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Introduction

Tries are efficient data structures that were initially developed and analyzed by Fredkin (1960)

and Knuth (1973). The tries considered here are constructed from n independent strings X1, . . . , Xn,

each drawn from
∏∞

j=1Ωj , where Ωj , the j-th alphabet, is a countable set. By appropriate mapping, we

can and do assume that for all j, Ωj = Z. In practice, the alphabets are often {0, 1}, but that won’t even
be necessary for the results in this paper. Each string Xi = (Xi1, Xi2, . . .) defines an infinite path in a

tree: from the root, we take the Xi1-st child, then its Xi2-st child, and so forth. The collection of nodes

and edges visited by the union of the n paths is the infinite trie.

We now introduce the multidimensional trie, or quadtrie, which is built based on n sequences

of {0, 1}d-valued symbols. For brevity, we call such a symbol a dit (a d-dimensional bit). A string

Xi = (Xi1, Xi2, . . .) is thus a sequence of dits. Let T∞ denote the infinite complete 2d-ary position tree.

A string Xi corresponds to a path in this 2d-ary tree, where Xi1 denotes the child of the root, and so

forth, as each possible dit is mapped in a one-to-one fashion to the index of a child. For every node u

in T∞, let N(u) denote the number of strings among X1, . . . , Xn that visit u, and let δ(u) denote its

distance from the root. The infinite multidimensional trie is the subtree of T∞ consisting of all nodes

u with N(u) > 0, and the edges that connect them. The multidimensional trie Tn is the subtree of

T∞ consisting of all nodes u with N(u) ≥ 2 and all nodes u with N(u) = 1 whose parent v has N(u) ≥ 2.

The multidimensional trie of the second kind (T ′
n) is the subtree of T∞ consisting of all nodes u

with N(u) ≥ 2 and all the children of such nodes. Note that Tn is smaller than T ′
n and that both coincide

for d = 1. The number of leaves in Tn is n if the data strings X1, . . . , Xn are all different. The number

of leaves of T ′
n is between n and 2d−1n. Both have an identical number of internal nodes, and identical

heights Hn.

There is nothing that structurally differentiates a multidimensional trie from an ordinary trie

constructed on the basis of an alphabet, except that the alphabet here is explicitly determined by the 2d

possible values of the dits. However, the multidimensional trie has a natural d-dimensional interpretation,

as the dits Xij in the string Xi may be considered as the collection of j-th bits in an expansion of a d-

dimensional string of bits. Thus, each Xi is in fact interpreted as a d-dimensional vector of binary strings.

With this connection, the multidimensional trie lends itself well not only to the standard dictionary

operations (search, sort, insert, delete, prefix match), but also to intrinsically multivariate queries such as

partial match, in which one searches for the occurrence or absence of a given string of dits y = (y1, y2, . . .),

but only matches in a certain number of positions of the dits are required. The indices of these positions

form a set S ⊆ {1, 2, . . . , d}. We say that Xi matches (y, S) if this is the case. With |S| = d, this

corresponds to a classic point search (for occurrence of y) and for |S| = 0, regardless of y, all Xi’s match

any (y, S). A partial match is thus determined by a pair (y, S), and a proper partial match corresponds

to 0 < |S| < d. The collection of all strings that match (y, S) forms a subtree T (y, S) of T∞ (by the usual

path interpretation of a string). All implementations of partial match are such that a node u of Tn or

T ′
n is visited during execution of the “algorithm” if and only if it can possible be a match for (y, S). Put

differently, all nodes in T (y, S)∩Tn or T (y, S)∩T ′
n are visited, and any intelligent implementation would

only visit those nodes. So, let Nn(y, S) = |T (y, S) ∩ Tn| or Nn(y, S) = |T (y, S) ∩ T ′
n| denote the number

of nodes thus visited. The number of internal (non-leaf) nodes visited is denoted by In(y, S), a quantity

that is the same for both kinds of multidimensional tries. Clearly, for both kinds of multidimensional

tries,

In(y, S) ≤ Nn(y, S) ≤ (1 + 2d−|S|)In(y, S)
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so that to study first order asymptotics, an analysis of In(y, S) suffices. When referring to previous results

in the literature, it is important to distinguish between |T (y, S) ∩ Tn|, |T (y, S) ∩ T ′
n| and In(y, S).

