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Abstract
We study the height of a spanning tree T of a graph G obtained

by starting with a single vertex of G and repeatedly selecting,

uniformly at random, an edge of G with exactly one endpoint

in T and adding this edge to T .
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1 INTRODUCTION

Let s be a vertex of a simple connected graph G on n vertices. We build a sequence T1,T2,… ,Tn of

random subtrees of G as follows: The tree T1 has a single vertex, s. For each 1 < i ≤ n, tree Ti is

obtained by choosing a uniformly random edge of G with exactly one endpoint in Ti−1, and adding the

edge to Ti−1. Note that Tn is a (not necessarily uniform) random spanning tree of G rooted at s, which
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we denote by  (G, s). In this paper we study the height (maximum length of a root-to-leaf path) of

 (G, s) and give several bounds for it in terms of parameters of G.

In the special case when G is the complete graph, each tree Ti is obtained from Ti−1 by choosing

a uniformly random node of Ti−1 and joining a new leaf to that node. This is the well studied random
recursive tree process, and Devroye [7] and Pittel [14] have shown that the height of Tn =  (Kn, s) is

(e + o(1)) ln n with probability 1 − o(1).
Our results. Let D = D(G) and Δ = Δ(G) denote the diameter and maximum degree of G,

respectively, and let us denote the height of a rooted tree T by h(T). An obvious lower bound for

h( (G, s)) is D∕2. We prove the following bounds hold with probability 1 − on(1) for any n-vertex

graph G and any s ∈ V(G). (The notation ok(1) denotes the set of functions f ∶ R → R such that

f (k) → 0 as k → ∞.) In all of these results, the reader should keep in mind that the diameter, D, the

maximum-degree,Δ, the degeneracy, 𝑑, and the edge-expansion factor,Φ, may be increasing functions

of n, the number of vertices in G.

1. In Theorem 4 we show h( (G, s)) = O(Δ(D + log n)). For D = Ω(logΔ) this is tight: in Theorem

17 we show that for every Δ ≥ 2 and every D ≥ e6 lnΔ, there exist G and s with h( (G, s)) =
Ω(Δ(D + log n)).

2. If G is 𝑑-degenerate (that is, every subgraph of G has a vertex of degree at most 𝑑), then in

Theorem 6 we show h( (G, s)) = O(
√
𝑑Δ(D + log n)). The class of O(1)-degenerate graphs is

quite rich and includes every minor-closed graph family. This upper bound is tight, even for planar

graphs (𝑑 = 5), graphs of thickness t (𝑑 = 5t), and graphs of treewidth k (𝑑 = k). (The concepts

of Euler genus, thickness, and treewidth are defined in Section 4).

For D = Ω(logΔ) and planar graphs (which are 5-degenerate) this is tight: in Theorem 21 we

show for any Δ > 2 and D > 106 lnΔ there exists a planar graph G and vertex s with h( (G, s)) =
Ω(

√
Δ(D + log n)).

Also, for D = Ω(logΔ) and 𝑑 ≤ Δ this is tight: in Theorem 22 we show for any Δ > 1,

D > 106 lnΔ and 𝑑 ≤ Δ there exist a 𝑑-degenerate graph G and vertex s with h( (G, s)) =
Ω(

√
𝑑Δ(D + log n)).

3. If G has Euler genus less than C
√
ΔD∕ logΔ, then h( (G, s)) = O(

√
Δ(D+ log n)) (see Theorem

8) . For D = Ω(logΔ) and zero Euler genus this is tight: in Theorem 21 we show for any Δ > 2

and D > 106 lnΔ there exist a planar graph G and vertex s with h( (G, s)) = Ω(
√
Δ(D + log n)).

4. For any 𝑑, k ≥ 1, if G is the 𝑑-dimensional grid of side-length k (which has n = (k + 1)𝑑 vertices),

we have h( (G, s)) = O(𝑑k + 𝑑5∕3 ln(k + 1)). If k = 2 or k∕ ln(k + 1) = Ω(𝑑2∕3), we have

h( (G, s)) = Θ(D) = Θ(𝑑k) (see Theorem 11 and Corollary 13).

