Computer Science and Statistics:
Proceedings of the 13th Symposium
on the Interface

Edited by William F. Eddy

With 122 Figures

Springer-Verlag
New York Heidelberg Berlin

1981
ABSTRACT

We give a brief inexact survey of recent results that can be helpful in the average time analysis of algorithms in computational geometry.

Most fast average time algorithms use one of three principles: bucketing, divide-and-conquer (merging), or quick elimination (throw-away). To illustrate the different points, the convex hull problem is taken as our prototype problem. We also discuss searching, sorting, finding the Voronoi diagram and the minimal spanning tree, identifying the set of maximal vectors, and determining the diameter of a set and the minimum covering sphere.

KEYWORDS Algorithms, Average time, Computational geometry, Convex hull, Sorting, Searching, Closest point problems, Divide and conquer.

1. INTRODUCTION.

There has been an increasing interest in the study and analysis of algorithms in computational geometry (a recent survey paper by Toussaint (1980) had 168 references). Most of the emphasis has been placed on the study of the worst-case complexity of various algorithms under several computational models. It is well known that many algorithms perform considerably better on the average than predicted by the worst-case analyses. In this note, we would like to point out a few recent developments in the analysis of the average complexity of some algorithms. To keep the general discussion simple and yet insightful we make a couple of convenient assumptions.

The Assumptions.

The input data \(X_1, \ldots, X_n\) can be considered as a sequence of independent identically distributed \(\mathbb{R}^d\)-valued random vectors with common density \(f\). (Here the unrealistic assumption is that real numbers can be stored in a computer.)

An algorithm takes time \(T(X_1, \ldots, X_n)\), a Borel measurable function of the input data, and it halts with probability one, i.e. \(T = \infty\) almost surely.

The common operations \((+, -, /, *, \text{mod}, \text{compare}, \text{move})\) take time uniformly bounded over all values of the operands. For example, \(a \times b\) or a mod \(b\) take time bounded by a constant not depending upon \(a\) or \(b\). (Once again, this is unrealistic, because the multiplication or comparison of two real numbers takes infinite time.)

We are interested in the average time \(E(T)\) taken by certain algorithms. Obviously, \(E(T)\) depends upon \(f\) and \(n\) only because the averaging is done over all random samples of size \(n\) drawn from the density \(f\).

Fast Average Time Algorithms.

In many applications, fast average time algorithms can be obtained by the bucketing principle: find the smallest rectangle \(C\) covering \(X_1, \ldots, X_n\); divide \(C\) into equal-sized rectangles (buckets), and solve the problem by travelling from bucket to bucket while performing some local operations. We will also discuss the dramatic savings in average time that can be obtained by the proper application of the divide-and-conquer principle. Finally, the quick elimination (or: throw-away) principle may allow us to further reduce the average time: here one takes a superficial look at the data, and eliminates useless points. The more involved work is then performed on the reduced data sequence.

We will not discuss all the fast average time algorithms. For example, to find the convex hull of \(X_1, \ldots, X_n\) in \(\mathbb{R}^2\) under certain computational models, at least \(cn\log n\) time is needed (Avis, 1979; Yao, 1979). Jarvis' algorithm (Jarvis, 1973) takes average time \(O(nE(N))\) where \(N\) is the number of convex hull points. In the design of this algorithm, no special care is taken to obtain fast average time behavior. Therefore, for certain distributions \(E(N) = O(1)\) (see Carnal (1970); this is true for multivariate \(t\)-distributions, etc.), so that Jarvis' algorithm runs in linear average time for a fairly large class of distributions. In this note, we will be satisfied with a short inexact and biased survey of deliberate attempts at reducing the average time of algorithms and of the probability theoretical and mathematical tools needed in the ensuing analysis.

2. THE BUCKETING PRINCIPLE.

Let \(C\) be the smallest closed rectangle covering \(X_1, \ldots, X_n\), and let \(C\) be divided into \(m^d\) equal-sized rectangles (buckets) where \(m = \lfloor n^{1/d} \rfloor\). Bucket memberships can thus be obtained for all data points in time \(O(n)\). Often one keeps track of these memberships by using \(m^d\) linked lists, one per bucket, so that \(O(n)\) space is used.