Several models of random multidimensional tries may be considered, depending upon the distri-

bution of the data strings Xi. In all models described below, X1, . . . , Xn are i.i.d. Let X1 be distributed

as the generic string of dits Z = (Z1, Z2, . . .). The models one might consider are as follows:

A. The i.i.d. model: Z1, Z2, . . . are i.i.d.

A.1. The independent bit model: the bits (Z11, . . . , Z1d) of Z1 are independent. These are also

called Bernoulli models. In the i.i.d. bit model, all bits Z1i have the same Bernoulli (p)

distribution. In the literature, the case p = 1/2 is often called the symmetric Bernoulli model.

When p &= 1/2, it is called the asymmetric Bernoulli model. In the nonuniform independent bit model,

Z1i is Bernoulli (pi), with p1, . . . , pd being the parameters that control the distribution

of the trie as a whole.

A.2. The general dit model: The dit Z1 has a given distribution on {0, 1}d. The parameters

of the distribution are the probabilities P{Z1 = z}, z ∈ {0, 1}d.
B. The Markov model: Z1, Z2, . . . form a Markov chain on {0, 1}d.
C. The density model: Z1, Z2, . . . group the first, second, etc. bits in the binary expansions of the

components of a d-dimensional random vector Z ′ with a density f on [0, 1]d. Note that in this

setting, we may associate with each node u a d-dimensional square of volume 1/2dδ(u). The

multidimensional trie corresponds to a multidimensional dyadic partition of the unit cube. Note

that if f is the uniform density on the unit cube, then model C coincides with the symmetric

Bernoulli model. If f is not uniform, then it is still true that while the Zi’s are dependent, Zn

tends in distribution to the uniform distribution on {0, 1}d as n → ∞.

D. The general independent model: Z1, Z2, . . . are independent but not necessarily identically dis-

tributed.

E. Other models of dependence.

Nearly all papers on multidimensional tries deal with the i.i.d. bit model. The present paper deals with

the symmetric Bernoulli model and the density model. Results for the general dit model will be reported

elsewhere.

With an appropriate collection of pointers from leaf nodes to data points, this structure is useful

for searching and for data base operations, including partial match. Orenstein (1982) introduced mul-

tidimensional tries for database applications. Related ideas had earlier been proposed by Bentley and

Burkhard (1976). Quadtries have also been useful in the compaction of multidimensional (geometric,

video) information. Puech and Yahia (1985) provide the first analytical study.

Two cases are uninteresting: if |S| = 0, then we may return {X1, . . . , Xn} without any search, and,
if the partial match algorithm is run, its complexity is Nn(y, S) = |T ′

n|. It is known that E{|T ′
n|} = O(n)

for the independent bit model (Jacquet and Régnier, 1986), and therefore, this case is not interesting. If

|S| = d, then the partial match reduces to a point search. In that case,

sup
y

Nn(y, S)

is nothing but one plus the height (Hn) of Tn and supy In(y, S) is the height of T ′
n. We know that the

expected value is O(log n). For the symmetric Bernoulli model, we have

Hn

log2 n
→ 2

d
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in probability and in the mean (see, e.g., Régnier (1981), Mendelson (1982), Devroye (1984), Pittel (1985,

1986)). The limit law of Hn was obtained in Devroye (1984), and laws of the iterated logarithm for the

difference Hn − 2 log2 n can be found in Devroye (1992). The height for other models was studied by

Régnier (1981), Mendelson (1982), Flajolet and Steyaert (1982), Flajolet (1983), Devroye (1984), Pittel

(1985, 1986), and Szpankowski (1988, 1989).

This leaves us with the question posed in this paper: if 0 < |S| < d, what is the asymptotic

behavior of supy Nn(y, S) and of supy In(y, S)? We recall that if y is a string of dits, then for the

symmetric Bernoulli model,

E{Nn(y, S)} = τ(log2 n)n
1−|S|/d + o

(
n1−|S|/d

)

(Flajolet and Puech, 1986), where τ is a continuous positive periodic function. This result gives us

information about the expected time for an average query. The variance of Nn(y, S) was shown, for

d = 2, |S| = 1, to be asymptotic to τ(log2 n)
√
n by Kirschenhofer, Prodinger and Szpankowski (1993),

where τ is again a continuous positive periodic function. This was generalized to d > 2 by Schachinger

(1995). In 2000, Schachinger proved that

Nn(y, S)

E{Nn(y, S)}
→ 1

in probability, and
Nn(y, S)− E{Nn(y, S)}√

V{Nn(y, S)}
L→ N (0, 1) .