5. If G has edge-expansion factor1 (ie, Cheeger constant) Φ, then h( (G, s)) = O(Φ−1Δ log n)
(see Theorem 9). This implies, for example, that h( (G, s)) = O(log n) if G is the complete

graph or if G is a random Δ-regular graph (since a random Δ-regular graph has Φ = Ω(Δ),
see [3]).

Our main tool for proving upper bounds, Lemma 2, bounds h( (G, s)) in terms of the first-passage

percolation cover time and the number of paths of a given length starting at s. To prove our results

using this tool, we prove several new bounds on first-passage percolation cover times as well as the

number of simple paths in various families of graphs, which are of independent interest.

Our results on first-passage percolation cover time. Suppose independent exponential(1) ran-

dom variables {𝜏e} are assigned to edges of G. Let Γ(s, v) denote the set of all paths from s to v in G.

1The edge expansion factor and related quantities are defined in Section 6.
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Then the first-passage percolation cover time is defined as

𝜏(G, s) = max
v∈V(G)

min
𝛾∈Γ(s,v)

∑
e∈𝛾

𝜏(e)

In Lemma 3 we show a general upper bound of O(ln n+D) for 𝜏(G, s). (This and the following results

hold with probability 1 − on(1).)
In the special case when G is the 𝑑-dimensional grid with side length k (and diameter 𝑑k), we prove

the improved bound 𝜏(G, s) = O(k). The special case of k = 1, namely the 𝑑-cube graph, was studied

by Fill and Pemantle [9], who showed 1.414 ≤ 𝜏(G, s) ≤ 14.041. The upper bound was subsequently

improved to 1.694 by Bollobás and Kohayakawa [4] and recently to 1.575 by Martinsson [11].

The remainder of the paper is organized as follows: Section 2 presents some preliminaries and

useful facts about sums of independent random variables. In Section 3, we present the connection with

first-passage percolation and prove a general upper bound. Sections 4–7 present our upper bounds on

h(T). Sections 8 and 9 present families of graphs with matching lower bounds.

We use the following notational conventions: log2 x denotes the binary logarithm of x and ln x
denotes the natural logarithm of x. Every graph, G, that we consider is finite, simple, undirected and

connected, and n denotes its number of vertices.

2 PRELIMINARIES

Recall that an exponential(𝜆) random variable, X, has a distribution defined by

P{X > x} = e−𝜆x, x ≥ 0,

and mean E[X] = ∫ ∞
0

P{X > x} dx = 1∕𝜆. We make extensive use of the fact that exponential random

variables are memoryless:

P{X > t + x ∣ X > t} = P{X > t + x}
P{X > t}

= e−𝜆(t+x)

e−𝜆t = e−𝜆x = P{X > x}.

We will also often take the minimum of 𝛿 independent exponential(𝜆) random variables and use the

fact that this is distributed like an exponential(𝜆𝛿) random variable:

P{min{X1,… ,X𝛿} > x} = (P{X1 > x})𝛿 = e−𝛿𝜆x ∼ exponential(𝜆𝛿).

We will make use of two concentration inequalities for sums of exponential random variables, both of

which can be obtained using Chernoff’s bounding method (see, eg, [10, Theorem 5.1]). If Z1,… ,Zk
are independent exponential(𝜆) random variables (so that they each have mean 𝜇 = 1∕𝜆), then for all

𝑑 > 1,

P

{ k∑
i=1

Zi ≤ 𝜇k∕𝑑

}
≤ exp

(
−k

(
ln 𝑑 − 1 + 1

𝑑

)) ≤ ( e
𝑑

)k
(1)

and for all t ≥ 2,

P

{ k∑
i=1

Zi ≥ 𝜇kt

}
≤ exp(k − kt∕2). (2)

The sum of k independent exponential(𝜆) random variables is called a Gamma(k, 𝜆) random variable.
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For positive integers a and b, we define the random variable Ya,b as follows: Consider a tree in

which the root has a children, and each of the root’s children have b children. Put an independent

exponential(1) weight on each edge. Then Ya,b is defined as the minimum weight of a path from the

root to a leaf. The following auxiliary lemma is proved in Appendix A.