The obvious application in \(\mathbb{R}^d\) involves sorting \(X_1, \ldots, X_n\). Here one empties the buckets from left to right and performs a subsequent sort within each bucket, if necessary. If this subsequent sort is
a comparison-based sort (e.g. heapsort, bubble sort, shell sort, merge sort or quicksort) with average time \(g(n) \) (this number is independent of \(f \), since we have a comparison-based sort), then the overall average time for sorting is

\[
E(T) = O(n) + E\left(\sum_{i=1}^{n} g(N_i) \right)
\]

where \(N_1, \ldots, N_n \) are the cardinalities of the \(n \) buckets. Devroye and Klincsek (1981) addressed the question of when \(E(T) = O(n) \). They showed that when \(g(u) = u + a \), \(g(u)/u^2 \) is nonincreasing, and \(g \) is convex, then \(E(T) = O(n) \) if and only if \(f \) has compact support and

\[
\int g(f(x)) \, dx < \infty.
\]

Notice that they put no continuity or boundedness assumptions on \(f \). Akl and Meijer (1980) found that for sufficiently smooth densities, bucket sort (with slight ad hoc improvements) compares favorably with even the best version of quicksort.

Consider now the following generalization of the previous result: travel from bucket to bucket, performing within the \(j \)-th bucket operations taking average time bounded between \(g(N_j) \) and \(b(N_j) \) when \(N_j \) is given. Here \(0 < a \leq b < \infty \).

Once again, the average time of the entire algorithm is

\[
E(T) = O(n + \sum_{i=1}^{n} g(N_i)).
\]

Assume that \(g(u)/u^2 = 0 \) and \(g(u)/u^K \to 0 \) for some positive \(K \) as \(u \to \infty \). Also, assume that \(g \) is convex. Then \(E(T) = O(n) \) if and only if \(f \) has compact support and (1) holds (Devroye, 1981a). These basic results have several applications. We cite just two examples.

Examples.

1. Searching in constant average time.

Assume that \(X_1, \ldots, X_n \) are stored in the bucket data structure given above, and that we are presented with \(X \in Z \) (where \(Z \) is uniformly distributed over \(1, \ldots, n \)). We have to determine the index \(i \) such that \(X_i = X \). This is the classical problem of successful search. If the \(X_i \)'s are stored in the buckets in order of arrival, then the average search time is comparable to

\[
E(\sum_{i=1}^{n} \frac{N_i^2+1}{n})
\]

(note: two sequences \(a_n, b_n \) are comparable when \(a_n = f(b_n) \) and \(b_n = o(a_n) \)). By a simple extension of the previous result, we see that \(E(T) = O(1) \) if and only if \(f \) has compact support and \(\int f^2(x) \, dx < \infty \). If within each bucket the data are organized into a binary search tree rather than a linked list, by considering one of the coordinates of the \(X_i \)'s as the key for sorting, then \(E(T) = O(1) \) if and only if \(f \) has compact support and

\[
\int f(x) \log_f(x) \, dx < \infty.
\]

2. Convex hull algorithms that are based upon sorting.

The convex hull of \(X_1, \ldots, X_n \) is a subsequence \(X_{i_1}, \ldots, X_{i_k} \) of \(X_1, \ldots, X_n \) such that for all \(j \), there exists a hyperplane through \(X_i \), and all \(X_q \)'s, \(q \neq j \), belong to the same closed halfspace determined by this hyperplane. In \(\mathbb{R}^2 \), it can be obtained from \(X_1, \ldots, X_n \) as follows: (i) Find a point \(x \) that belongs to the interior of the convex hull of \(X_1, \ldots, X_n \). Sort all that \(X_i \)'s according to the polar angles of \(X_i \). (ii) visit all vertices of \(P \) in turn by pushing them on a stack. Pop the stack when non-convex-hull points are encountered. In essence, this is Graham's algorithm (1972) with a modification in the sorting method that is used. Step (ii) takes time \(O(n) \). The average time taken by (i) is \(O(n) \) when the density of the polar angle of \(X_i \) is square integrable. Since \(x \) itself is a random vector, one must be careful before making any inference about \(f \). Nevertheless, it is sufficient that \(f \) is bounded and has compact support. End of examples.

