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Abstract

We study the problem of estimating the common mean µ of n independent
symmetric random variables with different and unknown standard deviations
σ1 ≤ σ2 ≤ · · · ≤ σn. We show that, under some mild regularity assumptions
on the distribution, there is an adaptive estimator µ̂ such that it is invariant to
permutations of the elements of the sample and satisfies that, up to logarithmic
factors, with high probability,

|µ̂− µ| ≲ min

{
σm∗ ,

√
n∑n

i=
√
n σ

−1
i

}
,

where the index m∗ ≲
√
n satisfies m∗ ≈

√
σm∗

∑n
i=m∗ σ

−1
i .

1 Introduction

In this note we study the problem of estimating the common mean µ ∈ R of
n independent real random variables X1, . . . , Xn. These random variables do
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not need to be identically distributed. Moreover, the variances of the Xi may
greatly vary and therefore the information each observation carries about the
mean may be different. For the sake of this introductory discussion, assume
that the Xi all have normal distribution so that Xi ∼ N (µ, σ2

i ) for some 0 <
σ1 ≤ · · · ≤ σn.

If the values of the standard deviations σi were known, then one could
choose the maximum likelihood estimator

µ̂ =

∑n
i=1

Xi

σ2
i∑n

i=1
1
σ2
i

,

leading to an expected error E|µ̂ − µ| ≤
(∑n

i=1 σ
−2
i

)−1/2
. The general study

of such estimators goes back to (Ibragimov and Has’minskii; 1981, Chapter 3,
Section 4) where the estimation of a single parameter based on independent
but non-identically distributed observations is studied. However, this idealistic
estimator assumes that the standard deviation of each sample point is known
to the statistician.

In this note we consider the situation where nothing is known about the
values of the σi (or their assignments to the data points). In particular, we fo-
cus on the estimators invariant to permutations of the elements of the sample.
Naturally, one may always compute the sample mean (1/n)

∑n
i=1Xi. How-

ever, the sample mean has an error of the order of (1/n)
(∑n

i=1 σ
2
i

)1/2
whose

performance deteriorates even if a single data point has a large variance.
For symmetric distributions like the normal distribution, another – and

more robust – natural estimator of the mean is the sample median. One of
the contributions of this note is to provide new non-asymptotic performance
guarantees for the sample median. In particular, we show that under some mild
assumptions the error of the sample median is bounded, with high probability,
by

c
√
n log n∑n

i=
√
cn logn σ

−1
i

(1.1)

for some constant c (see Proposition 1 for the rigorous statement).
As simple as the sample median is, it has the disadvantage that it does

not take advantage of the presence of data points with very small variance.
Indeed, the performance of the sample median is essentially insensitive to the
approximately

√
n smallest variances. This can be demonstrated by the follow-

ing argument: since we consider the symmetric distribution, each observation
has an equal probability of being larger or smaller than the true mean. By
an anti-concentration argument for Bernoulli random variables, we have that
with constant probability the number of the observations larger (smaller) than
µ minus the number of the observations smaller (larger) than µ is of order

√
n.

Therefore, on this event, the median will not choose the true mean even if
approximately

√
n first variances are all equal to zero.
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At the same time, the presence of data with very small variances makes the
problem much easier. A simple way to exploit such situations is in using the so-
called modal interval estimator introduced by Chernoff (1964) for estimating
the mode of a density function. The modal interval estimator looks for the
most populated interval of a certain length s > 0 and outputs its mid-point.
The main challenge in applying this method in our setting is that without any
knowledge of the variances σ1, σ2, . . . it is a hard to establish a good value of s a
priori. In Proposition 2 below we establish a simple sufficient condition for the
length s that guarantees that the modal interval contains the mean µ. Roughly
speaking, this condition guarantees that random fluctuations of the data far
from the mean cannot produce an interval of length s that has more points
than the expected number of points in the interval of same length centered at
the mean µ. We call such “good” values of s admissible. Admissibility of an
interval length depends, in a complex way, on the entire sequence σ1, . . . , σn.
Ideally, one would like to use the modal interval estimator with the smallest
possible admissible interval length. The main contribution of this note is an
adaptive estimator that essentially achieves this goal. More precisely, without
any previous knowledge of the σi, we show that one can construct a completely
data-driven estimator that has a performance at least as good (up to constant
factors in the error) as the best of the sample median and the modal interval
estimator with the smallest admissible interval length.

In the remainder of this introduction we discuss previous related work. In
Section 2 the analysis of the sample median is presented. We also show that an
appropriately chosen median interval is a valid empirical confidence interval.
This is important in the construction of the adaptive estimator. The modal
interval estimator is analyzed in Section 3. The adaptive estimator is described
in Section 4 and its performance guarantees are established in Theorem 1. In
Section 5 we take a closer look at some concrete examples and compare our
performance bounds with those of previous work.

Related work

For some classical references on the maximum likelihood estimator in our setup
we refer to the work of Ibragimov and Has’minskii (1976) and Beran (1982).
The sample median has been analyzed in the literature in our setup. For
example, Mizera and Wellner (1998) provide necessary and sufficient conditions
for the consistency of the sample median for triangular arrays of independent,
not identically distributed random variables (in a more general setting than
ours). The role of the sum of the reciprocals of the standard deviations as
in (1.1) appears in early work. In particular, the result of Nevzorov (1984,
Theorem 2) can be used to provide rates of convergence of the sample median
to the normal law for non-identically distributed Gaussian data that involves∑n

i=1 σ
−1
i . The work of Gordon, Litvak, Schütt and Werner (2006, Theorem

7) uses this quantity in the context of the moments of order statistics for non-
identically distributed random variables. Moreover, the work of Xia (2019,
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Corollary 6) makes direct connections between the sum of reciprocals and the
performance of the sample median, see Section 5 for a detailed comparison.
The same quantity appears in the analysis of the iterative trimming algorithm
of Liang and Yuan (2020, Remark following Theorem 1). Importantly, in the
context of the mean estimation problem, some of the above-mentioned results
provide performance guarantees when the value of

∑n
i=1 σ

−1
i is large, whereas

our bounds provide sharp guarantees for the entire range of values of the sum
of reciprocals of the standard deviations.

The most related papers are (Chierichetti, Dasgupta, Kumar and Lattanzi;
2014), (Pensia, Jog and Loh; 2019), and (Liang and Yuan; 2020). For example,
Chierichetti et al. (2014) construct an estimator whose error is bounded, with
high probability, by Õ (

√
nσlogn), where Õ(·) suppresses multiplicative poly-

logarithmic factors. The hybrid estimator of Pensia et al. (2019, Proposition 5)
uses a combination of the shortest gap with the median estimators, quite similar
to our estimator. However, in contrast to these previous results, the estimator
proposed here is adaptive to unknown parameters. Our estimator also compares
favourably with the iterative trimming algorithm of Liang and Yuan (2020),
which does not cover the entire range of the values of σ1, . . . , σn and depends
on some tuning parameters and the initialization. Section 5 includes extensive
comparisons with these papers. In particular, we show that, up to logarithmic
factors, our bounds are never worse than the previous (non-adaptive) bounds.

Notation

In what follows, we denote a ∧ b = min{a, b} and a ∨ b = max{a, b}. Given
X1, . . . , Xn let X(1), . . . , X(n) denote the non-decreasing rearrangement of its
elements. The valueX(i) is usually referred to as the i-th order statistic. In what
follows, a ≲ b and b ≳ a denote the existence of a numerical constant c such
that a ≤ cb. The numerical constants are denoted by c, c1, c2, . . . > 0. Their
values may change from line to line. We also use the standard O(·) notation as
well as its version Õ(·) that suppresses multiplicative poly-logarithmic factors.
Finally, let [n] denote the set {1, . . . , n}.

2 Analysis of the α-median interval

When the distribution of each random variable Xi is symmetric about the mean
µ, the empirical median is a natural estimator of the mean. In this section we
present an analysis of the empirical median. We assume the following regularity
conditions.