Lemma 1 Let X1,… ,Xm be i.i.d. distributed as Ya,b for some a, b. Then

E[X1] = O(1∕a + 1∕
√

ab)

and moreover,

P

{ m∑
i=1

Xi ≥ 3m(64∕a + 1024∕
√

ab)

}
≤ exp(−m∕9).

3 CONNECTION WITH FIRST-PASSAGE PERCOLATION AND A
GENERIC UPPER BOUND

In this section, we establish the connection with first-passage percolation, and prove an upper bound

for 𝜏(G, s) in general graphs, which results in an upper bound for h( (G, s)). This connection will be

used in subsequent sections to provide tighter bounds for h( (G, s)) in several graph classes.

Recall the generation process for  (G, s): we start with a tree containing only vertex s initially; in

each round, we choose an edge uniformly at random among edges with exactly one endpoint in the

existing tree, and add it to the existing tree.

We may view this as an infection process: at round 0 only vertex s is infected. In each round, suppose

the set of infected vertices is S. We choose a uniformly random edge between S and its compliment,

and let the disease spread along that edge, hence increasing the number of infected vertices by one.

Now consider the following continuous time view of this infection process, which is known as

Richardson’s model [8] or first-passage percolation [1]. At time 0 we infect vertex s. For each edge

uv, whenever one of u and v gets infected, we put an exponential(1) timer on edge uv. When the timer

rings, the disease spreads along that edge and both u and v get infected (it might be the case that both

u and v are already infected by that time). Suppose at some moment in this process, the subset S of

vertices are infected. Then, by memorylessness of the exponential distribution, the disease is equally

like to spread along any of the edges existing between S and its complement. Therefore, the tree along

which the disease spreads has the same distribution as  (G, s).
This viewpoint induces weights on the edges: to each edge e we assign weight 𝜏(e), which is the

ringing time for the timer on this edge. Note that the weights are i.i.d. exponential(1) random variables.

The weight of a path P, denoted 𝜏(P), is simply the sum of weights of its edges. The first-passage
percolation hitting time (or simply, the hitting time) for v is the weight of the lightest path from s to v:

𝜏(G, s, v) = min
𝛾∈Γ(s,v)

𝜏(𝛾).

The first-passage percolation cover time (or simply, the cover time) is the first time that all vertices

are infected, which can be written as

𝜏(G, s) = max
v∈V(G)

𝜏(G, s, v).
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Note that this is also the maximum weight of a root-to-leaf path in the infection tree  (G, s), which we

will use to bound the height of  (G, s), the maximum length of a path in (the unweighted version of)

 (G, s) (in general, the longest path and the heaviest path may be different).

For a positive integer L and a vertex s of graph G, let Π(G, s,L) denote the number of simple paths

of length L in G that start from s. We now prove a lemma that upper bounds h( (G, s)) in terms of

𝜏(G, s) and Π(G, s,L).

Lemma 2 Let s ∈ V(G), 0 ≤ p < 1 ≤ a, c > 0, and L = ⌈ceaK⌉ be such that P{𝜏(G, s) > K} ≤ p
and Π(G, s,L) ≤ aL. Then h( (G, s)) ≤ L with probability at least 1 − p − c−L.

