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Abstract

A discrimination rule is chosen from a possibly infinite collection of discrimi-
nation rules based upon the minimization of the observed error in a test sample.
For example, the collection could include all k nearest neighbor rules (for all k),
all linear discriminators, and all kernel-based rules (for all possible choices of the
smoothing parameter). We do not put any restrictions on the collection.

We study how close the probability of error of the selected rule is to the (un-
known) minimal probability of error over the entire collection. If both training
sample and test sample have n observations, the expected value of the difference is
shown to be O(y/log(n)/n) for many reasonable collections, such as the one men-
tioned above. General inequalities governing this error are given which are of a
combinatorial nature, i.e., they are valid for all possible distributions of the data,
and most practical collections of rules.

The theory is based in part on the work of Vapnik and Chervonenkis regarding
minimization of the empirical risk. For all proofs, technical details, and additional
examples, we refer to Devroye (1986).

As a by-product, we establish that for some nonparametric rules, the probability
of error of the selected rule converges at the optimal rate (achievable within the
given collection of non-parametric rules) to the Bayes probability of error, and this
without actually knowing the optimal rate of convergence to the Bayes probability
of error.

1. Introduction

In pattern recognition, we normally use the data, either directly (via formulas) or indi-
rectly (by peeking), in the selection of a discrimination rule and/or its parameters. For
example, a quick inspection of the data can convince us that a linear discriminator is
appropriate in a given situation. The actual position of the discriminating hyperplane
is usually determined from the data. In other words, we choose our discriminator from
a class D of discriminators. This class can be small (e.g., “all k-nearest neighbor rules”)
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or large (e.g., “all linear and quadratic discriminators, and all nonparametric discrim-
inators of the kernel type with smoothing factor > 0”). If we knew the underlying
distribution of the data, then the selection process would be simple: we would pick the
Bayes rule. Unfortunately, the Bayes rule is not in D unless we are incredibly lucky.
Also, the underlying distribution is not known. Thus, it is important to know how close
we are to the performance of the best discriminator in D. If D is large enough, then
hopefully, the performance of the best discriminator in it is close to that of the Bayes
discriminator. There are two issues here which should be separated from each other.

A. The closeness of the best element of D to the Bayes rule.
B. The closeness of the actual element picked from D to the best element in D.

The former issue is related to the consistency of the estimators in D, and will only
be dealt with briefly. Our main concern is with the second problem: to what extent can
we let the data select the discriminator, and how much are we paying for this luxury?
The paper is an exercise in compromises: on the one hand, D should be rich enough so
that every Bayes rule can be asymptotically approached by a sequence of rules picked
from a sequence of D’s, and on the other hand, D should not be too rich because it
would lead to trivial selections, as any data can be fit to some discriminator in such a
class D. One of the biggest advantages of the empirical selection is that the programmer
does not have to worry about the choice of smoothing factors and design parameters.

Statistical model. Data-split technique

Our statistical model is as follows. The data consists of a sequence of n + m iid
R? x {0,1}-valued random vectors (X1,Y1), -, (Xntm, Yntm). The X;’s are called the
observations, and the Y;’s are usually called the classes. The fact that we limit the
number of classes to two should not take anything away from the main message of this
paper. Note also that the data is artificially split by us into two independent sequences,
one of length 7, and one of length m. This will facilitate the discussion and the ensuing
analysis immensely. We will call the n-sequence the training sequence, and the m-
sequence the testing sequence. The testing sequence is used as an impartial judge in the
selection process. A discrimination rule is a function 9 : R? x (R*x {0,1})"*™ — {0,1}.
It classifies a point z € R? as coming from class ¥(z, (X1,Y1), -+, (Xntm, Yntm)). We
will write 9(z) for the sake of convenience. :

The probability of error is

Lﬂ+m('¢’) = Lntm = P("tb(X) #Y | (Xl,n),' : ',(Xn+maYn+m))

where (X,Y) is independent of the data sequence and distributed as (X1,Y1). Of course,
we would like L,,,, to be small, although we know that L,4,, cannot be smaller than
the Bayes probability of error

Lpoyes = Juf  P$(X) £Y) .