Assumption A. Let X1, . . . , Xn be independent random variables and let 0 <
σ1 ≤ · · · ≤ σn. We assume that

(i) EXi = µ for all i ∈ [n] ;

(ii) Symmetry: for each i ∈ [n], Xi−µ and µ−Xi have the same distribution ;
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(iii) Tail assumption: for some constant β > 0, we have that for any t > 0,

P {|(Xi − µ)/σi| ≥ t} ≤ exp(−βt) . (2.1)

A canonical example satisfying Assumption A is when Xi ∼ N (µ, σ2
i ). In

this case one may choose β =
√

2
π . Note that we do not need to assume that the

(Xi − µ)/σi are identically distributed. It suffices that they are independent,
symmetric, and satisfy the tail assumption (2.1). Note also that condition
(iii) implies that P{|(Xi − µ)/σi| < t} is lower bounded by βt/2 for t ≤ 2/β.
In particular, if Xi has an absolute continuous distribution, this assumption
implies that the density of (Xi − µ)/σi is bounded away from zero near zero.
An unfavorable example excluded by condition (iii) is the case of independent
Rademacher random variables. Indeed, in this case if n is odd, the median is
equal to either 1 or −1 and does not converge to the expected value 0. However,
in this case there is no β > 0 such that P {|Xi| ≥ t} = 11≥t ≤ exp(−βt) for all
t > 0.

For reasons that will become apparent later, we consider not only the empir-
ical median as a point estimator but also the so-called median interval, defined
as the interval whose endpoints are X(n/2−k) and X(n/2+k) for an appropriately
chosen value of k. This will allow us to obtain an empirical confidence interval
that is essential for our adaptive procedure.

To define the median interval, assume, for simplicity, that n is even and
recall that X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order statistics of X1, . . . , Xn.
In order to avoid complications arising from ties, we assume that the Xi have
a nonatomic distribution.

We fix α ∈ (0,
√
n/2) such that α

√
n is an integer. Consider the random

interval
Iα = [X(n/2−α

√
n), X(n/2+α

√
n)] . (2.2)

We refer to Iα as the α-median interval. Our first result provides two key
properties of the median interval: if α is proportional to

√
log(1/δ), the interval

Iα contains the mean µ with probability at least 1 − δ. Moreover, we provide
an upper bound for the length of Iα in terms of the sum of the reciprocals of
the standard deviations.

Proposition 1. Let Assumption A be satisfied. Fix δ ∈ (0, 1) such that

128 log 6
δ ≤ n and set α =

√
2 log 6

δ . The median interval Iα satisfies, with

probability at least 1− δ, that µ ∈ Iα and

|Iα| ≤ 8e
√
2

(
log

3

δ
∨ log (n+ 1)

)
β−1 max

1≤j≤8α
√
n

8α
√
n+ 1− j∑n
i=j σ

−1
i

.

Note that by ignoring constant factors, Proposition 1 implies

|Iα| ≲ β−1 log
(n
δ

) α
√
n∑n

i=8α
√
n σ

−1
i

. (2.3)
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The key to the proof of Proposition 1 is following rearrangement inequality
due to Gordon et al. (2006, Theorem 7). Let |X|(1), . . . , |X|(n) denote the non-
decreasing rearrangement of |X1|, . . . , |Xn|.

Lemma 1. Let X1, . . . , Xn be independent random variables such that for 0 <
σ1 ≤ · · · ≤ σn and β > 0, for all t > 0, P (|Xi/σi| ≥ t) ≤ exp(−βt). Then for
all p ≥ 1 and 1 ≤ k ≤ n,(

E(|X|(k))p
) 1

p ≤ 4
√
2max{p, log(k + 1)}β−1 max

1≤j≤k

k + 1− j∑n
i=j σ

−1
i

.

Proof of Proposition 1. First, we show that µ ∈ Iα. Without loss of
generality, we may assume that µ = 0 for the rest of the proof. Let ε1, . . . , εn
be independent Rademacher random variables. Since the distribution of each
Xi is assumed to be symmetric, (ε1|X1|, . . . , εn|Xn|) has the same distribution
as (X1, . . . , Xn). Conditioning on the X1, . . . , Xn, we have, by Hoeffding’s
inequality,

P (µ /∈ Iα) = P

(∣∣∣∣∣
n∑

i=1

εi

∣∣∣∣∣ > α
√
n

)
≤ 2 exp

(
−α2

2

)
.

We denote the event that µ ∈ Iα by E1 and proceed with the bound on the
length of the interval |Iα|. Fix k ≤ n and consider |X|(1), . . . , |X|(k) — these are
the absolute values of the k observations closest to µ = 0. Note that, depending
on the realizations of the random signs εi, the corresponding values ε1|Xi| may
be on either side of µ = 0. Let E2 be the event that there are more than k/4
of these k observations on both sides of µ. By a simple binomial estimate,

P(E2) ≥ 1− 2 exp

(
−k

8

)
.

Consider the event E1 ∩E2 and choose k = 8α
√
n so that at least 2α

√
n+1 of

these closest observations are on both sides of µ. On this event since Iα contains
µ = 0 and exactly 2α

√
n+ 1 observations, both |X(n/2−α

√
n)| ≤ |X|(8α√n) and

|X(n/2+α
√
n)| ≤ |X|(8α√n) hold. Therefore, on the event E1 ∩ E2,

|Iα| ≤ 2|X|(8α√n) . (2.4)

Finally, we use Lemma 1 to control |X|(8α√n). By Markov’s inequality and
Lemma 1, we have

P
(
|X|(8α√n) ≥ t

)
≤

E|X|p
(8α

√
n)

tp

≤ t−p

(
4
√
2max{p, log(8α

√
n+ 1)}β−1 max

1≤j≤8α
√
n

k + 1− j∑n
i=j σ

−1
i

)p

.
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Denote γ = 4
√
2β−1 max

1≤j≤8α
√
n

k+1−j∑n
i=j σ

−1
i

. Provided that t
γ e

−1 ≥ log(8α
√
n+ 1),

we may fix p = t
γ e

−1 and get

P
(
|X|(8α√n) ≥ t

)
≤ exp

(
− t

eγ

)
.

Fixing t =
(
log 3

δ ∨ log(8α
√
n+ 1)

)
eγ we have that, with probability at least

1− δ/3,

|X|(8α√n) ≤ 4e
√
2

(
log

3

δ
∨ log(8α

√
n+ 1)

)
β−1 max

1≤j≤8α
√
n

k + 1− j∑n
i=j σ

−1
i

.

Denote this event by E3.

Choosing α =
√

2 log 6
δ we have P(E1) ≥ 1 − δ/3. Since α

√
n ≥ 2α2, we

have P(E2) ≥ 1 − 2 exp (−α
√
n) ≥ 1 − 2 exp

(
−4 log 6

δ

)
≥ 1 − δ/3. Therefore,

we have by the union bound, that E1 ∩E2 ∩E3 is of probability at least 1− δ.
On this event due to (2.4) we have

|Iα| ≤ 8e
√
2

(
log

3

δ
∨ log

(
8α

√
n+ 1

))
β−1 max

1≤j≤8
√

2n log 6
δ

k + 1− j∑n
i=j σ

−1
i

.

The claim follows by observing that k = 8α
√
n ≤ n is equivalent to 128 log 6

δ ≤
n.

Corollary 1. Under the assumptions of Proposition 1 the median X(n/2) sat-
isfies, with probability at least 1− δ,

|X(n/2)−µ| ≤ 8e
√
2

(
log

3

δ
∨ log (n+ 1)

)
β−1 max

1≤j≤8
√

2n log 6
δ

8
√
2n log 6

δ + 1− j∑n
i=j σ

−1
i

.

Proof. Indeed, with probability at least 1 − δ, both µ and X(n/2) belong to
Iα for α as in Proposition 1, and therefore, |X(n/2) − µ| ≤ |Iα|.

3 Modal interval estimator

The second component of our adaptive estimator is the simple and natural
estimator that looks for an interval of a given length containing the maximum
number of data points. This is the so-calledmodal interval estimator introduced
by Chernoff (1964) for estimating the mode of a density function. Pensia et al.
(2019) also analyze this estimator though their bounds have some limitations
for our purposes. We make a detailed comparison in Section 5 below.