Proof Let T =  (G, s). If h(T) > L, then T contains a root-to-leaf path of length greater than L and

therefore T contains a path that begins at the root and has length exactly L. This implies that at least

one of the following two events occurred:

1. T contains a root-to-leaf path of weight greater than K.

2. G contains a path starting at s of length L whose weight is less than K.

By assumption, the probability of the first event is at most p. The weight of a single path of length L
is the sum of L exponential(1) random variables so, by (1) and the union bound over all aL paths, the

probability of the second event is at most

aL
(eK

L

)L ≤ c−L.

▪

In light of Lemma 2, we can upper bound h( (G, s)) if we have upper bounds on the cover time and

on the number of paths of length L originating at s. An obvious upper bound for the latter is ΔL. The

following lemma gives a general upper bound for the former, which results in a general upper bound

for h( (G, s)). In the following sections we obtain better bounds for these two quantities in special

graph classes, resulting in sharper bounds on h( (G, s)).

Lemma 3 For any s ∈ V(G), we have 𝜏(G, s) ≤ 4 ln n + 2D with probability at least 1 − 1∕n.

Proof For each vertex v ∈ V(G), we show the probability that it is not infected by time 4 ln n + 2D
is at most n−2, and then apply the union bound over all vertices. Let P be a shortest path from s to v in

G. Let k ≤ D denote the length of P, so 𝜏(P) ∼ Gamma(k, 1). Note that for any t, 𝜏(P) ≤ t implies v is

infected by time t. Thus, using (2), the probability that v is not infected by time 4 ln n+2D is bounded by

P{𝜏(P) > 4 ln n + 2D} = P{Gamma(k, 1) > 4 ln n + 2D} ≤ exp(k − 2 ln n − D) ≤ n−2. ▪

We immediately get a general upper bound for h( (G, s)).

Theorem 4 Let G be an n-vertex graph with diameter D and maximum degree Δ > 1, and let s be
an arbitrary vertex. Then, with probability at least 1 − O(1∕n) we have

D
2

≤ h( (G, s)) ≤ 2eΔ(4 ln n + 2D) ≤ (4eΔ + 8eΔ lnΔ)D + 16eΔ.

Note that this gives an asymptotically tight bound of h( (G, s)) = Θ(D) for graphs with bounded

maximum degree.
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Proof The first inequality is trivial. The second inequality is an application of Lemma 2 with a = Δ,

p = 1∕n, K = 4 ln n+2D and c = 2, using the bound of Lemma 3 for the cover time. The last inequality

follows from the crude bound ΔD ≥ n∕3, which holds for any n-vertex graph with maximum degree

Δ and diameter D. ▪

4 AN UPPER BOUND IN TERMS OF GRAPH DEGENERACY

Recall that a graph is 𝑑-degenerate if each of its subgraphs has a vertex of degree at most 𝑑. The

following lemma shows that, for large L, 𝑑-degenerate graphs have considerably less than ΔL walks of

length L.

Lemma 5 Let G be an n-vertex 𝑑-degenerate graph with maximum degree Δ. Then the number of
walks in G of length L is bounded by 2n2L(𝑑Δ)L∕2.

Proof Enumerate the vertices of G as v1,… , vn so that vi has at most 𝑑 edges in the subgraph induced

by vi,… , vn (this ordering may be obtained by repeatedly removing a vertex of degree at most 𝑑).

We give a way to encode the walks in a one-to-one way, and then bound the total number of possible

generated codes. Let W = vi0 ,… , viL be a walk of length L in G and let k = k(W) denote the number

of indices 𝓁 ∈ {1,… ,L} such that i𝓁−1 < i𝓁 . If k ≥ L∕2 then we say that W is easy; note that at least

one of W and its reverse is easy, hence the total number of L-walks is at most twice the number of easy

L-walks. We encode an easy walk W in the following way:

1. We first specify the starting vertex vi0 . There are n ways to do this.

2. Next we specify whether i𝓁−1 < i𝓁 for each 𝓁 ∈ {1,… ,L}. There are at most 2L ways to do

this.

