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Introduction.

The object of this paper is to discuss efficient methods for the generation of random
variates for the digamma and trigamma distributions introduced by Sibuya (1979). In the
process, we obtain efficient algorithms for a variety of distributions including the discrete stable
distribution. The key to these distributions is the versatile generalized hypergeometric family

of type B3, or GHgB3, which is a discrete distribution on the nonnegative integers defined by

Tt alb+e)  (a).(),
" Tla+b+c)l(c)nl(a+b+c),

(n > 0),

where (a),, is Pochhammer’s symbol defined by

(a)n:M:{“(aJrl)---(aJrn—l) (n>1)

I'(a) 1 (n=0).

and a, b, ¢ are positive parameters of the distribution. Other names for the distribution include
the inverse Pélya-Eggenberger distribution (Johnson and Kotz, 1982), the generalized Waring
distribution (Irwin, 1965, 1968, 1975), and the negative binomial beta distribution. Special
cases include the Yule distribution (Simon, 1954, 1960) obtained for a = b = 1, the Mizutani
distribution (Mizutani, 1953) obtained for b = ¢ = 1 and the Waring distribution, obtained
fora =1lorb=1 Fora=1,b=k—r+1,¢c=r—1, withr > k > 2 all integer, we
obtain the factorial distribution (also called beta-Pascal distribution) of Marlow (1965). Sibuya
(1979) introduced a simple rejection method for generating digamma random variates based
upon the closeness to the GHgB3 distribution. His algorithm is not uniformly fast over the
entire parameter space. In this paper, we present a host of digamma generators that halt in

expected time uniformly bounded over all choices of the parameters.



The GHgB3 distribution.

From Sibuya (1979), Shimizu (1968) and Sibuya and Shimizu (1981) we recall the fol-

lowing;:

A. The distribution is unimodal with a mode at m = |(a—1)(b—1)/(c+1)]|. If m is integer,

a second mode at m — 1 may occur.

B. For ¢ > r, the r-th factorial moment is given by EX(") = (a),.(b),/(c — 1)), where u(")

denotes the r-th descending factorial.

C. The mean p is given by ab/(c—1),if ¢ > 1. The varianceis p(1+ (u+a+b+1)/(c—2)) if
¢ > 2. Note: I think this is wrong. It should be p(1+ab/(c—2)+(a+b+1)(c—1)/(c—2)).
This is a good exercise, by the way.

D. The distribution is log-convex and J-shaped if

—(a—l)(b—l) <0 and —(CH—C)(IH_C) >0.
a+b+c—1 a+b+c—1

E. As n — oo, p, ~ ¢'n=1*¢) for some constant c'.

Random variate generation for the GHgB3 distribution.

By NB(a, p) we denote the negative binomial distribution defined by the probabilities

Pa = (G+Z_ 1)17”(1 —p)"(n>0),

where a > 0. Similarly, Po()\) is the Poisson distribution with parameter A\, Gamma(a, ¢) is the
gamma distribution with parameters a,c, Beta(a,b) is the beta distribution with parameters
a,b, and Bell (b, c) is the beta distribution of the second kind with density given by

b—1
(14 x)bte

In all these cases, A, a,b and c are positive. We have the following distributional identities:

f(x) =B *(b,c) (z>0).

GHgB3 £ NB (a, =) A Bell (b, c)

? 14c c

I

Po ()) A Gamma (a,c) A Bell (b, ¢)

I~

Gamma(b, 1)
Po ()\) /}\\ Gamma ((I,C) /C\ m

I

Gamma(a, 1)Gamma(b, 1)
Po () A Gamma(c, 1) '
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It is easy to see that random variates with the GHgB3 distribution can be obtained in uniformly
bounded time using one of the distributional identities given above. For all the distributions
listed, efficient algorithms are available; for a survey and development of some algorithms,
see Devroye (1986). For the negative binomial distribution, one could also consult Pokhodzei
(1985). Good Poisson generators are given in Schmeiser and Kachitvichyanukul (1981), Ahrens
and Dieter (1982) and Stadlober (1990). Efficient gamma generators are given in Marsaglia
(1977), Best (1978), Cheng and Feast (1979, 1980), Ahrens and Dieter (1982), Ahrens, Kohrt
and Dieter (1983) and Le Minh (1988).

Random variate generation for the digamma distribution.