In this section we work under the following assumptions.
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Assumption B. Let X1, . . . , Xn be independent random variables such that
Xi has density (1/σi)ϕ((x−µ)/σi) where ϕ is some fixed density function, µ is
a location parameter and σ1 ≤ · · · ≤ σn are positive scale parameters. Assume
that

(i)
∫
xϕ(x)dx = 0. This implies that EXi = µ for all i ∈ [n].

(ii)
∫
x2ϕ(x)dx = 1. This implies that Var(Xi) = σ2

i for all i ∈ [n].

(iii) Symmetry: ϕ(−x) = ϕ(x) for all x ∈ R.

(iv) Unimodality: ϕ(x) is non-increasing for x > 0 and non-decreasing for
x < 0.

An important example satisfying Assumption B is the Gaussian case, that
is, when ϕ(x) = (1/

√
2π)e−x2/2. However, in general, ϕ may have a heavy tail

as long as the second moment exists. We also do not need to assume that ϕ is
bounded. Introduce the notation

Φ(t) =

∫ t

−t
ϕ(x)dx .

For s > 0, denote the interval As(x) = [x− s, x+ s]. Let

Ds(x) =
n∑

i=1

1Xi∈As(x)

be the number of points in the interval As(x). Denoting qi(s) = P{Xi ∈
As(µ)} = Φ(s/σi), we have

EDs(µ) =

n∑
i=1

qi(s) .

Define the modal interval estimator which returns the center of the densest
interval of length 2s. That is,

µ̂n,s ∈ argmax
x∈R

Ds(x) . (3.1)

For the modal interval estimator to work (in the sense that it contains the
common mean µ), the length s has to satisfy certain conditions. Such a suffi-
cient condition is formulated in the following definition that intuitively captures
the fact that the densest interval should contain µ, even after accounting for
random fluctuations. In Proposition 2 below we prove the condition of admis-
sibility specified here is indeed sufficient.

Definition 1. Fix the confidence δ > 0 and the interval length s > 0. Define

ms = max{m ∈ [n] : σm ≤ s} .
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We say that the length s is admissible if

ms ≥ κ

(√
EDs(µ) log

2n

δ
+ log

2n

δ

)
,

where κ > 0 is a numerical constant. Finally, we set

s(δ) = inf {s > 0 : s is admissible} . (3.2)

Remark. The value of the constant κ > 0 depends on a universal constant
appearing in Lemma 2 below. While it is possible to extract a specific value,
it is somewhat tedious and not crucial for our arguments, so we prefer to keep
it unspecified. All results below hold for all values of κ ≥ κ0 for some constant
κ0. Changing the value only effects the constants in the results below.

Remark. Observe that if the density is bounded, that is, if ϕ(0) is finite, we
have qi(s) ≤ min{1, 2ϕ(0)s/σi}. Therefore, adjusting the constant κ, we may
replace the admissibility criterion by the condition

ms ≥ κ


√√√√( n∑

i=1

min

{
1, 2ϕ(0)

s

σi

})
log

2n

δ
+ log

2n

δ

 ,

Roughly speaking, whenever ϕ(0) is finite one may think that s(δ) is approxi-
mately equal to σm∗ , where m∗ is the smallest integer satisfying

m∗ ≳

√√√√σm∗

(
n∑

i=m∗

1

σi

)
log

n

δ
.

Remark. Our arguments can be immediately generalized to the case where
each observation Xi has its own normalized density function denoted by ϕi. In
particular, our analysis only requires that

∫ 1
0 ϕi(x)dx is the same for all i =

1, . . . , n and minor modifications are needed if these quantities differ from each
other by a multiplicative constant factor. However, to simplify the form of our
bounds we assumed that observations come from a single family of distributions.

The main result of this section is the following bound.

Proposition 2. Let Assumption B be satisfied. Fix δ ∈ (0, 1). Then, with
probability at least 1− δ, simultaneously for all admissible s > 0, it holds that

|µ̂n,s − µ| ≤ 4s .

Proof. We start by showing a simple lower bound for Φ(1) = 2
∫ 1
0 ϕ(x)dx.

Fix any t ≥ 1 and observe that by property (iv) in Assumption B, we have
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tΦ(1) ≥ Φ(t). At the same time, by Chebyshev’s inequality and property (ii)
we have Φ(t) > (1− 1/t2). Therefore,

Φ(1) ≥ sup
t≥1

1

t

(
1− 1

t2

)
=

2

3
√
3
. (3.3)

As the estimator is translation invariant, we may assume, without loss of gen-
erality, that µ = 0. We show that, on the one hand, with probability at least
1− δ/2, simultaneously for all admissible s,

max
x∈R

Ds(x) ≥ ms
3Φ(1)

4
+
∑
i>ms

qi(s) , (3.4)

and, on the other hand, with probability at least 1− δ/2,

max
x∈R:|x|≥4s

Ds(x) < ms
3Φ(1)

4
+
∑
i>ms

qi(s) . (3.5)

These two properties together imply the proposition. First, we show (3.4).
Note that for i ≤ ms we have σi ≤ s and qi(s) = P{Xi ∈ As(0)} ≥ Φ(1), and
therefore,

EDs(0) =
n∑

i=1

qi(s) ≥ msΦ(1) +
∑
i>ms

qi(s) . (3.6)

Observe that, since s is admissible, we have

msΦ(1) ≥ Φ(1)

(
κ

√
EDs(0) log

2n

δ
+ κ log

2n

δ

)

≥ 2

3
√
3

(
κ

√
EDs(0) log

2n

δ
+ κ log

2n

δ

)
. (3.7)

Denote κ′ = 2
3
√
3
κ. Using (3.7), we have

P

{
∃s > 0 : s is admissible,max

x∈R
Ds(x) ≤ ms

3Φ(1)

4
+
∑
i>ms

qi

}

≤ P

{
∃s > 0 : s is admissible, Ds(0) ≤ ms

3Φ(1)

4
+
∑
i>ms

qi

}

≤ P
{
∃s > 0 : s is admissible, Ds(0) ≤ EDs(0)−ms

Φ(1)

4

}
≤ P

{
∃s > 0 : s is admissible,EDs(0)−Ds(0) ≥

κ′

4

√
EDs(0) log

2n

δ
+

κ′

4
log

2n

δ

}
.

The last quantity can be controlled by the uniform Bernstein-type inequality
for non-identically distributed random variables. By Lemma 2 in Appendix A,
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since the vc dimension of the family intervals in R equals 2, one may tune the
value of κ′ such that the last probability is bounded by δ

2 . For the convenience
of the reader, we deffer the exact formulation of this Lemma as well as the
definition of the vc dimension to Appendix.

We are now ready to analyze (3.5) for which it is enough to show that

P
{
∃s ≥ 0 and |x| ≥ (1 +

√
2/Φ(1))s :

s is admissible and Ds(x) > ms
3Φ(1)

4
+
∑
i>ms

qi

}
≤ δ

2
. (3.8)

Observe that by (3.3) we have 1 +
√

2/Φ(1) ≤ 4. Given x such that |x| >
4s > (1 +

√
2/Φ(1))s, using the properties of the density ϕ together with

s ≥ σms and Chebyshev’s inequality, we have

EDs(x) =
∑
i≤ms

P{Xi ∈ As(x)}+
∑
i>ms

P{Xi ∈ As(x)}

≤
∑
i≤ms

P{|Xi| ≥
√

2/Φ(1)s}+
∑
i>ms

P{Xi ∈ As(x)}

≤ ms
Φ(1)

2
+
∑
i>ms

qi .

Using this inequality together with (3.7) and recalling that κ′ = 2
3
√
3
κ, we have

P

{
∃s ≥ 0 and |x| ≥ 4s : s is admissible, Ds(x) > ms

3Φ(1)

4
+
∑
i>ms

qi

}

≤ P
{
∃s ≥ 0 and |x| ≥ 4s : s is admissible, Ds(x) > EDs(x) +ms

Φ(1)

4

}
≤ P

{
∃s ≥ 0 and |x| ≥ 4s : s is admissible,

Ds(x) > EDs(x) +
κ′

4

√
EDs(0) log

2n

δ
+

κ′

4
log

2n

δ

}
.