Minimization of the empirical risk
In the construction of a rule with small probability of error, we proceed as follows:
D is a (possibly infinite) collection of functions ¢ : B¢ x (R* x {0,1})* — {0,1}, from
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which a particular function ¢’ is picked by minimizing the empirical risk based upon
the testing sequence:

n+m n+m

. 1 )
Lam(@) = — X Twxopva = min — > Doy -
1i=n+1 1=n+1

Here it is noted that

¢(Xz) — d)(Xi,(XlaYl)v“'7(XnaYn))7
¢I(Xi) . ¢/(Xia (X1>}/i)1 SOE ) (anyn)) )

i.e., the discriminators themselves are based upon the training sequence. Let us formally
write

?/)(:Z:) = 1/’(z’(X1’Y1))"')(Xn+m7Yn+m))
¢I(wa(X17K)7'"7(XnaYn)), LS Rd.

It is necessary to do this because 1 depends upon both the training sequence and the
testing sequence. Since Iin'm(qﬁ) is an unbiased binomial estimate of L,(¢), it is not
unlikely that L, yn.(%) is close to infgep Ln(4), yet this has to be proven rigorously. It is
this closeness that is under investigation here. We observe that the idea of minimizing
the empirical risk in the construction of a rule goes back to Vapnik and Chervonenkis
(1971, 1974).

Why split the data?

If we define our empirical risk entirely in terms of the training sequence, i.e., if we
count the number of errors committed by a rule on the training sequence itself, then
we can end up with strange rules. Consider for example the problem of the data-based
choice of k in a k-NN rule. It is obvious that no errors are committed on the training
sequence itself when k = 1, yet, k = 1 can but does not have to be the optimal choice in
a given situation. Glick (1972, 1976) has shown however that for many nonparametric
rules such as the kernel rule, counting the errors on the training sequence is essentially
harmless provided that the nonparametric rule is consistent. Unfortunately, we want to
choose the best discriminator from huge collections of discriminators from which it is
possible to draw many nonconsistent sequences. The presence of nonconsistent rules is
practically appealing (one can mix parametric and nonparametric discriminators; recall
also that we can include all £ NN rules in D without restriction on k), but dangerous
since we surely don’t want our procedure to lead to nonconsistency.

Cover (1969) suggested taking m = 1, and counting the number of errors committed
by considering n+1 training sets, each time leaving one of the observations (X;, ;) out,
and verifying whether the rule classifies the deleted X; as Y;. This, at least, reduces
the anomaly observed when our collection of discriminators includes the 1-NN rule and
no deletion is employed. Our approach is nothing more than an attempt to obtain an
alternative to Cover’s suggestion for which we can obtain good analytical guarantees of
the performance. Not separating a training set from a testing set works in some cases,
but it seems that good bounds on the probability of error can only be obtained when
the collections are very nice or simple.
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A last word about our split into a training sequence and a testing sequence. This
split is primarily aimed at deriving results that are valid for many classes D. There
are well-known tricks of the trade such as cross-validation (or leave-one-out) (Lunts and
Brailovsky, 1967; Stone, 1974), holdout, resubstitution, rotation, and bootstrap (Efron,
1979, 1983) which can be employed to construct an empirical risk from the training
sequence, thus obviating the need for a testing sequence (see Kanal (1974), Cover and
Wagner (1975) and Toussaint (1976) for surveys, and Glick (1978) for a discussion
and empirical comparison). This works well in many important situations (see Vapnik
and Chervonenkis (1974), Vapnik (1982), Devroye and Wagner (1979)), but can fail
miserably in other circumstances. This would then force us to restrict D to such an
extent that our results would be less powerful. We will make a case for the split-data
method by showing just how good the empirical choice is for most popular discrimination
rules. This universality seems more difficult to obtain with other methods. In addition,
we will argue that the testing sequence can often be taken much smaller than the
training sequence (m = o(n)). It seems probable that more sophisticated methods such
as cross-validation would be equally good or better than the split-data method, but we
haven’t been able to show this thus far.

The size of the class of rules

When D contains all rules, selection is like a lottery. Even though the Bayes rule
itself is in D, it is impossible to let the testing sequence pick a good rule, since the
error committed on the testing sequence for the selected rule is zero, and thus has no
relationship to the actual probability of error with that rule. When D is large but not
gigantic, infgep Ln(@) is probably close to Lpgye,: this is the case when D contains all
k-NN rules, or when it contains all kernel-type rules. On the other hand, D can be so
small that there is no hope of getting close to Lpyye,. A point in case is the class D of
all linear discrimination rules.