The digamma distribution (Sibuya, 1979) with parameters a,c > 0 is defined by the
probabilities
(@)n 1
n(a+c), ¥(a+c)—1(c)
We will write DI(a, ¢) when no confusion is possible. We recall that ¢ is the standard psi-function

d IM(x)

¥la) = o108l (@) = Ty

(n>1).

Pn =

1. SIBUYA’S GENERATOR. Sibuya (1979, p. 384) proposed the following generator based upon

rejection from a GHgB3 random variate:

Sibuya’s rejection method from a GHgB3 variate.

repeat
Generate X as 1 plus a GHgB3(l,a+ 1,c— 1) random variate.
Generate U uniformly on [0,1].

until U < 1/X.

return X.



PROPERTY 1. Sibuya’s algorithm is valid for all ¢ > 1. The expected number of iterations (N )

before halting is
a < a+c

(c=D(Wlatc) =) ~c—1"

For fixed ¢ > 1, as a — oo, we have

EN =

a
EN~w—
(c—1)loga >

PROOF. Before acceptance/rejection, X has a distribution given by the probabilities

at  D(c)l'(a+c) (Dn—1(@a+1)ps
" TlaterDl(c—1) (atet 1) (n—1)

n>1).

After acceptance, the returned X has a distribution with p, % P{X = n} given by the formula

Bp, = q./n
where R is a constant picked to make the p,’s sum to one. The latter statement follows from
the form of the acceptance condition. It is easy to verify that we can choose the p,’s as the
DI(a, c) probabilities and that
c—1
a

R =

(Y(a+c) =9(c) -
This follows by noting that
¢ c—11Tm)l(a+n)l(a+c+1)

a+cn! T(DD(a+ D)l(a +c+n)
c—1 T(a+n)T'(a+c)

n Ia+1DI'(a+c+n)
c—1 (a),

an (a+c),

= L (lat o)~ p(O)p.

The expected number of iterations before halting is precisely 1/R. The statements about EN

follow without work from the Lemmas shown below. []

LeEMMA 1. I is log-convex. Thus, logI'(c + ) —logI'(z) > cip(x) for ¢ > 0. Also, v is concave
and strictly increasing on [0, c0). We have

1 1
> —1 > .
02 y(@) —logrt 5> 55

Furthermore, v is convex and strictly decreasing on [0,00). For x > 0,

, 11 , 1
0<W(@)—- < and W(@)> ;.



Finally, for ¢,z > 0, we have

' (x) 2 ¢(x+c) —P(x) 2 e (z +¢) .

ProoOF. For most properties, we refer to Whittaker and Watson (1927). For the inequalities
involving 1, we begin with the following equality from Whittaker and Watson (1927, p.251):

1 o0 t
V(o) = logta) = 52 =2 | i

The upper bound for 3 follows without work from this. The lower bound is obtained by noting

that . .
o t o° t
dt < — dt = .
/0 & +22) (e — 1) — 22 /0 (e — 1) 2472

The inequalities for ¢’ are obtained from an equality involving the generalized zeta function
found on p.250 of Whittaker and Watson (1927):

V@) =Y o 2

Clearly,
1 o 1
- = ——dt <’
. /0 @i sv@

<1+/°° I U
—22 Jy, (@+t)2 T 22 oz

The last inequalities in the Lemma can be deduced from the concavity of ¢. [

LeEMMA 2.
dlate) —th(e) = .
Furthermore,
dlata)—vie) 2 log (“12)
Finally,
Y+ =00 2 s



ProoF. The first inequality follows rather easily from Lemma 1. The second inequality is
immediate from the integral representation of ¢ given in the second sentence of the proof of
Lemma 1. The third inequality follows from the fact that ¢'(x) > 1/2* (Lemma 1), and that

a+tc a+tc
vlatd-v@ = [ vy [ yray=-

a+c’

Per iteration, Sibuya’s method uses one GHgB3 random variate. Moreover, no costly
function evaluations are necessary. Unfortunately, Sibuya’s algorithm can only be used if ¢ > 1.
Also, even if ¢ > 1, the expected time is unbounded if we let a T oo while keeping ¢ fixed. In
summary, the algorithm operates well when a + ¢ is relatively small compared to ¢ — 1. We also
note that EN = pu, the mean of the distribution. Thus, whenever Sibuya’s algorithm is fast, i

is small, i.e., the distribution is concentrated near the mode and short-tailed.