Using EDs(x) ≤ EDs(0), the last line is bounded by

P

{
∃s ≥ 0 and |x| ≥ 4s : s is admissible,

Ds(x) > EDs(x) +
κ′

4

√
EDs(x) log

2n

δ
+

κ′

4
log

2n

δ

}
.

Finally, the last expression and Lemma 2, which holds simultaneously for all
x and s, implies (3.8) by adjusting the constant κ (and thus κ′). The proof is
complete.
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4 An adaptive estimator: combining the median and
the modal Interval

Proposition 2 shows that, as long as s is an admissible value, the modal interval
estimator has an error bounded by 4s. Hence, to optimize the bound, one should
choose s to be the smallest possible admissible value, that is, s(δ) introduced
in Definition 1. However, the value of s(δ) depends on the values σ1, . . . , σn
and therefore one doesn’t have access to s(δ) unless the standard deviations
are known (up to a permutation), a typically unrealistic requirement. In this
section we introduce an adaptive estimator that is able to find an approximate
value of s(δ) based only on the available data X1, . . . , Xn. Furthermore, the
adaptive estimator combines the α-median interval estimator with the modal
interval estimator and achieves an error that is at least as good as the best of
the median and the optimal modal interval estimator, up to a constant factor.

The key to making the estimator adaptive is an empirical criterion, based
on which one can reject values of s that are not admissible. Once one has such
a criterion, standard techniques of adaptive estimation may be applied (such
as Lepski’s method (Lepskii; 1992)).

Fix δ > 0 and s > 0. Let η, ξ > 0 be numerical constants specified in the
proof. Based on X1, . . . , Xn let µ̂n,s be any maximizer of Ds(x) defined
by (3.1).

• We ACCEPT the interval As(µ̂n,s) if Ds(µ̂n,s) ≥ ξ log 2n
δ and

max
x∈R,|x−µ̂n,s|≥8s

Ds(x) ≤ Ds(µ̂n,s)−η

(√
Ds(µ̂n,s) log

2n

δ
+ log

2n

δ

)
.

• Otherwise, we REJECT this interval.

Remark. Since we only consider Ds(µ̂n,s) ≥ ξ log 2n
δ we may instead consider

a criterion of the form

max
x∈R,|x−µ̂n,s|≥8s

Ds(x) ≤ Ds(µ̂n,s)− η′
√

Ds(µ̂n,s) log
2n

δ
,

for some η′ > 0. However, the choice above makes the proof more transparent.

This criterion satisfies the following relation.

Proposition 3. With probability at least 1 − δ, simultaneously for all s > 0,
no interval with |µ̂n,s − µ| > 8s is accepted and every admissible interval is
accepted.

Proof. Recall that, without the loss of generality, we set µ = 0. From now on
we work on the event E1 where the inequalities of Lemma 2 hold. We begin by

12



proving that any admissible s > 0 is accepted with high probability. We have
shown in the proof of Proposition 2 that on the event E1, for all admissible
values of s,

|µ̂n,s| ≤ 4s .

Therefore, on this event any x ∈ R such that |x− µ̂n,s| ≥ 8s satisfies |x| ≥ 4s.
Also, by the argument in the proof of Proposition 2 and Lemma 2 we have for
all |x| ≥ 4s,

Ds(x) ≤ ms
Φ(1)

2
+
∑
i>ms

qi + c1

(√
EDs(x) log

2n

δ
+ log

2n

δ

)

≤ ms
Φ(1)

2
+
∑
i>ms

qi + c1

(√
EDs(0) log

2n

δ
+ log

2n

δ

)
, (4.1)

where c1 > 0 is a numerical constant.

Observe that the function y 7→ y − η
√
y log 2n

δ is increasing whenever y >

η2 log 2n
δ /4. Thus, Ds(0) ≥ η2 log 2n

δ /4 implies

Ds(µ̂n,s)−η

(√
Ds(µ̂n,s) log

2n

δ
+ log

2n

δ

)
≥ Ds(0)−η

(√
Ds(0) log

2n

δ
+ log

2n

δ

)
.

(4.2)
Observe also that the line (A.7) in the proof of Lemma 2 implies that on the
event E1 it holds simultaneously for all x that

Ds(x) ≤ 2EDs(x) + c2 log
2n

δ
, (4.3)

where c2 > 0 is a numerical constant. By (3.4), on the same event, Ds(0) ≥
ms

3Φ(1)
4 +

∑
i>ms

qi(s) , and therefore, using the admissibility of s, the inequality
(4.2) implies

Ds(µ̂n,s)− η

(√
Ds(µ̂n,s) log

2n

δ
+ log

2n

δ

)

≥ ms
Φ(1)

2
+ms

Φ(1)

4
+
∑
i>ms

qi(s)− η

(√
Ds(0) log

2n

δ
+ log

2n

δ

)

≥ ms
Φ(1)

2
+

κ′

4

√
EDs(0) log

2n

δ
+

κ′

4
log

2n

δ

+
∑
i>ms

qi(s)− η

(√
Ds(0) log

2n

δ
+ log

2n

δ

)

≥ ms
Φ(1)

2
+

κ′

4

√
EDs(0) log

2n

δ
+

κ′

4
log

2n

δ

+
∑
i>ms

qi(s)− η

(√
2EDs(0) log

2n

δ
+ (1 + c2) log

2n

δ

)
,

13



where κ′ is defined in the proof of Proposition 2 and in the last line we used
(4.3) together with

√
a+ b ≤

√
a +

√
b for a, b ≥ 0. Comparing this with

(4.1) and choosing a sufficiently large value of κ in Definition 1, we prove that
admissible intervals are accepted with high probability. It is only left to check
that Ds(µ̂n,s) ≥ ξ log 2n

δ /4 and that, given that the constant ξ is properly
adjusted, our additional acceptance assumption Ds(µ̂n,s) ≥ ξ log 2n

δ /4 implies,
with high probability, that Ds(0) ≥ η2 log 2n

δ /4 which was used in (4.2). This
computation follows immediately from Lemma 2 and the fact that EDs(x) is
maximized at x = 0.

It remains to prove that our empirical criterion can never accept the interval
with its center µ̂n,s satisfying |µ̂n,s| > 8s. To do so we observe that if |µ̂n,s| > 8s
then the interval A8s(µ̂n,s) does not contain µ = 0 and in the acceptance
criterion we should compare with Ds(0). Assuming that η > 2κ2, where κ2 is
defined in Lemma 2 and using that EDs(x) is maximized at 0, we have on the
event where the inequalities of Lemma 2 hold

Ds(µ̂n,s)− η

√
Ds(µ̂n,s) log

2n

δ
− η log

2n

δ

< E [Ds(µ̂n,s)|X1, . . . , Xn]− κ2

√
Ds(µ̂n,s) log

2n

δ
− κ2 log

2n

δ

≤ E [Ds(µ̂n,s)|X1, . . . , Xn]− κ2

√
Ds(0) log

2n

δ
− κ2 log

2n

δ

≤ EDs(0)− κ2

√
Ds(0) log

2n

δ
− κ2 log

2n

δ

≤ Ds(0) .

Therefore, Ds(µ̂n,s) − η
√
Ds(µ̂n,s) log

2n
δ − η log 2n

δ < max
x∈R,|x−µ̂n,s|≥8s

Ds(x) ,

which implies that the interval As(µ̂n,s) is rejected.

The adaptive estimator

We are now ready to define an adaptive estimator that achieves a performance
that is at least as good – up to a constant factor – as the best of our bounds
for the median (Proposition 1) and the modal interval with optimally chosen
length (Proposition 2).
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We observe a sample of independent random variables X1, . . . , Xn. Fix
the desired confidence level δ ∈ (0, 1). We output the estimator µ̂ defined
as follows:

• Fix α =
√

2 log 6
δ and compute the α-median interval Iα.