For the asymmetric Bernoulli model, in all dimensions, some asymptotics for E{Nn(y, S)} are

obtained by Kirschenhofer, Prodinger and Szpankowski (1993), and, with y replaced by a random Y in

Schachinger (2000). In the latter paper, it is shown that Nn(Y, S)/E{Nn(Y, S)}
L→ Zp under an idealized

partial match model that does not correspond to our definition, where the distribution of Zp depends

upon the probability p only. More recently, Schachinger has studied the asymptotic behavior of the ratio

logNn(y, S)/E{logNn(y, S)}.
The quantity

Mn = sup
y

Nn(y, S)

is the worst-case query time (for a random trie T ′
n). It is the natural generalization of the notion of a

height to the partial match setting. We show that random multidimensional tries also behave well under

the worst-case query time criterion:

Theorem 1. For a random multidimensional trie under the symmetric Bernoulli model, we have, if

0 < |S| < d,

sup
y

E{Nn(y, S)} = O(n1−|S|/d) .

Also,

E{Mn} = O(n1−|S|/d)

and, for all ε > 0,

lim
n→∞

P
{
Mn > (1 + ε) sup

y
E{Nn(y, S)}

}
= 0 .
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Finally,

lim
n→∞

E{supy Nn(y, S)}
supy E{Nn(y, S)}

= 1 .

We observe thus that the expected worst-case partial match complexity is asymptotically equiv-

alent to the worst-case of the expected partial match complexity. That implies that the complexity of a

partial match query is largely independent of the position y of the query, and is rather stable. Theorem

1 follows without work from Proposition 1 and Theorem 2 developed further on.

Boucheron-Lugosi-Massart inequality

The modern concentration inequalities are mainly due to Talagrand (1996a-b) and Ledoux

(1996a-b), as surveyed by McDiarmid (1998). In this section, we recall a fundamental inequality due

to Boucheron, Lugosi and Massart (2000) whose proof was based on logarithmic Sobolev inequalities

developed in part by Ledoux (1996a).

Let X1, . . . , Xn be independent random variables taking values in a measurable set X . Denote the

n-vector by X . Similarly, let x1, . . . , xn be elements of X , and denote the n-vector by x. Let f : Xn → R
be a measurable function, and define

z = f(x1, . . . , xn) , Z = f(X1, . . . , Xn) ,

and

Z(i) = f(x1, . . . , xi−1, Xi, xi+1, . . . , xn) .

Lemma 1. Assume that there exists a positive constant c such that

E

{
n∑

i=1

(
z − Z(i)

)2
1[

z>Z(i)
]

}
≤ cz .

Then for all t > 0,

P{Z ≥ E{Z}+ t} ≤ exp

(
− t2

4c(E{Z}+ t)

)
.

If for each x and each i, z ≤ 1 + Z(i), then for 0 < t ≤ E{Z}/2,

P{Z ≤ E{Z} − t} ≤ exp

(
− t2 log(1 + (

√
2− 1)/c)

4(E{Z}+ t)

)
.
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Expected value for partial match query times

It is useful to define two new quantities. Let k denote a level in a trie, with level numbering

equal to distance from the root. Define the number of internal nodes at level k visited by a partial match

query algorithm by

Ink(y, S) =
∑

u∈T (y,S):δ(u)=k

1[N(u)≥2] .

Thus,

In(y, S) =
∞∑

k=0

Ink(y, S)

It is important to note that for the uniform model, the distribution of both Ink(y, S) and In(y, S) does

not depend upon y, and depends upon S only through its size |S|. Thus, with S given and fixed, we

write In and Ink. The expected value of In and Ink has been studied by Flajolet and Puech (1986). In

particular, there exist positive constants c(|S|, d) and c′(|S|, d) such that for all n,

c(|S|, d) ≤ E{In}
n1−|S|/d ≤ c′(|S|, d) .

There is no limit for this ratio, as it oscillates periodically (in log2 n).