2. A SIMPLE REJECTION ALGORITHM. It is possible to modify Sibuya’s algorithm very slightly

to make it more universally useful.

Rejection from a GHgB3 variate.

repeat
Generate X as 1 plus a GHgB3 (a,1,c¢) random variate.
Generate a uniform [0,1] random variate U.

until U < (a+ X —1)/(max(a,1)X)

return X

Let us justify this method first. Define A = ¢(a+c)—1(c), and let p,, be the DI(a, ¢) probability.
Noting that before the acceptance/rejection step, X is a GHgB3 (a, 1, ¢) random variate shifted
by one, we see that its law is governed by the probabilities
aer A+l (a+¢)  (Du-i(a)n (n>1)
Fla+c+1)I'(c) (a+c+1),1(n—=1)! " —
= ° (@ (n>1)
(a4+c)(a+c+1),
c (a)n—1 (
(a+c+n—1)(a+c)p
cAn (@)n—1(a+c),
a + C + n — 1) (a/)n(a/ + C)n—l
cAn
—p, " 1
PrlatnoT) )

n

n>1)

(n>1)
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We see that

Pn { i when a < 1 (reached as n — o)

sup — =
P In % when a > 1 (reached as n = 1)
_ max(a, 1)
A

Thus, the random variate X in the algorithm should be accepted with probability (a + X —
1)/(X max(a,1)).

PROPERTY 2. The expected number of iterations (EN) is given by

_ max(a,1) max(a, 1)
BN =8 T et _4@)

Also,
EN <max(1l,a)min(1,1/c) + maz(1,1/a) min(1,c) .

ProoF. By Lemma 2,
1 < c+a

A S m = (1/a) min(1,¢) + min(1,1/c) . O

REMARK 1. Since min(a,1) < ¢A < max(a, 1), the rejection constant does not exceed

max(a, 1/a). For fixed a, the algorithm is uniformly fast in ¢. [J

REMARK 2. For a =1, there is no rejection. This implies that
DI(1,¢) £ 1+ GHgB3(1,1,¢) £ 1 + Po(A)AEE'/G. ,

where E, E' are independent exponential random variables, and G, is a gamma(c) random
variable. In other words, we recover the fact that a digamma(1, ¢) random variable is distributed

as one plus a Yule(c) random variable Y, where

e+ Dn!  cn!
P = = favery ~ Aro., 200




3. REJECTION WITH TWO DOMINATING CURVES: CASE a > c+1. We will use a slightly more
sophisticated dominating curve, taking into account the following inequalities:
1
nA
Pn < a+n*

where n* is an integer to be picked further on, and ¢, is the probability that one plus a
GHgB3(a, 1,¢) random variate is n. Note that the second bound requires a > 1. To sim-

plify the design of the rejection algorithm, we will replace the first upper bound by one that is

about log 2 looser. Define the following quantities:
t=(a—1)fc;
u = [log,t] ;

n*=2""—1.
The condition @ > c+ 1 assures that v > 0 and ¢ > 1. For 1 < n < n*, we employ the inequality
< 1
Pr = "Nollogsn] -
This has two advantages: first, the sum of the values of the upper bound taken between 1 and

*

n* is simply (v + 1)/A. Secondly, a random variate with probability vector proportional to the

upper bound can be generated by an alias method trick shown on pages 111-112 of Devroye
(1986). For u > 0, proceed as follows:

Generator for the semi-harmonic distribution on {1,...,n*}.
Generate Y uniformly on {0,1,2,...,u}.

Generate X uniformly on {2¥,... 2VF1 —1}.

return X

The joint algorithm is as follows:



[Set-up]

t=(a—-1)/c

u = [log, ]

n* =2t —1

A +—la+c)—(c)

w4 L, 2 (a+n7)/(cA(n* + 1))

[Generator]

repeat
Generate U uniformly on [0,1].
it U <w/(w+ z)

then Generate X with the semi-harmonic distribution on {I,...

(Generate Y uniformly on {0,1,2,...,u}.)

(Generate X uniformly on {2¥ ... 2Y*' —1}.)
Generate a uniform [0,1] random variate V.
W« V/(A2Y) .

Accept + [W < px].
(Equivalently, Accept + [V <2Y(a)x/(X(a+¢)x)]. )
else Generate Y with the GHgB3(a,l,c) distribution

Set X+ Y +1.
Generate a uniform [0,1] random variate V.