The previous applications have one feature in common: the times taken by the algorithms on individual buckets just depend upon the number and/or position of the data points within these (and not on, say, the number of data points in neighboring buckets). In more involved problems, we cannot avoid looking at neighboring buckets. For example, consider the class of "closest point problems" of Bruns and Hoey (1975) such as: find all nearest neighbor pairs, construct the Voronoi graph, find the minimal spanning tree, etc. (see Bentley and Friedman (1971) for other applications). Shamos (1978) and Weide (1978) discuss many applications of the bucketing principle, and Bentley, Weide and Yao (1980) give a fairly comprehensive treatment of the average time analysis of bucketing algorithms for closest point problems. We take the liberty to cite a couple of examples from their study:

Examples.

1. The all-nearest-neighbor problem.

All nearest neighbor pairs can be found in \(O(n \log n) \) time (worst-case) (Lipton and Tarjan, 1977). Weide (1978) proposed a bucketing algorithm in
which for a given X_1, a "spiral search" is started in the bucket of X_1, and continues in neighboring cells, in a spiraling fashion, until no data point outside the buckets already checked can be closer to X_1 than the closest data point already found.

Bentley et. al. (1980) showed that Weide's algorithm halts in average time $O(n)$ when there exists a bounded open convex region B such that the density f of X_1 is 0 outside B and satisfies $0 \leq \inf f(x) \leq \sup f(x) < \infty$.

2. The Voronoi diagram.

The Voronoi diagram in \mathbb{R}^2 can be found in time $O(n \log n)$ (worst-case) (Shamos (1978), Horspool (1979), Brown (1979)). Bentley et. al. (1980) have a bucketing algorithm that uses spiral search and has some additional features. The Voronoi diagram can be found in average time $O(n)$ when $d=2$ and the density f of X_1 satisfies the condition of Example 1. From the Voronoi diagram, the convex hull can be obtained in linear time (Shamos, 1978).

3. The minimal spanning tree.

For a graph (V,E), Yao (1975) and Cheriton and Tarjan (1976) give algorithms for finding the minimal spanning tree (MST) in worst-case time $O(|E| \log \log |V|)$. The Euclidean minimal spanning tree (EMST) of n points in \mathbb{R}^d can therefore be obtained in $O(n \log \log n)$ time if we can find a supergraph of the EMST with $O(n)$ edges in $O(n \log \log n)$ time. Yao (1977) suggested to find the nearest neighbor of each point in a critical number of directions; the resulting graph has $O(n)$ edges and contains the MST. This nearest neighbor search can be done by a slight modification of the algorithm in Example 1. Hence, the EMST can be found in average time $O(n \log \log n)$ for any d and for all distributions given in Example 1. The situation is a bit better in \mathbb{R}^2. We can find a planar supergraph of the EMST in average time $O(n)$ (such as the Delaunay triangulation (the dual of the Voronoi diagram), the Gabriel graph, etc.) and then apply Cheriton and Tarjan’s (1976) $O(n)$ algorithm for finding the MST of a planar graph.

Thus, in \mathbb{R}^2 and for the class of distributions given in Example 1, we can find the EMST in linear average time. End of examples.

Finally, we should mention a third group of bucketing algorithms, where special buckets are selected based upon a global evaluation of the contents of the bucket. For example, assume that not more than n buckets are selected according to some criterion (from the approximately n original buckets) in time $O(n)$, and that only the data points within the selected buckets are considered for further processing. If N is the number of selected points, then we assume that “further processing” takes time $O(g(N))$ for a given function g. Because the global evaluation procedure is not specified, we should assume the worst case, and this leads to the study of the order statistics of the cardinalities of the buckets. The following results can be found in Devroye (1986b). When M is the maximum of n i.i.d. Poisson (1) random variables, then $E(N) \sim \log n / \log \log n$. The same is true if M is the maximum of N_1, \ldots, N_n, where N_i is the cardinality of $[1, \frac{1}{n}]$ and the data is U_1, \ldots, U_n, a sequence of i.i.d. uniform (0,1) random variables. Using tight bounds on the upper and lower tails of M, one can show that

$$E(g(N)) \sim g(a \frac{\log n}{\log \log n})$$

where $a \geq 1$, g is nondecreasing, $g(x)=0(1+x^\beta)$ (some $\beta > 0$), $\sup E(a(x)) = \sup g(x)$ (all $c > 1$), and the $x \to 0 g(x)$.