• Let µ̂ be the midpoint of the interval ⋂
0≤s≤|Iα|

As(µ̂n,s) is ACCEPTed

A8s(µ̂n,s)

 ∩ Iα, (4.4)

where µ̂n,s is defined by (3.1) and let µ̂ be the midpoint of the
interval Iα if the set (4.4) is empty.

• Return µ̂.

Remark. In practice there is no need to search through all s > 0 in (4.4).
One may discretize and consider only si = 2−i|Iα| for integers i ≥ 0. Also,
due to Lemma 2 we may essentially replace EDs(x) by Ds(x) in the steps of
the proof where admissibility is used. That is, one may instead consider the
random admissibility condition of the form

ms ≳

√
Ds(µ) log

2n

δ
+ log

2n

δ
.

Due to the discrete nature of the sample, only a finite number of values Ds(µ) is
possible and in the set (4.4) one may consider only at most

(
n
2

)
values of s that

correspond to the distances between pairs of points. For the sake of brevity we
omit the straightforward details of the analysis of the discretized estimator and
focus on the estimator defined above.

Theorem 1. Let Assumptions A and B be satisfied. Fix δ ∈ (0, 1/2) such that
128 log 6

δ ≤ n. There is a numerical constant c1 > 0 such that, with probability
at least 1− 2δ, the estimator µ̂ defined above satisfies

|µ̂− µ| ≤ c1min

{
s(δ), β−1 log

(n
δ

)
max

1≤j≤8α
√
n

8α
√
n+ 1− j∑n
i=j σ

−1
i

}
,

where s(δ) is given by Definition 1.

Proof. Recalling that |Iα| is a random variable, consider the event E1,

s(δ) ≤ |Iα| .
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On the complementary event E1 we have that the solution based on the α-
median interval is better than what one can get with the modal interval esti-
mator. In particular, since µ̂ always returns a point in Iα, the proof is complete
by Proposition 1.

Otherwise, we focus on the event E1. Let E2 be the event that every ac-
cepted interval As(µ̂n,s) satisfies µ ∈ A8s(µ̂n,s). By Proposition 3, it holds that
P{E2} ≥ 1− δ. Therefore, on E2, we have either

µ ∈
⋂

0≤s≤|Iα|
As(µ̂n,s) is ACCEPTed

A8s(µ̂n,s) , (4.5)

or there are no accepted intervals in this range. The latter cannot be true on
the event E1 ∩ E2 since s(δ) ≤ |Iα| and As(δ)(µ̂n,s(δ)) is accepted. Therefore,
the intersection of intervals in (4.5) is non-empty and its length is bounded by
16s(δ). Thus, on the event E1∩E2 we have |µ̂−µ| ≤ 16s(δ). The claim follows
by the union bound.

5 Examples and a comparison with existing results

To demonstrate the meaning of the derived performance bounds, in this section
we discuss several natural examples and compare our results with existing gen-
eral bounds. As already mentioned, our adaptive estimator is closely related to
the estimator of Chierichetti et al. (2014) and to the hybrid estimator of Pensia
et al. (2019). Let us emphasize some technical differences with the latter work
which generalizes the results in Chierichetti et al. (2014):

• The hybrid estimator of Pensia et al. (2019, Algorithm 1 and Theorem
6) depends on the choice of the parameter k2. This parameter counts the
number of points in the k-shortest gap estimator. We believe that one
can make an adaptive choice of k2, though it is not immediately clear to
what extent it affects the overall performance of their estimator.

• Even though the results in (Pensia et al.; 2019) work under milder as-
sumptions, their bounds depend on the distribution through the quantity
rk which should be “manually” computed in each particular case. In
contrast, our results require that Assumptions A and B hold, but be-
cause of this the resulting bound depends explicitly on the standard de-
viations σ1, . . . , σn. Moreover, Proposition 5 shows that our Theorem 1
is never worse than the best known bound written in terms of σ1, . . . , σn
(Chierichetti et al.; 2014, Theorem 4.1)

• Our analysis of the modal interval estimator is sharper. In particular,
while by Pensia et al. (2019, Theorem 1) the modal interval estimator
can never choose a center that has on average less than 1

2EDs(µ) ob-
servations, our analysis uses the sharper property that the modal inter-
val estimator never chooses a center that has, on the average, less than
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EDs(µ)− c
√

EDs(µ) observations, for some c > 0 up to logarithmic fac-
tors.

Our results can also be compared with the estimator of (Liang and Yuan; 2020,
Algorithm 1). Their iterative truncation algorithm uses the initial approxima-
tion µ(0) and the parameter B satisfying |µ − µ(0)| ≤ B. They also assume
that the index m such that σm ≤ 1 is known and their bound depends on m.
In Section 5.1 we show that their bounds are implied by our median estimator
alone.

5.1 Examples

Most of our examples appear in (Pensia et al.; 2019) and (Liang and Yuan;
2020). We show that our bounds written in terms of σ1, . . . , σn are not worse
than any of the previous bounds depending on some more involved distribution
dependent quantities, often achieved by non-adaptive estimators. In all exam-
ples we only consider the Gaussian case, that is, we assume Xi ∼ N (µ, σ2

i ).
Also, for the sake of presentation we fix the allowed probability of error to be
δ = 1

n .

Example. (Equal variances.) In the simplest case we have σi = σ for i ∈ [n]. In

this example the median interval alone recovers the optimal error rate Õ
(

σ√
n

)
.

Therefore, our adaptive algorithm mimics the optimal behavior of the sample
mean in the i.i.d. scenario.

Example. (Two variances.) Consider the case where σi = σ for i ∈ [m] and
σi = σ′ > σ for i ∈ [n] \ [m].

There are different cases and we consider the most interesting regimes.

First, if m ≳
√
n log n the median gives the rate Õ

( √
n

mσ−1+(n−m)(σ′)−1

)
and

the interval algorithm can always guarantee the error O(σ) since the interval
of length σ is admissible. Next we consider m ≲

√
n log n. The median gives

the rate Õ
(

σ′
√
n

)
in this regime and the interval of length O(σ) is admissible if

m ≳
√

σ
σ′n log n+ log n. In particular, an application of Theorem 1 and shows

that, with probability at least 1− 1
n ,

|µ̂− µ| =

Õ
( √

n
mσ−1+(n−m)(σ′)−1

)
, if m ≳

√
n log n;

Õ
(
σ ∧ σ′

√
n

)
, if

√
σ
σ′n log n+ log n ≲ m ≲

√
n log n.

Example. (α-mixture distributions.) This is a particular case of the example
of two variances above, with m = c⌊log n⌋, for some c > 0; σ = 1 and σ′ = nα

for some α > 0. This example was thoroughly studied in (Pensia et al.; 2019).
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When α < 1 the analysis of the sample median in the example above gives,
with probability at least 1− 1

n ,

|µ̂− µ| = Õ(nα−1/2) ,

otherwise, for α ≥ 1 provided that c is a large enough numerical constant we
have

|µ̂− µ| = O(1) .

Therefore, our algorithm recovers the best known rates in (Pensia et al.; 2019,
Table 1 and Proposition 5), in an adaptive manner.

Example. (Quadratic variances.) In this setup we assume that for some
constant c > 0, σ2

i = c2i2. In this case, an interval of length s = cj is admissible
if

j ≳

√√√√ n∑
i=j

j

i
log n+ log n .

Using
∑n

i=j
j
i ≲ j log n

j , we see that an interval of length proportional to log n is
admissible. A simple computation shows that the median interval can produce
an error Õ(

√
n) (see also (Pensia et al.; 2019, Proposition 4)). Finally, an

application of Theorem 1 gives, with probability at least 1− 1
n ,

|µ̂− µ| = O(log n) .

This improves upon the bound of Pensia et al. (2019, Table 1 and Proposition 5)
where for the same model an arbitrarily small polynomial error is established.
We remark that this result coincides with the performance of the maximum

likelihood estimator
(∑n

i=1 σ
−2
i

)−1/2
up to a logarithmic factor.

