)∞k=0, we define the weight of a tree T to be w(T ) :=∏
v∈T wd+(v). For n > 1, we define the simply generated random tree Tn as the random

tree obtained by selecting an ordered rooted tree in Tn with probability proportional to
its weight. (We consider only n such that there is at least one tree in Tn with positive
weight.)

It is well-known that simply generated random trees are essentially the same as
conditioned Galton–Watson trees. Given a probability distribution (πk)∞k=0 on Z>0, let
T be the corresponding Galton–Watson tree; this is a random tree where each node
has a random number of children, and these numbers all are independent and with
the distribution (πk)∞k=0. Furthermore, let Tn be T conditioned on having exactly n

nodes; this is called a conditioned Galton–Watson tree. (We consider only n such that
P(|T | = n) > 0.) It is easy to see that the conditioned Galton–Watson tree Tn coincides
with the simply generated random tree defined using the weight sequence (πk)∞k=0.
Moreover, if (wk)∞k=0 is any weight sequence with radius of convergence ρ > 0 (this
is satisfied in virtually all applications), let (πk)∞k=0 be given by (1.6). Then the simply
generated random tree defined by (wk)∞k=0 coincides with the simply generated random
tree defined by (πk)∞k=0, and thus with the conditioned Galton–Watson tree defined by
(πk)∞k=0, see e.g. [15] and [14]. (There are also other probability distributions yielding
the same conditioned Galton–Watson tree, but the choice in (1.6) is the canonical one,
see [14].)

It is easy to see that the probability distribution (πk)∞k=0 has expectation τΦ′(τ)/Φ(τ),
which equals 1 in case (i) above (i.e., when (1.5) holds), but is less than 1 in case (ii)
(i.e., when (1.5) has no solution). Thus, (πk)∞k=0 yields a critical Galton–Watson tree T
in case (i), but T is subcritical in case (ii). In both cases, T is a.s. finite.
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Protected nodes and fringe subtrees

3 Proof of Theorem 1.1

The proof is based on the fact that the random fringe subtrees of a conditioned
Galton–Watson tree converge in distribution to the corresponding (unconditional) Galton–
Watson tree, as stated in the following theorem. Part (i) was proved by Aldous [1] under
some extra conditions, and by Bennies and Kersting [3] under fewer extra conditions;
the general case and (ii) are proved in [14, Theorem 7.12].

Theorem 3.1. Let Tn be a simply generated random tree with n nodes. Then, with
notations as above, the following holds as n→∞.

(i) (Annealed version.) The fringe subtree Tn,∗ converges in distribution to the Galton–
Watson tree T . I.e., for every fixed tree T ,

P(Tn,∗ = T )→ P(T = T ). (3.1)

(ii) (Quenched version.) The conditional distributions L(Tn,∗ | Tn) converge to the
distribution of T in probability. I.e., for every fixed tree T ,

P(Tn,∗ = T | Tn)
p−→ P(T = T ). (3.2)

Note that the set of (finite) ordered trees is a countable discrete set; this justifies
that it is enough to consider point probabilities in (3.1) and (3.2).

Proof of Theorem 1.1. For the annealed version, it follows immediately from (1.1) and

(3.1), which can be written Tn,∗
d−→ T , that

pn = P(Tn,∗ ∈ Epr)→ P(T ∈ Epr). (3.3)

For the quenched version, conditioning on Tn, we similarly obtain by (3.2),

ppr(Tn) = P(Tn,∗ ∈ Epr | Tn)
p−→ P(T ∈ Epr). (3.4)

It remains only to calculate P(T ∈ Epr). This is easy, by conditioning on the root
degree, say k. If k = 0, then the root is a leaf and not protected, and if k > 0, the
root is protected if and only if each of its k children has at least one child, which has
probability (1− π0)k. Hence,

P(T ∈ Epr) =

∞∑
k=1

πk(1− π0)k = Φτ (1− π0)− π0. (3.5)

Finally, π0 = w0/Φ(τ) by (1.6), and Φτ (1− π0) = Φ(τ − τπ0)/Φ(τ) by (1.7).

4 Examples

We give several examples of random trees where Theorem 1.1 applies. We focus on
the calculation of p∗. We omit some steps in the calculations, see e.g. [14, Section 10]
for further details.