Proposition 1. Assume that 0 < |S| < d. We have

A. For all k, Ink ≤ 2(d−|S|)k.

B. For all k, E{Ink} ≤ n2/2(d+|S|)k.

C. For all k ≥ (1/d) log2(2(n− 1)), E{Ink} ≥ (n− 1)2/2(d+|S|)k+2.

D. For all k ≤ (1/d) log2(2(n− 1)), E{Ink} ≥ 2(d−|S|)k−4.

E. For all n ≥ 2,

2−d+|S|−4 + 2−d−|S|−4 ≤ E{In}
(2(n− 1))1−|S|/d ≤ 4 .

Proof. Let B be binomial (n, p) with p = 1/2dk. It is easy to see that Ink is a sum of 2(d−|S|)k

(dependent) indicators distributed as 1[B≥2]. Thus,

E{Ink} = 2(d−|S|)kP{B ≥ 2} .

Part A follows immediately. Part B follows from the union bound: P{B ≥ 2} ≤ n2p2. Note that

P{B ≥ 2} = 1− (1− p)n − np(1− p)n−1 = 1− (1− p)n−1(1 + p(n− 1)) ≥ 1− e−p(n−1)(1 + p(n− 1)) .

The lower bound is an increasing function of p(n − 1). At p(n − 1) = 1/2, its value is more than 1/24,

which proves D. Using e−u ≤ 1− u+ u2/2, u > 0, we see that

P{B ≥ 2} ≥ (p(n− 1))2

2
(1− p(n− 1)) ≥ (p(n− 1))2

4

when p(n− 1) ≤ 1/2. This proves C. Set a = (1/d) log2(2(n− 1)). We have

E{In} ≤
∑

k<a

2(d−|S|)k +
∑

k≥a

n2

2(d+|S|)k

≤ 2(d−|S|)a+1 +
2n2

2(d+|S|)a
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= 2(2(n− 1))1−|S|/d +
2n2

(2(n− 1))1+|S|/d

≤ 4(2(n− 1))1−|S|/d .

Similarly,

E{In} ≥
∑

k<a

2(d−|S|)k−4 +
∑

k≥a

(n− 1)2

2(d+|S|)k+2

≥ 2(d−|S|)(a−1)−4 +
(n− 1)2

2(d+|S|)(a+1)+2

= 2−d+|S|−4(2(n− 1))1−|S|/d +
(n− 1)2

2d+|S|+2(2(n− 1))1+|S|/d

= C(2(n− 1))1−|S|/d ,

with C = 2−d+|S|−4 + 2−d−|S|−4.

Concentration for partial match query times

We begin with a concentration result for Ink(y, S) for fixed (y, S).

Lemma 2. Fix k ≥ 0, n ≥ 1 and the query (y, S). For all t > 0,

P{Ink(y, S) ≥ E{Ink(y, S)}+ t} ≤ exp

(
− t2

8(E{Ink(y, S)}+ t)

)
.

Furthermore, for 0 < t ≤ E{Ink(y, S)}/2,

P{Ink(y, S) ≤ E{Ink(y, S)} − t} ≤ exp

(
− t2

22E{Ink(y, S)}+ 22t

)
.

Proof. Ink(y, S) is a function of the data Z1, . . . , Zn. Fix data z1, . . . , zn (n infinite strings of d-vectors

of bits). Let Ink(y, S) be as defined above. Replace zi in the data by Zi, its uniform random counterpart.

Call the resulting value I
(i)
nk (y, S). Note that Ink(y, S) > I

(i)
nk (y, S) implies that exactly one zj , j &= i, has

its first k d-vectors of bits coincide with those of zi. In any case,

Ink(y, S)− I
(i)
nk (y, S) ≤ 1 .

Thus, to verify the condition of Lemma 1, we have

E

{
n∑

i=1

(
Ink(y, S)− I

(i)
nk (y, S)

)2
1[

Ink(y,S)>I
(i)
nk(y,S)

]

}

≤
n∑

i=1

P
{
Ink(y, S) > I

(i)
nk (y, S)

}

≤
n∑

i=1

1[exactly one zj ,j '=i, has its first k dits coincide with those of zi]

≤ 2Ink(y, S) .
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Thus, by Lemma 1, for all t > 0,

P{Ink(y, S) ≥ E{Ink(y, S)}+ t} ≤ exp

(
− t2

8(E{Ink(y, S)}+ t)

)
.