X_1’s have a bounded density f with compact support.

Example. The convex hull in \mathbb{R}^2.

Shamos (1979) suggested to construct the convex hull in \mathbb{R}^2 in the following fashion: mark all the nonempty extremal buckets in each row and column (the extremes are taken in the northern and southern directions for a column, and eastern and western directions for a row); mark all the adjacent buckets in the same rows and columns; apply Graham’s $O(n \log n)$ convex hull algorithms to all the points in the marked buckets. It is clear that $a = O(n \log n)$ and that the average time of the algorithm is $O(n) + O(E(g(N)) = O(n \log n)$. This is

$$O(n) + O\left(\frac{n^2}{\log \log n} \right) = O(n).$$

Furthermore, the average time spent on determining the bucket memberships divided by the total average time tends to 1. End of example.

3. THE DIVIDE-AND-CONQUER PRINCIPLE.

A problem of size n can often be split into two similar subproblems of size approximately equal to $n/2$, and so forth, until subproblems are obtained of constant size for which the solutions are trivially known. For example, quicksort (Sedgewick (1977, 1978)) is based on this principle. The average time here is $O(n \log n)$, but, unfortunately, since the sizes of the subproblems in quicksort can take values $0,1,2,\ldots$, with equal probabilities, the worst-case complexity is $O(n^2)$. One can start in the other direction with about n equal-sized small problems, and marry subproblems in a pairwise manner as in mergesort. Because of the controlled subproblem size, the worst-case complexity becomes $O(n \log n)$ (Knuth, 1979). Both principles will be referred to as divide-and-conquer principles. They have numerous applications in computational geometry with often considerable savings in average time. The first general discussion of their value in the design of fast average time algorithms can be found in Bentley and Shamos (1978).
Let us analyze the divide-and-conquer algorithms more formally. Assume that \(X_1, \ldots, X_n \) are \(\mathbb{R}^d \)-valued independent random vectors with common distribution, and that we are asked to find \(\mathcal{A}_n = A(X_1, \ldots, X_n) \), a subset of \(X_1, \ldots, X_n \), where \(A(\cdot) \) satisfies:

1. \[A(x_1, \ldots, x_n) = A(x_1, \ldots, x_n), \text{ for all } x_1, \ldots, x_n \in \mathbb{R}^d, \text{ and all permutations } \sigma(1), \ldots, \sigma(n) \text{ of } 1, \ldots, n. \]
2. \[x_i \in A(x_1, \ldots, x_n) = x_i \in A(x_1, \ldots, x_i) \text{ for all } x_1, \ldots, x_n \in \mathbb{R}^d, \text{ and all } i \leq n. \]

The convex hull satisfies these requirements. If \(Q_1(x), \ldots, Q_2^n(x) \) are the open quadrants centered at \(x \in \mathbb{R}^d \), then we say that \(X_i \) is a maximal vector of \(X_1, \ldots, X_n \) if some quadrant centered at \(X_i \) is empty (i.e., contains no \(X_j \), \(j \neq i \), \(j \leq n \)). The set of maximal vectors also satisfies the given requirements. Let \(N = \text{cardinality}(A_n) \). For \(p \geq 1 \), we know by Jensen's inequality that

\[E(N^p) \geq (E(N))^p. \]

In the present context, we would like an inequality in the opposite direction. For random sets \(A_n \) satisfying 1) and 2), and under very weak conditions on the behavior of \(E(N) \), we have

\[E(N^p) = O((E(N))^p). \]

(Devroye, 1981c). For example, it suffices that \(E(N) \) is nondecreasing, or that \(E(N) \) is regularly varying at infinity. Also, if \(E(N) \leq a_n \), then \(E(N^p) = O(a_n^p) \). In essence, the results of Devroye (1981c) imply that under weak conditions on the distribution of \(X_1 \)

\[E(N^p) \text{ and } (E(N))^p \text{ are comparable. The same is true for other nonlinear functions of } N. \]

For example, if \(E(N) \leq a_n \), then \(E(N \log(N+n)) = O(n \log a_n) \). Thus the knowledge of \(E(N) \) allows us to make statements about other moments of \(N \). Here are some known results about \(E(N) \).