Example 4.1 (ordered trees). The weight sequence wk = 1 yields uniformly random
ordered trees. In this case, Φ(t) =

∑∞
k=0 t

k = 1/(1 − t) and (1.5) has the solution
τ = 1/2, yielding πk = 2−k−1 (a geometric Ge(1/2) distribution) and Φτ (t) = 1/(2 − t).
Thus π0 = 1/2 and, by (1.8),

p∗ = Φτ

(1

2

)
− 1

2
=

1

2− 1
2

− 1

2
=

1

6
. (4.1)
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Protected nodes and fringe subtrees

We thus recover from the annealed version in Theorem 1.1 the result by Cheon and
Shapiro [5] that the average proportion of protected nodes in a random ordered tree
converges to 1/6 as the size goes to infinity. Moreover, the quenched version shows that
that holds also for most individual trees. More precisely, ppr(Tn)

p−→ 1/6, i.e., for any
ε > 0, the probability that a uniformly random ordered tree with n nodes has between
(1/6− ε)n and (1/6 + ε)n protected nodes tends to 1 as n→∞.

Example 4.2 (unordered trees). We have assumed that the trees are ordered, but we
can treat also unordered labelled trees by giving the children of each node a (uniform)
random ordering. As is well known, a uniformly random unordered labelled rooted tree
(sometimes called Cayley tree) then becomes simply generated with weights wk = 1/k!.
In this case, Φ(t) =

∑∞
k=0 t

k/k! = et and (1.5) has the solution τ = 1, yielding πk = e−1/k!

(a Poisson Po(1) distribution) and Φτ (t) = et−1. Thus π0 = e−1 and, by (1.8),

p∗ = Φτ
(
1− e−1

)
− e−1 = e−e

−1

− e−1 ≈ 0.32432. (4.2)

Example 4.3 (full d-ary trees). Uniformly random full d-ary trees are simply generated
random trees with wk = 1 if k = 0 or k = d, and wk = 0 otherwise. (Here d > 2 is a fixed
integer. In this case, the number of nodes n has to be 1 (mod d).) We have Φ(t) = 1 + td

and τ = (d − 1)−1/d, yielding π0 = (d − 1)/d, πd = 1/d, and Φτ (t) = (d − 1 + td)/d.
Consequently, (1.8) yields

p∗ = πd(1− π0)d = 1/dd+1. (4.3)

Thus, Theorem 1.1 shows that the proportion of protected nodes tends to 1/dd+1.
This was found by Mansour [18] (for the annealed version); note that [18] states the

result in terms of the number of internal nodes. Since a full d-ary tree with m internal
nodes has dm + 1 nodes, the proportion of internal nodes that are protected tends to
1/dd.

The special case d = 2 yields full binary trees, for which we find p∗ = 1/8. (The
proportion 1/4 given in [5] seems to be a mistake.)

The special case d = 3 yields full ternary trees, for which we find p∗ = 1/81, in
accordance with [5].

Example 4.4 (d-ary trees). Uniformly random d-ary trees are simply generated random
trees with wk =

(
d
k

)
. (Again, d > 2 is a fixed integer.) In this case, Φ(t) = (1 + t)d and

τ = 1/(d − 1), yielding πk =
(
d
k

)
( 1
d )k(d−1d )d−k (a binomial Bi(d, 1/d) distribution) and

Φτ (t) = ((d− 1 + t)/d)d. Consequently, π0 = (1− 1/d)d and

p∗ =

(
d− π0
d

)d
− πd0 =

(
1− (d− 1)d

dd+1

)d
− (d− 1)d

dd
. (4.4)

In particular, for d = 2 (binary trees), we obtain p∗ = 33/64. (The proportion 9/256 given
in [5] seems to be a mistake.)

Example 4.5 (Motzkin trees). A Motzkin tree has each outdegree 0, 1 or 2. Taking
w0 = w1 = w2 = 1 and wk = 0 for k > 3 yields a uniformly random Motzkin tree. We
have Φ(t) = 1 + t+ t2 and (1.5) has the soultion τ = 1, yielding πk = 1/3, 0 6 k 6 2, and
Φτ (t) = (1 + t+ t2)/3. Thus, by (1.8),

p∗ =
1

3

(
2

3
+
(2

3

)2)
=

10

27
. (4.5)

Hence, the proportion of protected nodes in a uniformly random Motzkin tree tends to
10/27, as shown (in the annealed version) by Cheon and Shapiro [5].
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Protected nodes and fringe subtrees

5 `-protected nodes

More generally, given an integer ` > 1, we say that a node in a rooted tree is `-
protected if it has distance at least ` to every leaf that is a descendant of it. Thus
2-protected = protected and 1-protected = non-leaf (internal node).

The results above generalize immediately to `-protected nodes for any fixed ` > 1.
Given a tree T , let ppr,`(T ) be the proportion of nodes in T that are `-protected, and let
p∗,` be the probability that the root of the Galton–Watson tree T is `-protected.

Theorem 5.1. Let Tn be a simply generated random tree with n nodes. Then, with
notations as above, the following holds as n→∞.

(i) (Annealed version.) The probability pn,` = E ppr,`(Tn) that a random node in a
random tree Tn is `-protected tends to p∗,`, with p∗,` given by the recursion

p∗,` := Φτ (p∗,`−1)− π0, ` > 1, (5.1)

with p∗,0 = 1 and p∗,1 = 1− π0.