Furthermore, for 0 < t ≤ E{Ink(y, S)}/2,

P{Ink(y, S) ≤ E{Ink(y, S)} − t} ≤ exp

(
− t2 log(1 + (

√
2− 1)/2)

4E{Ink(y, S)}+ 4t

)
.

We observe that Lemma 2 only needed the strings Z1, . . . , Zn to be independent. It is valid,

however, for any distribution of Z1. In particular, it holds for the general dit model, the Markov model,

the density model, and indeed, for all models listed in the introduction.

Lemma 3. For any ε > 0,

lim
n→∞

P{|In(y, S)− E{In(y, S)}| > εE{In(y, S)}} = 0 .

Thus,
In(y, S)

E{In(y, S)}
→ 1 in probability .

Proof. We first show the upper bound:

lim
n→∞

P{In(y, S)− E{In(y, S)} > εE{In(y, S)}} = 0 .

For t > 0,

P{In(y, S)− E{In(y, S)} > t}

≤ P

{
a∑

k=0

(Ink(y, S)− E{Ink(y, S)}) > t/3

}
+ P

{
b∑

k=a

(Ink(y, S)− E{Ink(y, S)}) > t/3

}

+ P

{
∑

k>b

Ink(y, S) > t/3

}

= I + II + III

where

a = +10 log2 logn, , b =

⌊
(2− u) log2 n

d+ |S|

⌋

and u > 0 is an appropriately small positive constant to be chosen later. Choose ε > 0 and set t =

εE{In(y, S)}. Using part A of Proposition 1, we have

I ≤ P

{
a∑

k=0

2(d−|S|)k > t/3

}
= 0

if

2(d−|S|)a+1 ≤ (ε/3)γ(2(n− 1))1−|S|/d

where γ is the lower bound in part E of Proposition 1. This is clearly the case for all n ≥ n0 where

n0 depends upon ε, d and |S| only. By parts C and D of Proposition 1, we have, for all n so large that

a ≤ (1/d) log2(2(n− 1)) ≤ b,

E{Ink(y, S)} ≥ min
(
(n− 1)2/2(d+|S|)b+2, 2(d−|S|)a−4

)
≥ (logn)9
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for all n large enough. Consider such large n. Next, by Lemma 2, we have

II ≤
b∑

k=a

P
{
Ink(y, S)− E{Ink(y, S)} ≥ ε

3
E{Ink(y, S)}

}

≤
b∑

k=a

exp

(
− ε2E{Ink(y, S)}

72 + 24ε

)

≤ (1 + log2 n) exp

(
− ε2(logn)9

72 + 24ε

)

= O
(
exp

(
−(logn)8

))
.

Finally, by Markov’s inequality, and parts B and E of Proposition 1,

III ≤
3E

{∑
k>b Ink(y, S)

}

εE{In(y, S)}

≤
3
∑

k>b n
2/2(d+|S|)k

εγn1−|S|/d

≤ 6n2

εγ2(d+|S|)bn1−|S|/d

≤ 6 2d+|S|n2

εγn2−un1−|S|/d

≤ 2d+|S|+3

εγn1−|S|/d−u

→ 0

if u < 1− |S|/d. As I + II + III → 0, the upper bound follows.

For the lower bound, we argue similarly, taking t, a and b as above. For t > 0,

P{In(y, S)− E{In(y, S)} < −t}

≤ P

{
a∑

k=0

(Ink(y, S)− E{Ink(y, S)}) < −t/3

}
+ P

{
b∑

k=a

(Ink(y, S)− E{Ink(y, S)}) < −t/3

}

+ P

{
∑

k>b

E{Ink(y, S)} > t/3

}

= I + II + III .

We have for n large enough, by part A of proposition 1,

I ≤ P

{
a∑

k=0

E{Ink(y, S)} > t/3

}
≤ P

{
a∑

k=0

2(d−|S|)k > t/3

}
= 0,

by arguing as above. Next, by Lemma 2, we have, if ε < 1,

II ≤
b∑

k=a

P{Ink(y, S)− E{Ink(y, S)} < − ε

3
E{Ink(y, S)}}

≤
b∑

k=a

exp

(
− ε2E{Ink(y, S)}

198 + 66ε

)
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≤ (1 + log2 n) exp

(
− ε2(log n)9

198 + 66ε

)

= O
(
exp

(
−(logn)8

))
.