Accept + (X >n*|N[Vz<(a+ X —1)/(cAX)].
until Accept

return X

PRrROPERTY 3. Ifa>c+ 1 and a/c > e — 1, then
EN <log,e+3,

where EN is the expected number of iterations.

10
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ProoOF. The rejection constant EN is

u+1 N a+n* UogQ(“;l)J—i-l +a+2““—1
A cA(n*+1) A cA2ut!
log, (=) +1 1 a—1

< == c /4

- A + cA + cA2utl

log,(a — 1) —log,c+1 +i+l
log(a + ¢) — logec cA A
1

1
<log,e+ 1+ —+—.
sloget i+ T+ 3

We recall that in general ¢A > min(a,1). Also, from Lemma 2, A > log((a + ¢)/c) > 1 if

a/c > e — 1. Thus,
EN <log,e+3 .0

We conclude that the expected number of iterations of the above algorithm is uniformly

bounded over all (a,c) with a > ¢+ 1 and a/c > e — 1. The disadvantage is that at one point

we need to evaluate gamma functions (see [W < px]).

4. A SPECIAL METHOD FOR SMALL VALUES OF a. We begin with the following inequality:

LEMMA 3.

where

def a [(a + ¢)e/(2latD) e/ (12(a+1)%)
Ala+ec)’ ['(a)A

11



ProOOF. For n = 1, we note that
a

Ala+c)’
so that the inequality is verified. For n > 2, we note the following chain of inequalities: Applying
Lemma 1, we have

P =

(@)n

P = n(a + ¢),A
~ Tla+n)l'(a+c)
- T(a)T(a+c+n)nA
_Tla+c¢) atetn
- F(CL)TLA €Xp (_ /a-l—n ¢(y) dy
F(a+c)
<" 7 —
< Ton e (~cbla-+ )

(This uses the fact that a +n > 2.)
I'(a+c) —c_c/2(atn) je/(12(atn)?)
F(a)nA(a+n) e e

< D
— n1+c U

The bound of Lemma 3 suggests the use of the rejection method with dominating density
c

@) = @2 1),

which has distribution function F(z) = 1 — 1/z°. To obtain the proper rejection constant, we
require

SUp ————— = sup —

Weaponed with the inequality

D (n + 1) e def 21+ep
- .

pn <A inf f(x),

n<z<n+l

we can apply the following rejection algorithm.

12



repeat
Generate U,V uniformly on [0,1].
Y« 1/(1-U)Ye
X« |Y]
W« VAf(Y)=V(2/Y)'"D
until W < py

return X

PROPERTY 4. For the algorithm shown above,
EN =2'""D/c.

EN is uniformly bounded over all a € (0,ao] and ¢ € (0, ¢o] where ay and ¢, are finite constants.

ProoF. Note that 2'7¢ is bounded over the given domain. So, we need only establish the

uniform boundedness of
def a

[
Ac(a + ¢)

and
der I'(a + C)ec/(2(a+1))ec/(12(a+1)2)

17 =
I'(a)cA
But I < 1 by Lemma 2. The two exponents in I are uniformly bounded. Using the same

inequality for A once more, we see that
I'(a+c) < (at+c)l(atc) T(a+c+1)

C(a)eA — al'(a) - T(a+1)

which is bounded in a uniform manner over the given collection of parameters. []

5. OTHER METHODS. Sibuya (1979, Theorem 4) pointed out that a digamma (a,c) random
variate is distributed like a logarithmic series variate with parameter 1 — Y, where Y is end-
accented-beta, a distribution with a density related to the beta density. The generation of a
random variate with the latter distribution seems to be about as hard as the direct generation
of digamma variates, so this detour does not seem to be promising for good speed. Noting that
P, is |, one can also employ a general algorithm for monotonically decreasing densities when

the first moment g is known:
a

ST

13



The general rejection method of Devroye (1986, p.313) when applied to discrete distributions
leads to the inequality
2p

(

nn+1) n>1).

Pn <
If this bound is used in a rejection algorithm, the expected number of iterations is given by

EN =2, <2%7¢
c—1

Not unexpectedly, this algorithm is comparable to and worse than the algorithm of section 1
that was specifically designed for the digamma distribution. For the sake of completeness, here

is the algorithm:

repeat
Generate uniform [0,1] random variates U,V .
Set X « [1/U].

until 2pV/(X(X +1)) <px.

return X

Finally, the inversion of a uniform random variate based upon on-line computations of

Pny1  G+N M

Pn a+n+cn+1

leads to a time complexity that grows as p as well. Again, this is of the same order of magnitude

as the previous algorithm.