3. Next, we specify each edge of W. For each 𝓁 ∈ {1,… ,L − 1}, if i𝓁 < i𝓁+1, then there are

at most 𝑑 ways to do this, otherwise there are at most Δ ways to do this. Therefore, the total

number of ways to specify all edges of the walk is at most

𝑑kΔL−k ≤ (𝑑Δ)L∕2,

since 𝑑 ≤ Δ and k ≥ L∕2.

Therefore, the number of easy L-walks is bounded by n2L(𝑑Δ)L∕2, as required. ▪

Theorem 6 Let G be an n-vertex 𝑑-degenerate graph with diameter D and maximum degree Δ,
and let s be an arbitrary vertex. Then, with probability at least 1 − O(1∕n) we have h( (G, s)) ≤
8e
√
𝑑Δ(2D + 4 ln n).

Proof Let c = 2, K = 4 ln n + 2D, p = 1∕n, a = 4
√
𝑑Δ, and L = ⌈ceaK⌉ > 8 ln n. Lemma 3

guarantees 𝜏(G, s) ≤ 4 ln n+2D with probability at least 1−1∕n, and Lemma 5 guarantees Π(G, s,L) ≤
2n2L(𝑑Δ)L∕2 ≤ aL. Applying Lemma 2 completes the proof. ▪

Note that Theorem 6 actually implies Theorem 4 up to constant factors, since all graphs of max-

imum degree Δ are Δ-degenerate, so
√
𝑑Δ ≤ Δ in all cases. However, Theorem 6 provides sharper

bounds for many important graph classes:

• Planar graphs are 5-degenerate. (This is a consequence of Euler’s formula and the fact that planarity

is preserved under taking subgraphs—see, for example, [5, Corollary 10.22]).
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• The thickness of a graph is the minimum number of planar graphs into which the edges of G can

be partitioned. If G has thickness t then, by Euler’s Formula, G has m < 3tn edges and the average

degree of G is less than 2m∕n < 6t. It follows that graphs of thickness t are (6t − 1)-degenerate.

• The Euler genus of a graph is the minimum Euler genus of a surface on which the graph can be

drawn without crossing edges. Graphs of Euler genus g are O(
√

g)-degenerate.2

• A tree decomposition of a graph G is a tree T ′ whose vertex set B is a collection of subsets of V(G)
called bags with the following properties:

1. For each edge vw of G, there is at least one bag b ∈ B with {v,w} ⊆ b.

2. For each a vertex v of G, the subgraph of T ′ induced by the set of bags that contain v is connected.

The width of a tree-decomposition is one less than the size of its largest bag. The treewidth of G is

the minimum width of any tree decomposition of G. Graphs of treewidth k are k-degenerate. (This

is a consequence of the fact that k-trees are edge-maximal graphs of treewidth k.)

Therefore, Theorem 6 implies that, when the relevant parameter, g, t or k, is bounded, h(T) =
O(

√
Δ(D + log n)) with high probability.

5 AN UPPER BOUND IN TERMS OF EULER GENUS

Since graphs of Euler genus g are O(
√

g)-degenerate, Theorem 6 implies that if G has Euler genus g,

then h( (G, s)) = O(g1∕4Δ1∕2(D + log n)). In this section we show that the dependence on the genus

g can be eliminated when the diameter is large compared to the genus. We begin with a upper-bound

on path counts that is better (for graphs of small genus) than Lemma 5.

Lemma 7 Let G be a simple n-vertex graph of Euler genus g, diameter D, and maximum degree
Δ ≥ 6. Then the number of simple paths in G of length L is at most 2n2L6L∕2−3gΔL∕2+3g.

Proof The following proof makes use of some basic notions related to graphs on surfaces; see

Mohar and Thomassen [13] for basic definitions and results. Since G has Euler genus g, it has a 2-cell

embedding in a surface of Euler genus g. Euler’s formula then states that

m = n + f − 2 + g, (3)

where n and m are the numbers of vertices and edges of G and f is the number of faces in the embedding

of G. Every edge is on the boundary of at most 2 faces of the embedding and, since G is simple, every

face is bounded by at least 3 edges. Therefore, f ≤ 2m∕3, so (3) implies

m ≤ 3n − 6 + 3g.