Examples. 1. \(A_n \) is the convex hull. \(X_1 \) has a density \(f \).

(i) \(E(N) = o(n) \) (Devroye, 1981d).

(ii) If \(f \) is normal, then \(E(N) = O((\log n)^{(d-1)/2}) \) (Raynaud, 1970). For \(d=2 \), \(E(N) \approx 2\sqrt{\pi} \log n \) (Renyi and Sulanke, 1963, 1964).

(iii) If \(f \) is the uniform density in the unit hypersphere of \(\mathbb{R}^d \), then \(E(N) = 0(n^{(d-1)/(d+1)}) \) (Raynaud, 1970).

(iv) If \(f \) is the uniform density on a polygon of \(\mathbb{R}^2 \) with \(k \) vertices, then \(E(N) \sim \frac{2k}{3} \log n \) (Renyi and Sulanke, 1963, 1968).

(v) If \(f \) is a radial density, see Carnal (1970). For example, if \(f \) is radial, and \(P(||X_1|| > u) = L(u)/u^r \) where \(r \geq 0 \) and \(L \) is slowly varying (i.e., \(L(cx)/L(x) \rightarrow 1 \) as \(x \rightarrow \infty \), all \(c > 0 \)), then \(E(N) = c(r) > 0 \). If \(P(||X_1|| > u) \sim c(1-u)^r \) for some \(c, r > 0 \) as \(u \rightarrow 1 \), and \(P(||X_1|| > 1) = 0 \), then \(E(N) \sim c(r) n^{1/(2r+1)} \) for some \(c(r) > 0 \).

2. \(A_n \) is the set of maximal vectors.

When \(X_1 \) has a density and the components of \(X_1 \) are independent then \(E(N) \) is nondecreasing (Devroye, 1980) and \(E(N) \sim n^{2k} (\log n)^{d-1}/(d-1)! \) (Barndorff-Nielsen, 1966; Devroye, 1980).

End of examples.

\(A_n \) can be found by the following merging method. Assume for the sake of simplicity that \(n = 2^k \) for some integer \(k > 1 \).

1. Let \(A_1 = A(X_1), 1 \leq i \leq n \). Set \(j = 1 \).

2. Merge consecutive \(A_j \)'s in a pairwise manner \((A_{j1}, A_{j2}, A_{j3}, A_{j4}, \ldots) \).

3. Set \(j = j+1 \). If \(j > k \), terminate the algorithm \((A_n = A_{k1}) \). Otherwise, go to 2.

We assume that merging and editing of \(A_{j1} \) and \(A_{j1+1} \) with cardinalities \(k_1 \) and \(k_2 \) can be done in time bounded from above by \(g(k_1) + g(k_2) \) for some nondecreasing positive-valued function \(g \), and that \(E(g(n)) \leq b_n \), where, as before, \(N = \text{cardinality}(A_n) \). Then the given algorithm finds \(A_n \) in average time

\[\sum_{j=1}^{2n} \frac{b_j}{j^2}. \]

If the merging and editing take time bounded from below by \(a_1(g(k_1) + g(k_2)) \) and \(E(g(N)) \geq b_n \), where \(g \) and \(b_n \) are as defined above, and \(a, s > 0 \) are constants, then we take at least

\[\sum_{j=1}^{\gamma n} \frac{b_j}{j^2}. \]

average time for some \(\gamma > 0 \) and all \(n \) large enough (Devroye, 1981c). Thus, the divide-and-
conquer method finds \(A_n \) in linear average time if and only if
\[
\sum_{j=1}^{\infty} b_j / j^2 < \infty.
\]

Examples.

1. **The set of maximal vectors.**
 Merging of two sets of maximal vectors can be achieved in quadratic time by pairwise comparisons, for any dimension \(d \). We can thus take \(g(u) = u^2 \) in the previous analysis if we merge in this way. If \(E(N) = o(n) \) and \(n \rightarrow \infty \), then we can check that the divide-and-conquer algorithm runs in linear average time if and only if
\[
\sum_{j=1}^{\infty} a_j / j^2 < \infty.
\]

2. **Convex hulls in \(R^2 \).**
 Two convex hulls with ordered vertices can be merged in linear time into a convex hull with ordered vertices (Shamos, 1978). Thus, if \(E(N) = O(n^2) \) and \(n \rightarrow \infty \), then
\[
\sum_{j=1}^{\infty} a_j / j^2 < \infty \quad (2)
\]
is sufficient for the linear average time behavior of the divide-and-conquer algorithm given here. When \(\lim \inf E(N)/n > 0 \), then (2) is also necessary for linear average time behavior. Notice here that (2) is satisfied when, say, \(a_n = n/\log n \) or \(a_n = n/(\log n)^{1+\delta} \) for some \(\delta > 0 \). This improves the sufficient condition \(a_n = n^{1-\delta} \), \(n \rightarrow \infty \), given in Bentley and Shamos (1978).