(ii) (Quenched version.) The proportion of nodes in Tn that are `-protected, i.e. ppr,`(Tn),
converges in probability to p∗,`.

Proof. The convergence to p∗,` follows from Theorem 3.1 as in the proof of Theorem 1.1.
The recursion (5.1) follows since the root is `-protected if and only if it has outdegree
> 0 and each child is (`− 1)-protected.

Example 5.2. For uniformly random ordered trees, Φτ (t) = 1/(2− t), see Example 4.1,
and thus the recursion (5.1) is

p∗,` =
1

2− p∗,`−1
− 1

2
=

p∗,`−1
4− 2p∗,`−1

, ` > 1, (5.2)

yielding 1/p∗,` = 4/p∗,`−1 − 2 with the solution 1/p∗,` = (4` + 2)/3, i.e.

p∗,` =
3

4` + 2
, ` > 0. (5.3)

In particular, p∗,1 = 1/2, p∗,2 = 1/6, p∗,3 = 1/22, p∗,4 = 1/86.
Hence, for each fixed ` > 1, the proportion of `-protected nodes in a uniform random

ordered tree tends to 3/(4` + 2).

Example 5.3. For uniformly random unordered labelled rooted trees we have by Ex-
ample 4.2 π0 = e−1 and Φτ (t) = et−1. Thus (5.1) yields

p∗,1 = 1− e−1 ≈ 0.63212, (5.4)

p∗,2 = e−e
−1

− e−1 ≈ 0.32432, (5.5)

as in Example 4.2, and

p∗,3 = exp
(
e−e

−1

− e−1 − 1
)
− e−1 ≈ 0.14093. (5.6)

6 Binary search trees

A random binary search tree with n nodes is a binary tree obtained by inserting, in
the standard manner, n independently and identically distributed (i.i.d.) uniform [0, 1]

random variablesX1, . . . , Xn into an initially empty tree, see e.g. [9]. Let Tn be a random
binary search tree with n nodes. Aldous [1] showed that there exists a random limiting
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Protected nodes and fringe subtrees

fringe tree T̂ in this case too such that (3.1) and (3.2) hold (with T replaced by T̂ ); in
fact, the convergence in (3.2) holds a.s. The limit tree T̂ can be described as a binary
search tree TN with a random size N ; this is easily seen by the recursive construction
of the binary search tree, letting N be the limiting distribution of the subtree size |Tn,∗|
of a random node, and a calculation shows that P(N = n) = 2/((n + 1)(n + 2)), n > 1

[1]. See also Devroye [7] for a simple direct proof.
Moreover, Aldous [1] also shows that T̂ may be constructed as follows: Let T̃t, t > 0,

be a random process of a binary tree growing in continuous time, starting with T̃0 being
a single root, and adding left and right children with intensity 1 at all possible places.
In other words, given any T̃t at a time t > 0, any possible child of an existing node
(excluding children already existing) is added after an exponential Exp(1) waiting time,
all waiting times being independent. It is well-known and easy to see that at any fixed
time t > 0, the conditional distribution of T̃t given |T̃t| = n equals the distribution of
Tn. Moreover, if we instead take T̃X at a random time X ∼ Exp(1) (independent of

everything else), then T̃X
d
= T̂ .

We can now repeat the proof of Theorem 1.1 and obtain the same results as above,
with

p∗ = P(the root of T̂ is protected) = P(T̃X ∈ Epr) =

∫ ∞
0

P(T̃t ∈ Epr)e−t dt (6.1)

In order to evaluate p∗, we consider first T̃t for a given t. The probability q1(t) that the
root of T̃t is a leaf is e−2t. Similarly, if the left child appears at time s, then the probability
that it still is a leaf at some later time t > s is e−2(t−s). Hence, the probability r1(t) that
there is a left child that is a leaf is

r1(t) :=

∫ t

0

e−2(t−s)e−s ds =

∫ t

0

es−2t ds = e−t − e−2t. (6.2)

The probability that the root has at least one child that is a leaf is thus, by symmetry
and independence, 1 − (1 − r1(t))2 = 2r1(t) − r1(t)2 and the probability that the root in
T̃t is not protected is

q1(t) + 2r1(t)− r1(t)2 = e−2t + 2e−t − 2e−2t − (e−t − e−2t)2

= 2e−t − 2e−2t + 2e−3t − e−4t.
(6.3)