Finally, by parts B and E of Proposition 1, III = 0 for all n large enough as

∑

k>b

E{Ink(y, S)} ≤ εE{In(y, S)}
3

.

Indeed, the right hand side is Θ(n1−|S|/d), while the left hand side is O(nu), and u < 1− |S|/d by choice

of u. This concludes the proof of Lemma 3.

Expected worst-case time for a partial match query

The purpose of this section is to prove the following theorem.

Theorem 2. Fix S such that 0 < |S| < d. Denote by µn(|S|) = E{In(y, S)} (noting that this does not

depend upon y). Then
supy In(y, S)

infy In(y, S)
→ 1 in probability .

Furthermore,
supy In(y, S)

µn(|S|)
→ 1 in probability ,

and similarly for infy In(y, S).

Remark. Theorem 2 remains valid if we replace In by Nn for both kinds of multidimensional tries. For

the tries of the first kind, this is an immediate consequence of Nn(y, S) = In(y, S) + n. For the tries of

the second kind, a bit more work is needed.

Before we prove this, let us introduce

Nnk(y, S) =
∑

u∈T (y,S):δ(u)=k

N(u) ,

the number of data strings among X1, . . . , Xn that match (y, S) in their first k dits. Observe that

Ink(y, S) ≤ Nnk(y, S).

Lemma 4. We have

E{Nnk(y, S)} =
n

2|S|k

and for t > 0,

P{Nnk(y, S)− E{Nnk(y, S)} ≥ tE{Nnk(y, S)}} ≤ exp

(
− tn

3 2|S|k

)
.
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Proof. Observe that Nnk(y, S) is binomial with parameters n and 1/2|S|k. Thus,

E{Nnk(y, S)} =
n

2|S|k

and by a tail inequality for the binomial distribution (see, e.g., Angluin and Valiant, 1979; or Hoeffding,

1963),

P{Nnk(y, S)− E{Nnk(y, S)} ≥ tE{Nnk(y, S)}} ≤ exp (−(t/3)E{Nnk(y, S)}) ,

for t > 0.

proof of theorem 2. It suffices to prove the second part of Theorem 2. We prove the part for the

supremum, as the infimum is treated in an analogous manner. We write µn instead of µn(|S|), and recall

from Proposition 1 that µn = Θ(n1−|S|/d). We first show the upper bound: for all ε > 0,

lim
n→∞

P
{
sup
y

(In(y, S)− µn) > εµn

}
= 0 .

Note the following:

P
{
sup
y

(In(y, S)− µn) > εµn

}

≤ P

{
a∑

k=0

2dk > εµn/3

}
+ P

{
b∑

k=a

sup
y

(Ink(y, S)− E{Ink(y, S)}) > εE{In(y, S)}/3
}

+ P

{
sup
y

∑

k>b

Ink(y, S) > εµn/3

}

= I + II + III .

We pick the integers a and b as in the proof of Lemma 3:

a = +10 log2 logn, , b =

⌊
(2− u) log2 n

d+ |S|

⌋

and 1 − |S|/d > u > 0 is an appropriately small positive constant. Note that for n large enough,

(a + 1)2da < εµn/3, as the left-hand side grows as a polynomial of logn and the right hand side as a

polynomial in n. We recall from the proof of Lemma 3 that for all n so large that a ≤ (1/d) log2(2(n−1)) ≤
b, E{Ink(y, S)} ≥ (logn)9. Consider such large n. Next, by Lemma 2, we have

II ≤
b∑

k=a

2db sup
y

P
{
Ink(y, S)− E{Ink(y, S)} >

ε

3
E{Ink(y, S)}

}

because there are at most 2dk different query strings y that can yield different values for Ink(y, S) when

k ≤ b. As in the proof of Lemma 3, this is further bounded as follows:

II ≤ b 2db exp

(
− ε2µn
72 + 24ε

)

≤ (1 + log2 n)n
(2−u)d
d+|S| exp

(
− ε2(logn)9

72 + 24ε

)

= O
(
exp

(
−(logn)8

))
.
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We now consider III. Observe that

sup
y

∑

k≥b

Ink(y, S) ≤ Hn × sup
y

Nnb(y, S)

as each string Xi counted in Nnb(y, S) can contribute to at most Hn nodes counted in Ink(y, S) with

k ≥ b.