3. **Convex hulls in \(R^d \).**
 Merging can trivially be achieved in polynomial \((d+1)n\) time for two convex hulls with total number of vertices equal to \(n \). When \(E(N) = o(n) \) and
\[
\sum_{j=1}^{\infty} a_{j+1} / j^2 < \infty,
\]
we can achieve linear average time. This condition is fulfilled for the normal density in \(R^d \) and the uniform density on any hypercube of \(R^d \). End of examples.

4. **THE QUICK ELIMINATION (THROW-AWAY) PRINCIPLE.**
 In extremal problems (e.g., find the convex hull, find the minimal covering ellipse, etc.) many of the data points can be eliminated from further considerations without much work. The remaining data points then enter the more involved portion of the algorithm. Often the worst-case time of these elimination algorithms is equal to the worst-case time of the second part of the algorithm used on all \(n \) data points. The average time is sometimes considerably smaller than the worst-case time. We illustrate this once again on our prototype problem of finding the convex hull.

Examples.

1. **The convex hull.**
 Assume that we seek the extrema \(e_1, \ldots, e_m \) in \(m \) carefully chosen directions of \(R^d \), form the polyhedron \(P \) formed by these extrema, and eliminate all \(X_i \)'s that belong to the interior of the extremal polyhedron \(P \). The remaining \(X_i \)'s are then processed by a simple worst-case \(O(g(n)) \) convex hull algorithm. What can we say about the average time of these algorithms? An average time of \(o(g(n)) \) would indicate that the elimination procedure is worthwhile on large data sequences. We could also say that the elimination procedure achieves 100% asymptotic efficiency. In Devroye (1981d) it is shown that this happens when (i) the open halfspaces defined by the hyperplanes through the origin perpendicular to the \(e_i \)'s cover \(R^d \) except possibly the origin; and (ii) \(X_1 \) has a radial density \(f \), where
 \[
a(u) = \inf \{ \tau : P(\|X_1\| > \tau) = u \}
\]
is slowly varying at 0 \((\lim a(tu)/a(t) = 1, \text{ } t \downarrow 0)\) all \(u > 0 \), and \(a(u) \rightarrow \infty \) as \(u \rightarrow 0 \). Condition (i) holds when the \(e_i \)'s are determined by the \(d+1 \) vertices of the regular \((d+1)\)-vertex simplex in \(R^d \) centered at the origin. One could also take 2d directions defined by \((0,0, \ldots, 0,\pm 1), \text{ etc.} \). Condition (ii) is satisfied by the normal density and a class of radial exponential densities (Johnson and Kotz, 1972, pp. 298). The previous result can be sharpened in specific instances. For example, if \(f \) is normal, \(g(n) = n \) \(log n \), and (i) holds, then the average time is \(O(n) \). Furthermore, the average time spent by the algorithm excluding the elimination is \(o(n) \) (Devroye, 1981d).

When \(d=2 \) and \(f \) is bounded away from 0 and infinity on a nondegenerate rectangle of \(R^2 \) (elsewhere), and \(e_1, \ldots, e_8 \) are equi-spaced directions, then the average time of the elimination algorithm is \(O(n) \) even when \(g(n) = n^2 \) (Devroye and Toussaint, 1981).

Eddy (1977) has given a slightly different elimination algorithm in which the number of
directions and the directions themselves depend upon the data. Akl and Toussaint (1978) report
that in \(R^2 \), for certain distributions, almost all elimination algorithms achieve extremely
fast average times provided that \(e_1, \ldots, e_m \) are
easily computed (e.g., they are axial or diagonal
directions.)