The selection error

Good automatic selection is impossible without good error estimates, and thus, it
should come as no surprise that the estimate on which the automatic selection is based
can serve as an estimate of the probability of error of the selected rule. This relationship
is captured in

The Fundamental Inequalities

Lnim(¥) = inf Ln(9) < 2 sup|Lnm(4) = La(9)l
¢€D
|Lnm(8) = Losm(®)| < sup |Lnm(4) — La(¢)]-
¢eD

We see that upper bounds for supy, p, [f,nm((;é) —L,.(#)| provide us with upper bounds
for two things simultaneously:

A. An upper bound for the suboptimality of % within D, L,i,.(%) — infyep Ln(9).
We will call this difference the selection error SE.
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B. An upper bound for the error |ﬁn'm(¢’) — Ly ()| committed when f,n,m(qb’) is
used to estimate the probability of error L,,..»(%). This could be called the error
estimate’s accuracy EEA.

In other words, by bounding the worst-case deviation W = supycp |Lnm(9) — Ln(8)],
we kill two flies at once. It is particularly useful to know that even though L, .(¢') is
usually optimistically biased, it is within given bounds of the unknown probability of
error with 1, and that no other test sample is needed to estimate this probability of
error. Whenever our bounds indicate that we are close to the optimum in D, we must
at the the same time have a good estimate of the probability of error, and vice versa.

Conditional upper bounds

To make the random variable W small, m should be large so that we may benefit
from the healthy averaging effect captured for example in the central limit theorem.
Unfortunately, the size of D works against us. We will now derive bounds for E(W|
training data) that are functions of n,m and a quantity measuring the size of D only.

All the probabilities and expected values written P, and E, are conditional on the
training sequence of length n, whereas P and E refer to unconditional probabilities
and expected values. The bounds derived below refer to conditional quantities, and
do not depend upon the training sequence. In other words, they are valid uniformly
over all training sequences. The important consequence of this is that, although the
testing sequence should have the right distribution and be iid, the training sequence can
in fact be arbitrary. In particular, annoying phenomena such as dependence between
observations, noisy data, etcetera become irrelevant for our bounds — they could have
a negative impact on the actual value of the probability of error though.

2. Finite Classes

We consider first finite classes D, with cardinality bounded by N,,. We have

Theorem 1. (Devroye, 1986) Let D be a finite class with cardinality bounded by N,..
Then
log(2N,,) 1

E,W < ;
2m \/Sm log(2N,,)

Size of the bound

If we take m = n and assume that N, is large, then Theorem 1 shows that on the
average we are within (/log(N,)/(2n) of the best possible error rate, whatever it is.
Since most common error probabilities tend to the Bayes probability of error at a rate
much slower than 1/4/n, the loss in error rate studied here is asymptotically negligible
in many cases relative to the difference between the probability of error and Lpg,ye,, at
least when NN, increases at a polynomial rate in n.

Distribution-free properties
Theorem 1 shows that the problem studied here is purely combinatorial. The actual
distribution of the data does not play a role at all in the upper bounds.
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The k-nearest neighbor rule
When D contains all k nearest neighbor rules, then N,, = n, since there are only n
possible values for k. It is easily seen that

log(2n) 1

E.W < .
2m \/8m log(2n)

Since k/n — 0, k — oo imply that F(L,) — Lpayes for the k-nearest neighbor with
data-independent (deterministic) k, for all possible distributions (Stone, 1977), we see
that our strategy leads to a universally consistent rule whenever log(n)/m — 0. Thus,
we can take m equal to a small fraction of n, without losing consistency. That we cannot
take m = 1 and hope to obtain consistency should be obvious. It should also be noted
that for m = n, we are roughly within y/log(n)/n of the best possible probability of
error within the given class. The same remark remains valid for k nearest neighbor rules
defined in terms of all L, metrics, or in terms of the transformation-invariant metric of

Olshen (Olshen, 1977; Devroye, 1978).

3. Consistency

Although it was not our objective to discuss consistency of our rules, it is perhaps worth
our while to present Theorem 2. Let us first recall the definition of a consistent rule (to
be more precise, a consistent sequence of ¢’s): a rule is consistent if E(L,) — Lpayes
as n — oo. Consistency may depend upon the distribution of the data. If it does not,
then we say that the rule is universally consistent.