Hence we obtain from (6.1)

p∗ = 1−
∫ ∞
0

(
2e−t − 2e−2t + 2e−3t − e−4t

)
e−t dt =

11

30
, (6.4)

in accordance with Mahmoud and Ward [16] and Bóna [4].
More generally, let q`(t) be the probability that the root of T̃t is not `-protected, ` > 1,

and let r`(t) be the probability that the root in T̃t has a left child that is not `-protected.
The same argument as above yields the recursion, for ` > 2,

q`(t) = q1(t) + 2r`−1(t)− r`−1(t)2, (6.5)

r`−1(t) =

∫ t

0

q`−1(t− s)e−s ds = e−t
∫ t

0

q`−1(s)es ds, (6.6)

and then the asymptotic proportion of `-protected nodes is found as

p∗,` = 1−
∫ ∞
0

q`(t)e
−t dt. (6.7)

A Maple calculation yields p∗,1 = 2/3, p∗,2 = 11/30, p∗,3 = 1249/8100 and p∗,4 =

103365591157608217/2294809143026400000 ≈ 0.04504, in agreement with Bóna [4], who
calculates these values by a different method.
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Protected nodes and fringe subtrees

Remark 6.1. Bóna [4] considers c`, the asymptotic probability that a random node is
at level `, meaning that the distance to the nearest leaf that is a descendant is ` − 1;
thus a node is `-protected if it is at a level strictly larger than `, and c` = p∗,`−1 − p∗,`,
with p∗,0 = 1.

In the quenched version, asymptotic normality of the number of protected nodes
was shown by Mahmoud and Ward [16]. Alternatively, this follows easily by the method
of Devroye [7], see [13] for details.

7 Random recursive trees

A uniform random recursive tree Tn of order n is a tree with n nodes labeled {1, . . . , n}.
The root is labelled 1, and for 2 6 i 6 n, the node labelled i chooses a vertex in
{1, . . . , i − 1} uniformly at random as its parent. See e.g. [8], [9], [19]. This case is
very similar to the random binary search tree in Section 6: Aldous [1] has shown the
existence of a random limiting fringe tree T̂ , and again T̂ can be described as TN , now
with P(N = n) = 1/(n(n+ 1)). Moreover, T̂ can be constructed as T̃X with X ∼ Exp(1)

in this case too, where now T̃t is the random tree process where each node gets a new
child with i.i.d. exponential waiting times with intensity 1. (The Yule tree process.)

The children of the root arrive in a Poisson process with intensity 1; hence the
number of children of the root in T̃t has the distribution Po(t), and the probability that
the root is a leaf is P(Po(t) = 0) = e−t. Moreover, a child that is born at time s is still a
leaf at time t > s with probability e−(t−s). Hence children of the root that remain leaves
at time t are born with intensity e−(t−s), s ∈ (0, t). Since a thinning of a Poisson process
is a Poisson process, it follows that the number of children of the root that are leaves at
time t has a Poisson distribution with expectation

∫ t
0
e−(t−s) ds = 1− e−t. Consequently,

the probability that the root of T̃t has no child that is a leaf is exp(−(1−e−t)). Subtracting
the probability that the root has no child at all, we obtain the probability p2(t) that the
root of T̃t is protected as

p2(t) = exp
(
e−t − 1

)
− e−t (7.1)

and thus

p∗ =

∫ ∞
0

p2(t)e−t dt =

∫ ∞
0

exp
(
e−t − 1

)
e−t dt−

∫ ∞
0

e−2t dt

=

∫ 1

0

exp(x− 1) dx− 1

2
=

1

2
− e−1,

(7.2)

in accordance with Mahmoud and Ward [17].
We can treat `-protected nodes too in random recursive trees by the same method.

If p`(t) is the probability that the root is `-protected in T̃t, and q`(t) = 1 − p`(t), then
the number of children of the root that are not (` − 1)-protected at time t is Poisson
distributed with mean

∫ t
0
q`−1(t− s) ds =

∫ t
0
q`−1(s) ds, yielding the recursion, for ` > 1,

p`(t) = exp

(
−
∫ t

0

q`−1(s) ds

)
− exp(−t) = e−t

(
exp

(∫ t

0

p`−1(s) ds

)
− 1

)
, (7.3)

with p0(t) = 1 and p1(t) = 1 − e−t. In principle, p∗,` can be computed as
∫∞
0
p`(t)e

−t dt,
but in this case we do not know any closed form for ` > 2.
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Stat. 51 (1994), 1–29 (Ukrainian). MR-1445048

Acknowledgments. This research was mainly done during the 23rd International
Meeting on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2012) in Montreal, June 2012. We thank the organizers for providing
this opportunity and several participants for helpful comments.

ECP 19 (2014), paper 6.
Page 10/10

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=1445048
http://dx.doi.org/10.1214/ECP.v19-3048
http://ecp.ejpecp.org/

	Introduction
	Simply generated trees and Galton–Watson trees
	Proof of Theorem 1.1
	Examples
	l-protected nodes
	Binary search trees
	Random recursive trees