Therefore, the average degree of an n-vertex Euler genus g graph is at most 6+(6g−12)∕n. In particular,

if n ≥ 6g, then G has average degree less than 7, so G contains a vertex of degree at most 6.

When we remove a vertex from G we obtain a graph whose Euler genus is not more than that of

G. Therefore, by repeatedly removing a degree 6 vertex, we can order the vertices of G as v1,… , vn so

2In every n-vertex Euler-genus g graph, n ∈ Ω(
√

g) and there exists a vertex of degree at most 6+O(g∕n). (See, eg, [15, Lemma 7

and Theorem 2].)



DEVROYE ET AL. 297

that, for each i ∈ {1,… , n−6g}, vi has at most 6 neighbors among vi+1,… , vn. We call vn−6g+1,… , vn
annoying vertices and edges between them are annoying edges.

Let P = vi0 ,… , viL be a path of length L in G. For each i ∈ {1,… ,L}, the edge vi𝓁−1
vi𝓁 is called

bad if it is annoying or if i𝓁−1 > i𝓁; otherwise it is called good. Let k denote the number of good edges

in P. Say P is good if k ≥ L∕2−3g. Note that the number of annoying edges of P is bounded by 6g−1,

hence at least one of P and its reverse is good. We bound the number of good L-paths; the total number

of L-paths is at most twice this bound. We encode a good L-path P as follows:

1. We first specify the starting vertex vi0 . There are n ways to do this.

2. Next we specify whether each edge of P is good or bad. There are 2L ways to do this.

3. Next, we specify each edge of P. For each good edge, there are at most 6 ways to do this.

For each bad edge there are at most Δ ways to do this. Therefore, the total number of ways

to specify the edges of P is at most

6kΔL−k ≤ 6L∕2−3gΔL∕2+3g,

since k ≥ L∕2 − 3g and Δ ≥ 6.

Therefore, the number of good L-paths is at most n2L6L∕2−3gΔL∕2+3g, as required. ▪

Theorem 8 Let G be an n-vertex Euler-genus g graph with diameter D, maximum degree Δ and let
s ∈ V(G) be an arbitrary vertex. If g lnΔ ≤ 36

√
Δ(D+ ln n) then, with probability at least 1−O(1∕n),

h( (G, s)) ≤ 107
√
Δ(2D + 4 ln n).

Proof The conclusion follows from Theorem 4 for Δ ≤ 6, so we will assume Δ > 6. Let c = 2, K =
4 ln n+2D, p = 1∕n, a = 8

√
6Δ, and L = ⌈ceaK⌉ > 8 ln n. Lemma 3 guarantees 𝜏(G, s) ≤ 4 ln n+2D

with probability at least 1 − 1∕n, and Lemma 5 guarantees

Π(G, s,L) ≤ 2n×2L×(6Δ)L∕2×Δ3g ≤ (2×2×
√

6Δ)Lexp
(
108

√
Δ(D + ln n)

) ≤ (2×2×
√

6Δ×2)L = aL.

Applying Lemma 2 completes the proof. ▪

6 AN UPPER BOUND FOR EDGE EXPANDERS

All of the preceding upper bounds on h(T) have a (linear or rootish) dependence on Δ, the maximum

degree of a vertex in G. This seems somewhat counterintuitive, since high degree vertices in G should

produce high degree vertices in T and therefore decrease h(T). In this section we show that indeed large

edge expansion (also called isoperimetric number or Cheeger constant) results in low-height trees.

For an n-vertex graph G and a subset A ⊆ V(G), define e(A) = |{vw ∈ E(G) ∶ v ∈ A, w ∉ A}|,
and for any k ∈ {1,… , n − 1}, define

ek(G) = min{e(A) ∶ A ⊆ V(G), |A| = k}.