Theorem 2. Consistency Assume that from each D (recall that D varies with n)
we can pick one ¢ such that the sequence of ¢’s is consistent for a certain class of
distributions. Then the automatic rule 9 defined above is consistent for the same class
of distributions (i.e., E(Lnym (%)) — LBayes as n — 00) if

I s
im ——————— = 0.
n—oo log(l+ N,)

If one is just worried about consistency, Theorem 2 reassures us that nothing is lost
as long as we take m much larger than log(N,). Often, this reduces to a very weak
condition on the size m of the training set.

4. Asymptotic Optimality

Let us now introduce the notion of asymptotic optimality. A sequence of rules % is said
to be asymptotically optimal for a given distribution of (X,Y) when

Tita E(Ln+m(¢)) i LBayes
n—oo E(inqueD Ln((}S)) = LBa.yes
Now, by the triangle inequality,

E(Lﬂ+m(¢)) o LBayea E(SE)
! S E(inf¢6D Ln(¢)) - LBayes S kL E(inf¢€D Ln(¢)) - LBayes

=1.
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When the selected rule is asymptotically optimal, we have achieved something very
strong: we have in effect picked a rule (or better, a sequence of rules) which has a
probability of error converging at the optimal rate attainable within the sequence of
D’s. And we don’t even have to know what the optimal rate of convergence is. This is
especially important in nonparametric rules, where some researchers choose smoothing
factors in function of theoretical results about the optimal attainable rate of convergence
for certain classes of problems. For the k-nearest neighbor rule with the best possible
sequence of k’s, the rate of convergence to the Bayes error is often of the order of n=2/°
or worse. In those cases the selection rule is asymptotically optimal when m = en for

any € > 0.

Mixing parametric and nonparametric rules

We are constantly faced with the problem of choosing between parametric discrimi-
nators and nonparametric discriminators. Parametric discriminators are based upon an
underlying model in which a finite number of unknown parameters is estimated from
the data. A point in case is the multivariate normal distribution, which leads to linear
or quadratic discriminators. If the model is wrong, parametric methods can perform
very poorly; when the model is right, their performance is difficult to beat. Our method
chooses among the best discriminator depending upon which happens to be best for
the given data. We can throw in D a variety of rules, including nearest neighbor rules,
a few linear discriminators, a couple of tree classifiers and perhaps a kernel-type rule.
Theorems 1 and 2 should be used when the cardinality of D does not get out of hand.

5. Infinite Classes

Theorem 1 is useless when N, = oco. It is here that we can apply the inequality of
Vapnik and Chervonenkis (1974) or one of it modifications. Fortunately, the bound
remains formally valid if N,, the bound on the cardinality of D, is replaced by 2€®
times the shatter coefficient S, which in turn depends upon n,m and the “richness” of
D only. The shatter coefficient is always finite, regardless of the “size” of D.

The shatter coefficient
Let C be the collection of all sets

{{z:¢=1}x{0}}u{{z:¢=0}x{1}}, ¢€D.

Thus, every ¢ in D can contribute at most one member to C. Then the shatter coeffi-
cient is defined as the maximum over all possible testing sequences of length m?2, and
all possible training sequences of length n, of the number of possible misclassification
vectors of the testing sequence. (The misclassification vector is a vector of m? zeroes
and ones, a one occurring if and only if the corresponding testing point has been incor-
rectly classified.) Note that S < N,. Also, § is not random by virtue of the definition
in terms of maxima. Generally speaking, S increases with the size of D. It suffices
now to compute a few shatter coefficients for certain classes of discrimination rules.
For examples, see Cover (1965), Vapnik and Chervonenkis (1971), Devroye and Wagner

(1979), Feinholz (1979), Devroye (1982), and Massart (1983).
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Smorgasbords of rules
For a collection D of the form D = U;?:le, we have

k
SSZSJ"

=1

where S; is computed for D; only. This allows us to treat each homogeneous sub-
collection of D separately.

Linear discrimination

Consider all rules that split the space R? in two by virtue of a halfplane, and assign
class 1 to one halfspace, and class 0 to the other. Points on the border are treated as
belonging to the same halfspace. Because the training sequence is not even used in the
definition of the collection, S can’t possibly depend upon n.