Example. (The subset-of-signals model.) In this setup the only assumption
is that, for some m < n, at least m out of n variances are less or equal to one.
In other words, σm ≤ 1. The subset-of-signals model was studied by Liang
and Yuan (2020). The authors prove that if m ≳

√
n log n, then there is an

estimator µ̃ based on iterative truncations (first studied in (Yuan and Liang;
2020)) such that, with probability at least 1− 1/n,

|µ̃− µ| ≲
√
n log n

m
.

Assuming that m ≳
√
n log n, we have by Proposition 1 and Theorem 1, that,

with probability at least 1− 1
n ,

|Iα| ≲
√
n(log n)3/2

m
and thus, |µ̂− µ| = Õ

(√
n

m

)
.
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This shows that the sample median (and hence our general adaptive estimator)
performs as well as the algorithm of Liang and Yuan (2020), up to a logarithmic
factor. The advantage of the median is that its complexity is linear in the
number of observations (Blum et al.; 1973) whereas the iterative truncation
algorithm is more complex. As we mentioned, the iterative truncation algorithm
of Liang and Yuan (2020) depends on some parameters of the problem as well
as on an initialization. We additionally remark that according to Liang and

Yuan the hybrid estimator of Pensia et al. (2019) also recovers the rate Õ
(√

n
m

)
in the subset-of-signals model.

5.2 A comparison with some general bounds

Finally, we compare our results with several recent general bounds. These
bounds can also be explicitly written in terms of σ1, . . . , σn. Our main con-
clusion is that, apart from the logarithmic factors and at least in the case of
Gaussian data, our adaptive estimator performs at least as well as the best
known guarantees in the literature. We emphasize again that our estimator
does not depend on any parameters of the problem whereas the best known
algorithms require some kind of parameter tuning.

The result of Xia on the median of Gaussians

Xia (2019) analyzed the sample median of independent, not necessarily identi-
cally distributed random variables with the same median. For the sake of an
easier comparison, we only consider here the case of normal random variables.
The following result appears in (Xia; 2019, Corollary 6).

Proposition 4. Consider independent X1, . . . , Xi such that Xi ∼ N (µ, σ2
i ).

Assume that δ ∈ (0, 1) satisfies√
n log 1

δ∑n
i=1 σ

−1
i

≤ 7
√
2σ1
10

. (5.1)

Then, with probability at least 1− δ,

|X(n/2) − µ| ≤
10
7

√
2n log 1

δ∑n
i=1 σ

−1
i

.

At first glance the result of Proposition 4 looks stronger than what is given
by Corollary 1 in the special case of Gaussians. Indeed, it does not have the
log n factor and has a better dependence on log 1

δ . The main difference comes
from the assumption (5.1) which is more restrictive than the only assumption
128 log 6

δ ≤ n of Corollary 1. Indeed, in the most favourable case when σi = σ

for i ∈ [n], the condition (5.1) implies log 1
δ ≤

(
7
√
2

10

)2
n which coincides with

our assumption up to absolute constants. However, for small σ1 the assumption
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(5.1) requires δ → 1 whereas our bound is not sensitive to the approximately√
n log 1

δ smallest variances. The following result shows that the condition (5.1)

simplifies the bound of Proposition 1 making it almost the same as the result
of Proposition 4, up to logarithmic factors.

Corollary 2. Fix δ ∈ (0, 1) such that 128 log 6
δ ≤ n and set α =

√
2 log 6

δ .

Assume that there is 0 < c < 1 such that

8
√

2n log 6
δ∑n

i=1 σ
−1
i

≤ cσ1 .

Under the assumptions of Proposition 1 we have, with probability at least 1− δ,

|Iα| ≤ 64e
√
2

(
log

3

δ
∨ log (n+ 1)

)
β−1

√
2n log 6

δ

(1− c)
∑n

i=1 σ
−1
i

.

Proof. The proof is based on elementary comparisons. Fix j ≤ 8α
√
n. Then

n∑
i=j

σ−1
i ≥

n∑
i=8α

√
n+1

σ−1
i =

n∑
i=1

σ−1
i −

8α
√
n∑

i=1

σ−1
i

≥ 8α
√
n σ−1

1 c−1 −
8α

√
n∑

i=1

σ−1
i ≥ (c−1 − 1)

8α
√
n∑

i=1

σ−1
i .

This implies

c−1
n∑

i=j

σ−1
i ≥ (c−1 − 1)

n∑
i=j

σ−1
i + (c−1 − 1)

8α
√
n∑

i=1

σ−1
i ≥ (c−1 − 1)

n∑
i=1

σ−1
i .

Combining these inequalities, we obtain

max
1≤j≤8α

√
n

8α
√
n− j + 1∑n
i=j σ

−1
i

≤ 1

1− c
max

1≤j≤8α
√
n

8α
√
n− j + 1∑n
i=1 σ

−1
i

=
1

1− c

8α
√
n∑n

i=1 σ
−1
i

.

The result follows.

The bound of Chierichetti, Dasgupta, Kumar and Lattanzi.

Chierichetti et al. (2014, Theorem 4.1) introduce an estimator µ̃ such that for
Xi ∼ N (µ, σi), with probability at least 1− 1

n ,

|µ̃− µ| = Õ(σlogn
√
n) . (5.2)

The hybrid estimator of Pensia et al. (2019, Theorem 6 and Lemma 1(v))
satisfies a similar performance bound if the parameters are chosen in a specific
way. The next result shows that the adaptive estimator introduced in this note
achieves this bound without any additional parameter tuning. Moreover, the
result follows from our general bounds written in terms of σ1, . . . , σn.
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Proposition 5. Let Assumptions A and B hold and assume that log n is in-
teger. There is a constant c = c(β, ϕ(0)) > 1 such that the adaptive estimator
of Theorem 1 satisfies for large enough n that, with probability at least 1− 1

n ,

|µ̂− µ| ≤ c
(
σc logn

√
n log3/2 n

)
.

The proof is based on some elementary but tedious computations, see Ap-
pendix B.

6 Concluding remarks

In this note we construct an adaptive estimator for the common mean of inde-
pendent, not necessarily identically distributed random variables and provide
performance guarantees that hold under certain assumptions for the underly-
ing distribution. Among the key assumptions are that the distributions are
symmetric around the mean and the underlying densities are unimodal. How-
ever, even in the simplest case of normal random variables, the problem is not
fully understood. In particular, as far as we know, no general nontrivial lower
bounds are available. It is not difficult to prove that no estimator can have
an expected error smaller than that of the maximum likelihood estimator that

“knows” the variance of each sample point, that is,
(∑n

i=1 σ
−2
i

)−1/2
. In the

absence of knowledge of the σi, the problem becomes significantly harder. It
remains an interesting challenge to prove general lower bounds that are much

larger than the trivial bound
(∑n

i=1 σ
−2
i

)−1/2
. In fact, we think that, up to

logarithmic factors, the upper bound of Theorem 1 is essentially tight for most
interesting values of the parameters. However, the full picture is surely more
complex. For example, in some particular ranges of the parameters it is easy
to improve on Theorem 1. To illustrate such an example, consider the case
of two variances discussed in Section 5, that is, when σi = σ for i ∈ [m] and
σi = σ′ > σ for i ∈ [n] \ [m]. Suppose that σ

√
logm ≪ σ′/n. In this case,

with high probability, the modal interval of length s = 3σ
√
logm contains all of

X1, . . . , Xm but none of Xm+1, . . . , Xn. In this case, instead of outputting the
center of the modal interval, by averaging the points falling in it, one obtains
an error of the order O(σ/

√
m), as opposed to O(σ) guaranteed by Theorem 1

in this case.
Even our analysis of the sample median leaves room for improvement. In

particular, we think that part (iii) of Assumption A may be weakened. While
it is obviously necessary to assume that the density of the Xi are bounded
away from zero near the mean (consider the case of independent Rademacher
random signs in the i.i.d. case), the exponential tail condition implied by this
assumption seems unnecessary. Indeed, Corollary 12 in (Xia; 2019) deals with
the heavy-tailed Cauchy distribution.