Observe that ek(G) is symmetric in the sense that ek(G) = en−k(G). We define the edge expansion of

G is

Φ(G) = min {ek(G)∕k ∶ k ∈ {1,… , ⌊n∕2⌋}}
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We will express the height of T in terms of the total inverse perimeter size Ψ, which is closely related

to the edge expansion:

Ψ(G) =
⌊n∕2⌋∑
k=1

1

ek(G)
≤

⌊n∕2⌋∑
k=1

1

kΦ(G)
= ln n + O(1)

Φ(G)
.

Theorem 9 Let G be an n-vertex graph with with maximum degree Δ, edge-expansion Φ, total
inverse perimeter size Ψ, and let s be an arbitrary vertex. Then, with probability at least 1 −
exp(−Ω(ΨΔ)) we have h( (G, s)) = O(ΨΔ) ⊆ O(Φ−1Δ log n).

Before proving Theorem 9, we consider the example of the complete graph G = Kn. In this graph,

the minimum degree is n − 1, so all preceding theorems (at best) imply an upper bound of O(n) on

h( (Kn, s)). However, ek(Kn) = k(n − k), so Φ(Kn) = ⌈n∕2⌉, and Ψ(Kn) = O(log n∕n). Then Theorem

9 implies that h( (Kn, s)) = O(log n) with high probability. This upper bound is of the right order

of magnitude, since it matches the (tight) results of Devroye and Pittel for the height of the random

recursive tree [7, 14].

Proof Fix some path P = (s = v0), v1,… , vL in G and suppose that P appears as a path in T . Then

there are times 1 ≤ k1 < · · · < kL < n such that for each i ∈ {1,… ,L}, vi joins T when T has size ki.

For a fixed P and fixed 1 ≤ k1 < … < kL < n, the probability that this happens is at most

L∏
i=1

1

eki (G)
,

and the probability that P appears in T (without fixing k1,… , kL) is at most

∑
1≤k1<···<kL<n

( L∏
i=1

1

eki (G)

)
<

1

L!

( ∑
(k1,…,kL)∈{1,…,n−1}L

( L∏
i=1

1

eki (G)

))
= 1

L!

(n−1∑
k=1

1

ek(G)

)L

≤ (2Ψ)L

L!

Finally, since G contains at most ΔL paths of length L,

P{h( (G, s)) ≥ L} ≤ ΔL × (2Ψ)L

L!
≤ (

2eΨΔ
L

)L ≤ (
1

2

)L
,

for L ≥ 4eΨΔ. ▪

Observe that the last step in the proof of Theorem 9 is to use the union bound over all paths of

length L. If we have a better upper-bound than ΔL on the number of such paths, then we obtain a better

upper bound on h(T). Lemma 5 gives a better upper bound for 𝑑-degenerate graphs, using which we

immediately obtain the following corollary.

Corollary 10 Let G be an n-vertex 𝑑-degenerate graph with diameter D and maximum degree Δ,
total inverse perimeter size Ψ, and let s be an arbitrary vertex. Then, with probability at least 1 −
O(1∕n), h( (G, s)) = O(Ψ

√
𝑑Δ + log n) = O(log n(1 +

√
𝑑Δ∕Φ)).

Proof As in the proof of Theorem 9, and using the upper bound 2n2L(𝑑Δ)L∕2 for the number of paths

of length L, given by Lemma 5, we have

P{h( (G, s)) ≥ L} ≤ 2n2L(𝑑Δ)L∕2 × (2Ψ)L

L!
≤ 2n

(
4eΨ

√
𝑑Δ∕L

)L ≤ (
8eΨ

√
𝑑Δn1∕L∕L

)L
,

which is smaller than 1∕n for L ≥ 8e3Ψ
√
𝑑Δ + ln n, as required. ▪
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7 UPPER BOUNDS FOR HIGH DIMENSIONAL GRIDS AND HYPERCUBES

The 𝑑-cube is the graph having vertex set {0, 1}𝑑 in which two vertices are adjacent if and only if they

differ in exactly one coordinate. Every vertex in the 𝑑-cube has degree 𝑑 and the 𝑑-cube has diameter

𝑑. The 𝑑-cube is an interesting example in which the path count is high, but this is counteracted by a

low first-passage percolation time.