There are at most
2 (m? -1 2d
<2m
21;:0 k <2 +1

ways of dichotomizing m? points in R? by hyperplanes (see e.g., Cover, 1965) (this takes
into account that there are two ways of attaching 0’s and 1’s to the two halfspaces). We

see that
¢ m?—1
ng(Z( " < 2(m*+41).

k=0
A rule ¢ in which the set {z : ¢(z) = 1} coindices with a set of the form

{a:ao+ Zajfj(:c) >0}

j=1

for given fixed functions fy,---, fs» and some real numbers ag, -+ ,ag is called a gener-
alized linear discrimination rule (see Duda and Hart, 1973). These include for example
all quadratic discrimination rules in R? when we choose all functions that are either
components of z, or squares of components of z, or products of two components of .
In all, d* = 2d 4 d(d — 1)/2. The counting argument of the previous paragraph remains
valid, provided that d is replaced by d*.

Kernel-based rules
Kernel-based rules are derived from the kernel estimate in density estimation orig-
inally studied by Parzen (1962), Rosenblatt (1956) and Cacoullos (1965). A point z is

assigned class 1 if

o055 (-3 (555 5

=1

and to class 0 otherwise, where K is a fixed function called the kernel, and A > 0 is
a smoothing factor. It is easy to verify that this is a voting scheme in which the i-th
observation carries weight K (%) . Thus, K is usually decreasing along rays. For
particular choices of K, rules of this sort have been proposed by Fix and Hodges (1951,
1952), Sebestyen (1962), Bashkirov, Braverman and Muchnik (1964), Van Ryzin (1966),
and Meisel (1969).
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We begin by considering the collection D of all kernel rules for all values of h, but
fixed kernel K = I, where I is the indicator function, and A is any star shaped set of
unit Lebesgue measure (a set A is star- shaped if z ¢ A implies that cz ¢ A for all
¢ > 1). We vary h monotonically from 0 to co. For fixed X; in the testing sequence,
the function g(X;) on which the decision is based can at most take n values. Therefore,
S < nm?+1.

A typical star-shaped set is the centered unit cube. In the class D considered
above, only one parameter was varied. In d-dimensional pattern recognition, it is often
necessary to adjust the scales of many component variables. Thus, it seems natural to
classify z = (z1,--+,z4) in class one if

-5 (- 1) T (2525 0.

i=

where now K is a one-dimensional kernel, hq,---,hq are d positive numbers, and X is
the I-th component of X;. It should be noted that this is certainly not the only way
of introducing d different smoothing factors, one for each component. Let D be the
collection of all rules of this type considered over all possible values hi,--+,hq. For
this class, we have § < (nm?)? + 1 for all kernels K that are indicators of centered
hypercubes.

The consistency of the class D is insured when K is the uniform kernel on the
unit hypercube, by applying the universal consistency theorem of Devroye and Wagner
(1980) and Spiegelman and Sacks (1980) (see also Greblicki, Krzyzak and Pawlak, 1984),
provided that m/log(n) — co. The standard bounds for relating the probability of error
to the L, error in density estimation (see e.g., Devroye and Gyorfi, 1985), combined
with well-known results about the best possible expected error with any kernel density
estimate (i.e., the best possible expected L error is about equal to a constant times
n-2/(4+d)_ see Devroye and Gyorfi, 1985), give us lower bounds for E(Ln(¢) — LBayes)
that decrease as n=2/(4t9 where ¢ is the kernel discrimination rule in which the h is
chosen in an optimal way for the underlying densities. Since this tends to 0 slower than

log(n)/n, it seems plausible that the automatic selection rule with m = n!~¢ (with an
appropriately picked small ¢) is asymptotically optimal for large classes of distributions.

Binary tree classifiers

Binary tree classifiers have become increasingly important because of their concep-
tual simplicity and computational feasibility. Many strategies have been proposed for
constructing the binary decision tree (in which each internal node corresponds to a cut,
and each terminal node corresponds to a set in the partition: see for example Sethi and
Chatterjee (1977), Payne and Meisel (1977), Sethi and Sarvarayudu (1981), Lin and Fu
(1983), Breiman, Friedman, Ohlsen and Stone (1983), and Casey and Nagy (1984).

Tf we consider all binary trees in which each internal node corresponds to a split
perpendicular to one of the axes, and the space is partitioned into k hyperrectangles,
then S < (1 4+ d(n + m?))*kL.

Here we have an example of a class that is too large to be practical for the present
procedure, since k is typically a polynomially increasing function of n.
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