14



Generate a uniform [0,1] random variate U.

[3K4

Peplzm (P denotes ‘‘probability’’.)
S+ P. (S stands for ‘‘sum’’.)
X+ 1.
while U > S do
P+ PX(a+X)/(X+1(a+X +0).
S+ S+P.
X+~ X +1.

return X

15



6. COMPARISON OF THE ALGORITHMS. In figure 1, we show the areas in the parameter space
in which the algorithms of this paper are dominant. Taken together, the different properties
show that min(EN,, EN,, EN;, EN,) remains uniformly bounded over all values of a, ¢, where
N; denotes the expected number of iterations of the rejection algorithm of section ¢. More often
than not, users will be interested in particular areas of the parameter space, so that one or
two methods suffice to obtain good expected time. Figure 1 was obtained by computing all the
values EN; at points of the grid defined by a = 2%, ¢ = 2!, with k and [ integers drawn from
{—5,...,5}. Between grid points, we just drew rough polygonal approximations. Interestingly,
at the 121 grid points, the best value of EN; was less than 2 except for those points in the region
dominated by the method of section 4, where the values were between 2 and 4.42. Over that
grid, the maximum for the minimal EN; was 4.413269612, observed at a = 1/8, ¢ = 1. Note also
that in some cases, one can establish the dominance of one method over another theoretically.
For example, method 1 is dominated by method 2 when a > 1 — 1/¢, which explains the shape

of the boundary between these methods.

16



Algorithm of section 2

Algorithm of
7 section 4

] ] ] ] ]
- - -1 0 1 2 3 4 5

a
ES
&
n

Figure 1. Regions of dominance of algorithms are shown.

Figure 1.
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Random variate generation for Sibuya’s trigamma distribution.

Sibuya’s trigamma distribution with parameter ¢ > 0 is obtained from the digamma
distribution by letting a | 0. The probabilities are given by

(n—1)!
= e, Y
The mean is p = 1/(¢/'(¢)(c — 1)). In the plane of the parameters of the digamma distribution,
the trigamma occupies the z-axis. Thus, two algorithms immediately impose themselves. We
will give the algorithms and their analyses without providing the rather trivial details. The first

algorithm is more efficient than thex second one for ¢ greater than about 1.14.

Trigamma generator for large values of c¢

repeat
Generate X as 1 plus a GHgB3(1l,1,c— 1) random variate.
(Note: X is distributed as Po(A) A\ EE'/G._;
where FE.F' are exponential random variables,
and G, ; is a gamma (¢ —1) random variable.)
Generate U uniformly on [0,1].
until U < 1/X.

return X.

PROPERTY 5. The algorithm is valid for ¢ > 1. The expected number of iterations (N ) before

halting is
1 c

c— Do) “e—1°

EN =

For the second algorithm, we require a simple inequality:

LEMMA 4.

where

18



Trigamma generator for small values of ¢

repeat
Generate U,V uniformly on [0,1].
Y« 1/(1-U)Ye
X« |Y]
W« V(2/Y)"*D
until W < px

return X

PROPERTY 6. For the algorithm shown above,
EN =2'"""D/c.

EN is uniformly bounded over all ¢ € (0, c] where ¢, is a finite constant.

Proor. Note that 2'7¢ is bounded over the given domain. So, we need only establish the

uniform boundedness of
det 1

'= a0

and
]—I dif F(C)ec/Qec/IQ
c'(c)

We have ¢'(¢) > 1/c¢*. Thus, I < 1. Also,

IT < cl'(c)e?e/*? =T (c+ 1)e™/*? . O

19



Relationship with the logarithmic series distribution.