Another interesting challenge is to gain an understanding of more general
cases when X1, . . . , Xn are independent, they have the same mean, but their
distribution may not be symmetric or unimodal.
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Finally, we mention that the model studied in this note is closely related to
the model of heteroscedastic linear regression with fixed design. In this model
it is assumed that one observes, for i ∈ [n],

Yi = ⟨xi, β⟩+ ξi ,

where β ∈ Rd is the target parameter, xi ∈ Rd are deterministic design vectors,
and ξi ∼ N (0, σi) are independent noise variables. In order to provide some
reasonable guarantees for this model, one usually makes some additional as-
sumptions. In a classical model (see, for instance, (Fuller and Rao; 1978)) it is
assumed that the values of σi are arbitrary, but there are enough repetitions of
each observation available so that one can estimate the values of σi. Once the
values of σi and their assignments to the observations are (almost) known, one
may use the weighted mean described in the introduction which achieves (al-
most) optimal performance. Another line or research which can be attributed,
among other papers, to the early work of Carroll and Ruppert (1982), is where
some additional assumptions on σi are made. For example, they are increasing
according to some law. Our model can be seen as a particular case of het-
eroscedastic linear regression in dimension one, where we additionally assume
that the design xi is the same for all i. However, these simplifications are
compensated by the fact that we make neither the assumption on the repeated
observations nor the assumption that the σi follow a particular functional form.
Finally, our estimators are invariant to the permutation of the elements of the
sample and thus cannot exploit the monotonicity of the standard deviations.

A Ratio-type vc bounds for non-identically distributed
entries

In this section we provide high probability ratio-type vc bounds. These results
are originally due to Vapnik and Chervonenkis (1974, Theorem 12.2)) and hold
for identically distributed random variables. A bound of a similar type for
non-identically distributed random variables was proved in (Pensia et al.; 2019,
Lemma 2) though their result is not sufficient for our purposes1. We also
note that similar bounds for non-identically distributed independent random
variables were shown in (Catoni; 2004). Consider a set F of {0, 1}-valued
functions defined on a domain X such with vc-dimension equal to d. Recall that
the vc dimension that is the largest integer d such that there are x1, . . . , xd ∈ X
satisfying

∣∣{(f(x1), . . . , f(xd)) : f ∈ F}
∣∣ = 2d. The proof of the next technical

lemma is a quite straightforward generalization of similar bounds for the i.i.d.
case. The analysis is based on localization techniques for empirical processes.
We refer, for instance, to (Bartlett, Bousquet and Mendelson; 2005, Corollary
3.7) and to (Bousquet and Zhivotovskiy; 2019) for some similar results in the
context of vc classes.

1In particular, our result covers some values of their parameter t that are not allowed in (Pensia
et al.; 2019, Lemma 2).
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Lemma 2. Let X1, . . . , Xn be independent but not necessary identically dis-
tributed random variables taking their values in X . Assume that the class F
of {0, 1}-valued functions has the vc dimension d. Then there are numerical
constants κ1, κ2 > 0 such that for any δ ∈ (0, 1), with probability at least 1− δ,
for all f ∈ F ,∣∣∣∣∣

n∑
i=1

(f(Xi)− Ef(Xi))

∣∣∣∣∣ ≤ κ1


√√√√( n∑

i=1

Ef(Xi)

)(
d log

n

d
+ log

1

δ

)
+ d log

n

d
+ log

1

δ


(A.1)

and∣∣∣∣∣
n∑

i=1

(f(Xi)− Ef(Xi))

∣∣∣∣∣ ≤ κ2


√√√√( n∑

i=1

f(Xi)

)(
d log

n

d
+ log

1

δ

)
+ d log

n

d
+ log

1

δ

 .

(A.2)

Proof. Without loss of generality we may assume that 0 ∈ F since by adding
f ≡ 0 to the class the vc dimension increases by at most one which can be
absorbed by choosing slightly larger values of κ1, κ2 > 0. Consider the star-
shaped hull of F around zero, that is, the class H of [0, 1]-valued functions
defined as

H = {αf : f ∈ F , α ∈ [0, 1]} .

For h ∈ H, we denote Ph2 = 1
n

∑n
i=1 Eh(Xi)

2. Fix any δ ∈ (0, 1) and consider
the fixed point

γ(λ, δ) = inf

{
s > 0 : P

(
sup

h∈H,Ph2≤s2

∣∣∣∣∣
n∑

i=1

(h(Xi)− Eh(Xi))

∣∣∣∣∣ ≤ λns2

)
≥ 1− δ

}
,

where λ > 0 is a numerical constant specified below. By the definition of γ(λ, δ)
we have, with probability at least 1− δ,

sup
h∈H,Ph2≤γ(λ,δ)2

∣∣∣∣∣
n∑

i=1

(h(Xi)− Eh(Xi))

∣∣∣∣∣ ≤ λnγ(λ, δ)2 . (A.3)

Fix any h ∈ H such that Ph2 ≥ γ(λ, δ)2. Since H is star-shaped, we have that
h′ = hγ(λ, δ)/

√
Ph2 ∈ H and P (h′)2 = γ(λ, δ)2, which, applying (A.3) for h′,

implies on the same event (and the same holds simultaneously for any such h)∣∣∣∣∣
n∑

i=1

(h(Xi)− Eh(Xi))

∣∣∣∣∣ ≤ λnγ(λ, δ)
√
Ph2 .

The last inequality, combined with (A.3), implies simulteniously for all h ∈ H,∣∣∣∣∣
n∑

i=1

(h(Xi)− Eh(Xi))

∣∣∣∣∣ ≤ λnγ(λ, δ)
√
Ph2 + λnγ(λ, δ)2 . (A.4)
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Finally, we need to prove an upper bound for γ(λ, δ). Denoting H′ = H∪(−H),
we have

sup
h∈H,Ph2≤s2

∣∣∣∣∣
n∑

i=1

(h(Xi)− Eh(Xi))

∣∣∣∣∣ = sup
h∈H′,Ph2≤s2

(
n∑

i=1

(h(Xi)− Eh(Xi))

)
.

By (Giné and Nickl; 2016, Theorem 3.3.16) (see inequality (3.128) there which
is relaxed in what follows by using

√
2(2EZ + Vn)x ≤

√
2Vnx+ x+EZ), since

almost surely |h(Xi) − Eh(Xi)| ≤ 1 and by fixing x = log 1
δ , we have, with

probability at least 1− δ,

sup
h∈H′,Ph2≤s2

(
n∑

i=1

(h(Xi)− Eh(Xi))

)

≤ 2E sup
h∈H′,Ph2≤s2

(
n∑

i=1

(h(Xi)− Eh(Xi))

)
+ s

√
n log

1

δ
+ (5/2) log

1

δ
. (A.5)

Finally, using the symmetrization inequality (Ledoux and Talagrand; 2013) we
have

E sup
h∈H′,Ph2≤s2

(
n∑

i=1

(h(Xi)− Eh(Xi))

)
≤ 2E sup

h∈H′,Ph2≤s2

(
n∑

i=1

εih(Xi)

)
,

where ε1, . . . , εn are i.i.d. Rademacher random variables with P{εi = 1} =
P{εi = −1} = 1/2. Conditioning on X1, . . . , Xn, we may use Dudley’s entropy
integral bound (see, for instance, (Boucheron et al.; 2013)). First, we esti-
mate the covering numbers of the set H with respect to the (random) distance
ρ(f, g) =

√∑n
i=1(f(Xi)− g(Xi))2/n. Denote

diam(n, s) = sup
f,h∈H,Pf2≤s2,Ph2≤s2

ρ(f, h) .