2. Finding a simple superset.

Assume that we wish to find \(A_n = \{X_1, \ldots, X_n\} \)
in the following manner: (i) Find a set
\(B_n = \{X_1, \ldots, X_m\} \) where \(B_n \) is guaranteed to
contain \(A_n \), in average time \(T_n \); (ii) Given
that the cardinality \(|B_n| \) is equal to \(n \), find
\(A_n \) from \(B_n \) in worst-case time bounded by \(g(n) \).

Note that the average time of the entire elimina-
tion algorithm is bounded by

\[T_n + E(g(n)). \]

2.1. \(A_n \) is the convex hull, \(B_n \) is the set of
maximal vectors.

We discussed some distributions for which \(T_n = O(n) \).

In \(R^2 \), step (ii) can be executed with \(g(n) = n^2 \)
(Jarvis' algorithm, 1973) or \(g(n) = n \log n \)
(Graham's algorithm, 1972). Thus, the entire
algorithm takes average time \(O(n) \) when
\[E(n \log n) = O(n) \text{ or } E(n^2) = O(n) \text{, according to } \]
the algorithm selected in step (ii). When the
components of \(X_1 \) are independent and \(X_1 \) has
a density, then these conditions are satisfied by the
results of Devroye (1980, 1981c) given in
Section 3. The linearity is not lost in this case in
\(R^d \) even when \(g(n) = n^{d+1} \) in step (ii).

2.2. \(A_n \) is the diameter of \(X_1, \ldots, X_n \); \(B_n \) is
the convex hull.

\[A_n = \{X_i, X_j\} \] is called a diameter of \(X_1, \ldots, X_n \)
when \(\|X_i - X_j\| \leq \|X_k - X_m\| \) for all
\[1 \leq k \leq m \leq n \text{, } (k, m) \notin \{(i, j)\}. \]

Given \(B_n \), some
\(A_n \) can be found by comparing all \(\binom{n}{2} \) distances
between points in \(B_n \) (see Bhattacharya (1980)
for an in-depth treatment of the diameter problem,
and a survey of earlier results). But \(B_n \) can
be found in linear average time for many distri-
butions. In such cases, our trivial diameter
algorithm runs in linear average time provided
that \(E(N) = O(\sqrt{n}) \). Assume for example that \(f \)
is the uniform density in the unit hypersphere of
\(R^d \), then the trivial diameter algorithm runs in
linear average time if and only if (i) the convex
hull can be found in linear average time, and
(ii) \(d \leq 3 \) (section 3, example 1 (iiii)).

2.3. \(A_n \) is the minimum covering circle, \(B_n \) is
the convex hull.

The minimum area circle in \(R^2 \) covering
\(X_1, \ldots, X_n \) has either three convex hull points
on its perimeter, or has a diameter determined
by two convex hull points. Again, it can be
found (trivially) from the convex hull in
worst-case time \(O(n^2) \) (see Ehring and Hearn
(1972, 1974), Francis (1974) and Shamos (1978)
for \(O(n) \) algorithms and subsequent discus-
sions). Thus, \(A_n \) can be identified in linear
average time if the convex hull \(B_n \) can be
found in linear average time, and if \(E(N) =
O(\sqrt{n}) \) (or \(O(n^{1/4}) \), if the trivial algorithm
is used).

5. REFERENCES.

algorithms: a survey", Department of
Computing and Information Science, Queen's

hull algorithm", Information Processing

the convex hull of a set of points",
Technical Report SOCS 79.2, School of
Computer Science, McGill University,
Montreal, 1979.

distribution of the number of admissible
points in a vector random sample",
Theory of Probability and its Applications,

for range searching", Computing

conquer for linear expected time",
Information Processing Letters, vol. 7,

"Optimal expected-time algorithms for
closest point problems", ACM Transac-
tions of Mathematical Software, vol. 6,

[8] B. BHATTACHARYA: "Applications of computa-
tional geometry to pattern recognition
problems", Ph.D. Dissertation, McGill
University, Montreal, 1980.

hulls", Information Processing Letters,

[10] H. CARNAL: "Die konvexe Hüllle von n
rotationssymmetrischen verteilten Punkten",
Zeitschrift für Wahrscheinlichkeitstheorie
und verwandte Gebiete, vol. 15, pp. 168-
176, 1970.

spanning trees", SIAM Journal of Computing,