Sibuya (1979, Theorem 4) pointed out that a digamma (a,c) random variable is dis-
tributed as a logarithmic series random variate with parameter 1 — Y, where Y itself is EABe
(c,a), the EABe (end-accented beta) distribution has density

(s log()
f(.’lf) _gc,a( )¢(C+(l)—¢(6)’

and g¢., is the beta density with parameters ¢ and a. Setting a = 0 in this recipe yields a

0<z <1,

trigamma random variate. The EABe (¢,0) density is

log(%)xﬁl 0<z<1

f@) = ——=7"——=,0<
NI
If X has EABe (c,0) density, then Z = log(1/X) has density

h(z) = ze= /(¥ (e)(1 —e77)) (2>0) .
We have 0/ .. <1
o< {EE@e s
(e/((e = Dey'(e)))eze (2> 1)
If we use rejection from the suggested truncated exponential on [0, 1], and from the gamma (2)
dominating curve elsewhere, then the rejection constant is
2(1 — &) e
+ <21 —e™%) +
@ e e <

Here we recall that ¢'(c) > max(1/e¢,1/¢*). Thus, random variates with density h can be

<2 .
e—17— +e—1

obtained in uniform time for all ¢ > 0. Random variate generation for the logarithmic series
distribution in time uniformly bounded over all parameters is discussed in section X.5.1 of
Devroye (1986).

The discrete stable distribution.

Steutel and Van Harn (1979) introduced the discrete stable family via the generating
function
g(s) = exp(=A(1 —s)7), [s| < 1,
where A > 0 and v € (0, 1] are two parameters. For v = 1, we obtain the Poisson distribution
with parameter A. Hansen (1988) pointed out that p, is log-convex if and only if Ay < 1 —
v; in those cases, we thus have a long-tailed distribution. Note also that the discrete stable

distribution is a compound Poisson distribution, so that random variates can be obtained as

z Zia

1<i<y

follows:

20



where Y is Poisson (), and Z;, Z,, ... arei.i.d. discrete random variables with generating function
h(s)=1—(1-s)".

This is best seen by noting that

o(s) = E(s") =B (H ) = B(E" (s")) = B(" () = X" = e 0=,
i<Y
If we can generate the Z;’s at unit expected time cost, then the expected time for this method is
the expected time needed to generate Y plus A. This is O(1+ ), since all known algorithms for
the Poisson distribution take expected time bounded by O(1+ A). From the binomial expansion,
we see immediately that the probabilities corresponding to the generating function h(s) are given
by

qnzv(l—v)--ﬁ(n—l—’v) :'Y(l—mv)nl (n>1).

We have ¢y = 0 and g¢; = . For v = 1, the distribution is monoatomic with ¢; = 1. Interestingly,
we can generate Z; as one plus a GHgB3 (1,1 — v,v) random variable (Sibuya, 1979). Thus,
the Z;’s are indeed available at a cost uniformly bounded over . Sibuya (1979) also pointed
out that the distribution determined by {g¢,} is the limit of a digamma (a,~) distribution as

a — —y. This is a case not considered above.

It is also possible to generate the Z;’s directly by the rejection method. We note that

dn+1 :”—7<1
qn n+1

Thus, ¢, | 0. Furthermore, the distribution is log-convex as it is easy to check that ¢ ; < ¢,120,
for all n > 1. This implies that the distribution is long-tailed, so a careful treatment is necessary.

A dominating curve can be obtained as follows:

n—1
v g Y H. T —vlogn g
n:_ll]-__. <—e 7t < —em TR = .
g nizl( z)_n -n nity

Here H, is the harmonic series 1 + 1 + % + .-+ L. This bound suggests a rejection algorithm
from a continuous distribution with density f proportional to min(vy,vy/z'*?) on [0,00). To

generate a random variate with density f, consult Devroye (1986). We thus have
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repeat
Generate X with density f, set Y « [X].
Generate a uniform [0,1] random variate U.
Set T <« U min(y,y/X').
IF T > /Y'Y
then Accept < False
else Accept « [T < gy]
until Accept

return Y.

In the algorithm shown above, the expected number of iterations is precisely 1 + . The only

technical point not covered yet is that of the evaluation of ¢,. To this end, we observe that

T —7)
T(1—y)T(n+1)

The evaluation of the logarithm of this can be carried out in such a manner that the expected

an =

time per evaluation in our algorithm is O(1) (see Devroye, 1986, chapter X). Some care should
be taken here when Stirling’s approximation is used, since n is usually small in our case, and
Stirling’s approximation is not very accurate for small n. This can be circumvented by using
Binet’s convergent series. To speed up matters, we can put in a quick acceptance step, and for
the perfectionist, the acceptance step can be replaced by a series of acceptance and rejection
steps as in the series method, with the bounds being derived from Binet’s convergent series for

the gamma function.
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