By Lemma 4, with χ = (1− u/2)|S|/(d+ |S|),

n
d

d+|S|−χ ≥ E{Nnb(y, S)} = n
d−|S|+u|S|+o(1)

d+|S| ≥ n
d−|S|
d+|S|

for all n large enough. For such large n, we have

P{Nnb(y, S)− E{Nnb(y, S)} > tE{Nnb(y, S)}} ≤ exp

(
−tn

d−|S|
d+|S| /3

)
.

By the union bound,

P
{
sup
y

Nnb(y, S)

E{Nnb(y, S)}
> 1 + t

}
≤ 2db exp

(
−tn

d−|S|
d+|S| /3

)
≤ exp

(
−tn

d−|S|
d+|S| /4

)

for all n large enough. In particular, as the distribution of Nn(y, S) does not depend upon y, we have for

n large enough,

III = P
{
sup
y

∑
k>b Ink(y, S)

µn
>

ε

3

}

≤ P
{
Hn sup

y

Nnb(y, S)

µn
>

ε

3

}

≤ P{Hn > (3/d) log2 n}+ P
{
sup
y

Nnb(y, S)

µn
>

ε/3

(3/d) log2 n

}

= P{Hn > (3/d) log2 n}+ P
{
sup
y

Nnb(y, S)

E{Nnb(y, S)}
>

(ε/3)µn
((3/d) log2 n) supy E{Nnb(y, S)}

}

≤ n2

2d((3/d) log2 n)
+ P




sup
y

Nnb(y, S)

E{Nnb(y, S)}
>

(ε/3)βn1−|S|/d

((3/d) log2 n)n
d

d+|S|−χ






(where β > 0 is the lower bound of Proposition 1)

≤ 1

n
+ P





sup
y

Nnb(y, S)

E{Nnb(y, S)}
>

(ε/3)βn
− |S|2

d(d+|S|)+χ

((3/d) log2 n)






≤ 1

n
+ P

{
sup
y

Nnb(y, S)

E{Nnb(y, S)}
> n

(1−u)|S|−|S|2/d
d+|S|

}

(for n large enough)

= O(1/n)

by the bound established above for the tail of the distribution of supy Nnb(y, S), after noting that (1 −
u)|S| > |S|2/d whenever u is chosen such that u < 1− |S|/d. We conclude that I + II + III → 0 for all

ε > 0.
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For the lower bound we argue similarly. Since for any k, E {Ink(y, S)} ≤ E {In(y, S)},

P
{
inf
y
(In(y, S)− E {In(y, S)}) < −εE {In(y, S)}

}

≤ P {∃y ∃a ≤ k ≤ b, Ink(y, S)− E {Ink(y, S)} < −εE {Ink(y, S)}}

≤
b∑

k=a

2db sup
y

P {Ink(y, S)− E {Ink(y, S)} < −εE {Ink(y, S)}}

≤
b∑

k=a

2db exp

(
− ε2E {Ink(y, S)}

22(1 + ε)

)

≤ n
(2−u)d
d+|S| (1 + logn) exp

(
ε2(logn)9

22(1 + ε)

)

= O
(
exp

(
−(logn)8

))
,

for every n large enough such that a ≤ 1
d log2(2(n− 1)) ≤ b. This completes the proof.

The density model

For the density model, with density f on [0, 1]d bounded by F < ∞, it is still true that E{Mn} =

O(n1−|S|/d). The proof uses embedding. We generate 2Fn i.i.d. pairs (Xi, Ui), where Xi is uniform on

[0, 1]d and Ui is uniform [0, 1]. The subset with index j such that UjF < f(Xj) forms a sample drawn from

density f . Its size is binomial (2Fn, 1/F ), so that with probability at least 1− 2 exp(−n/F ) (Hoeffding’s

inequality, 1963), the sample size exceeds n. Therefore, the trie constructed with the uniform sample of

size 2Fn contains as a subtree the one based on a sample of size n drawn from f . By applying Theorem

1, we thus have E{Mn} = O((2Fn)1−|S|/d).
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