By the bound of Haussler (1995), the covering number of F at scale r is upper

bounded by e(d+1)
(
2e
r2

)d
and by a standard argument we have that the covering

number of H is upper bounded by e(d+1)
(
8e
r2

)d (
1 + ⌈2r ⌉

)
(see (Bartlett et al.;

2005, Proof of Corollary 3.7)). Therefore, by the Dudley’s bound we have, for
some constants c1, c2 > 0,

E sup
h∈H′,Ph2≤s2

(
n∑

i=1

εih(Xi)

)
= E sup

h∈H,Ph2≤s2

∣∣∣∣∣
n∑

i=1

εih(Xi)

∣∣∣∣∣ ≤ c1
√
nE

diam(n,s)∫
0

√
d log

e

r
dr

≤ c2
√
nEdiam(n, s)

√
d log

e

diam(n, s)

(
1
diam(n,s)≥

√
d/n

+ 1
diam(n,s)<

√
d/n

)
≤ c2

(√
nEdiam(n, s)

√
d log

n

d
+ d

√
log

n

d

)
.
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By Jensen’s inequality combined with the standard symmetrization and con-
traction inequalities (Ledoux and Talagrand; 2013) we have, for some c3 > 0,

√
nEdiam(n, s) ≤

√√√√2E sup
h∈H′,Ph2≤s2

n∑
i=1

h2(Xi)

≤

√√√√2E sup
h∈H′,Ph2≤s2

n∑
i=1

(h2(Xi)− Eh2(Xi)) + 2ns2

≤ c3


√√√√E sup

h∈H′,Ph2≤s2

(
n∑

i=1

εih(Xi)

)
+
√
ns

 .

Combining the last two arguments, we have, for some c4 > 0,

E sup
h∈H′,Ph2≤s2

(
n∑

i=1

εih(Xi)

)
≤ c4

(
s

√
dn log

n

d
+ d

√
log

n

d

)
. (A.6)

Finally, combining (A.5), (A.6) and adjusting the constant λ we have, for some
c5 > 0, that

γ(λ, δ) ≤ c5

√
d log n

d + log 1
δ

n
,

which implies our first bound (A.1) by (A.4).
To prove (A.2) we use that for a, b, x > 0,

√
ab ≤ a

2x + bx
2 . This implies

κ1

√√√√( n∑
i=1

Ef(Xi)

)(
d log

n

d
+ log

1

δ

)
≤ 1

2

n∑
i=1

Ef(Xi)+
κ21
2

(
d log

n

d
+ log

1

δ

)
,

(A.7)
which, by (A.1), implies that on the same event where (A.1) holds,

1

2

n∑
i=1

Ef(Xi) ≤
n∑

i=1

f(Xi) +
(
κ21/2 + κ1

)(
d log

n

d
+ log

1

δ

)
.

Plugging this into (A.1) and adjusting the constant κ2 proves (A.2).

B Proof of Proposition 5

To simply the presentation we assume that the values log n, n1/3, n1/6, . . . cor-
responding to the indexes are always integers. It follows from Theorem 1 that
there exists a constant C > 0 (which only depends on β and ϕ(0)) such that,
with the same probability of error, the adaptive estimator has an error at most

Cmin

( √
n log3/2 n∑

i>C
√
n logn

1
σi

, σm

)
,
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where m is any integer that satisfies

m ≥ Cmax

√σm
∑
i≥m

1

σi
log n, log n

 . (B.1)

Therefore, it is sufficient to prove that for all sequences σi,

min

( √
n log3/2 n∑

i>C
√
n logn

1
σi

, σm

)
≲

√
n(log3/2 n)σC logn .

If √
n log3/2 n∑

i>C
√
n logn

1
σi

≤
√
n(log3/2 n)σC logn ,

then we are done, so we may assume

√
n log3/2 n∑

i>C
√
n logn

1
σi

>
√
n(log3/2 n)σC logn ,

or, equivalently, ∑
i>C

√
n logn

1

σi
<

1

σC logn
. (B.2)

It suffices to show that, when (B.2) holds, then there exists a value of m satis-
fying (B.1) for which σm ≤

√
n(log3/2 n)σC logn.

For any m ≤ C
√
n log n, we may write∑

i>m

1

σi
=

∑
i>C

√
n logn

1

σi
+

∑
i∈[m,C

√
n logn]

1

σi
.

Using (B.2), we see that m satisfies (B.1) whenever

m2

C2σm
≥ max

 log2 n

σm
,

log n

σC logn
+ log n

∑
i∈[m,C

√
n logn]

1

σi

 . (B.3)

First, note that if the first term dominates on the right-hand side of the above
inequality, then m = C log n satisfies the inequality above, and therefore the
new bound is at most CσC logn and our claim follows.

Hence, we may assume that the second term dominates and therefore we
look for the values of m such that

m2

C2σm
≥ log n

σC logn
+ log n

∑
i∈[m,C

√
n logn)

1

σi
. (B.4)

We distinguish two cases depending on which term dominates on the right-hand
side: in case (i),

1

σC logn
>

∑
i∈[m,C

√
n logn)

1

σi
,
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while in case (ii) the opposite holds. In case (i), the right-hand side of (B.4) is at
most 2 log n/σC logn. Hence, we may take m = C log n to satisfy the inequality
(B.1) for n large enough, leading to the bound CσC logn which proves our claim.

In case (ii), the right-hand side of (B.4) is bounded by

2 log n
∑

i∈[m,C
√
n logn)

1

σi
≤ 2C

√
n(log3/2 n)

1

σm
. (B.5)

This implies by (B.4) that the inequality (B.1) is satisfied when

m ≥
√
2C3/2n1/4(log3/4 n) .

Since for n large enough

n1/3 ≥
√
2C3/2n1/4(log3/4 n) ,

this yields the upper bound σm1 with m1 = n1/3.
If σm1 ≤

√
n(log3/2 n)σC logn, then the proof is finished. Otherwise,∑

i∈[m,C
√
n logn)

1

σi
≤

∑
i∈[m,m1)

1

σi
+C

√
n log n

1

σm1

≤
∑

i∈[m,m1)

1

σi
+

C

(log n)σC logn
.

(B.6)
Plugging this back to (B.4), we see that in case (ii), the upper bound becomes
σm for any m that satisfies

m2

C2σm
≥ C + log n

σC logn
+ log n

∑
i∈[m,m1)

1

σi
. (B.7)

This has the same form as (B.4) but with a reduced range in the summation
on the right-hand side.

We proceed the same way as above. Once again, we consider two cases. In
case (iii),

C + log n

σC logn
> log n

∑
i∈[m,m1)

1

σi
,

while in case (iv),
C + log n

σC logn
≤ log n

∑
i∈[m,m1)

1

σi
,

In case (iii), the right-hand side of (B.7) is at most 2(C+log n)/σC logn, so, just
like before, we may take m = C log n to satisfy the inequality (B.4), leading to
the bound CσC logn whenever log n ≳ C.

In case (iv), the right-hand side of (B.7) is bounded by

2 log n
∑

i∈[m,m1)

1

σi
≤ 2 log n

m1

σm
=

2n1/3 log n

σm
. (B.8)
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Thus, in this case (B.3) is satisfied for any m ≥ 2Cn1/6 log3/2 n, and in partic-
ular, for m2 = n2/9. If σm2 ≤

√
n(log3/2 n)σC logn, then the proof is finished.

Otherwise,∑
i∈[m,m1)

1

σi
≤

∑
i∈[m,m2)

1

σi
+

m1

σm2

≤
∑

i∈[m,m2)

1

σi
+

1

n1/6(log3/2 n)σC logn

.

Resubstituting into (B.4), we see that in case (iv), the upper bound becomes
σm for any m that satisfies

m2

C2σm
≥ C + log n

σC logn
+

1

n1/6(log1/2 n)σC logn

+ log n
∑

i∈[m,m2)

1

σi
.

We may now continue the same fashion, at each step reducing the range of the
sum on the right-hand side unless at the j-th iteration σmj ≤

√
n(log3/2 n)σC logn

and we are done. In general, at the j-th iteration, the summation is between
m and mj = n(2/3)j/2. If we reach the j-th iteration such that mj = C log1/2 n,
we have

log n
∑

i∈[m,mj)

1

σi
≤ C log3/2 n

σm
,

so that one may choose m = C log n for large enough n. The claim follows.
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