Theorem 11 Let n = 2𝑑 , let G be the 𝑑-cube and let s ∈ V(G) be arbitrary. Then, with probability
at least 1 − on(1), h( (G, s)) ∈ Θ(𝑑).

Proof Fill and Pemantle [9] showed that the first-passage percolation cover time for the 𝑑-cube is

at most 14.05 with probability 1 − on(1). Every vertex of the hypercube has degree 𝑑, so the number

of paths of length L starting at s is less than 𝑑L. The result then follows by applying Lemma 2 with

p = on(1), c = 2, K = 14.05, and a = 𝑑. ▪

A natural generalization of the 𝑑-cube is the (𝑑, k)-grid, which has vertex set {0,… , k}𝑑 and has

an edge between two vertices if and only if the (Euclidean or 𝓁1) distance between them is 1. The

(𝑑, k)-grid has diameter D = 𝑑k and maximum degree Δ = 2𝑑.

Note that in the case k = 1, the (𝑑, 1)-grid is the 𝑑-cube, for which Theorem 11 gives the optimal

bound and this bound can be extended to k = O(1). Theorem 4 gives an upper bound of O(𝑑2k) on

h( (G, s)), which is optimal for 𝑑 = O(1). The rest of this section is devoted to proving the following

result on the first-passage-percolation cover time of the (𝑑, k)-grid, which gives an optimal bound on

the height of  (G, s) for all values of k and 𝑑.

Theorem 12 Let G be the (𝑑, k)-grid and n = (k + 1)𝑑 . Then, for any vertex s ∈ V(G), we have that
𝜏(G, s) = O(k) with probability 1 − on(1).

Before jumping into the proof, we note that applying Lemma 2 gives the following corollary of

Theorem 12.

Corollary 13 Let G be the (𝑑, k)-grid and n = (k + 1)𝑑 . For any vertex s ∈ V(G) we have that with
probability 1 − on(1), h( (G, s)) = Θ(𝑑k).

To prove Theorem 12, we will make use of a concentration result about the first-passage percolation

time on the 𝑑-cube.

Lemma 14 Let Q be the 𝑑-cube, let s ∈ V(Q) be arbitrary, and let s̄ ∈ V(Q) be the unique vertex at
distance 𝑑 from s. Then there exist universal constants c > 0 and x0 > 0 such that,

P{𝜏(Q, s, s̄) > x} ≤ e−cx𝑑,

for all x ≥ x0.

Proof We assume that 𝑑 is greater than some sufficiently large constant, 𝑑0. Otherwise the result

follows trivially from the union bound: With probability at least 1 − 𝑑2𝑑−1e−x∕𝑑 , every edge of the

𝑑-cube has weight at most x∕𝑑. For 𝑑 ≤ 𝑑0, this satisifies the statement of the lemma with x0 =
3𝑑0 ln 𝑑0 and c = 1∕(3𝑑2

0
).
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u = 11000 . . . 0

10000 . . . 0

s = 00000 . . . 0

01000 . . . 0

00100 . . . 0

00010 . . . 0
...

10100 . . . 0

10010 . . . 0
...

11100 . . . 0

11010 . . . 0
...

00000 . . . 1 10000 . . . 1 11000 . . . 1

FIGURE 1 The 𝑑-cube contains 𝑑 edge disjoint paths of length at most 4 going from s ∈ L0 to u ∈ L2

We will prove the result for all x ≤ 𝑑2. Proving it for x in this range is sufficient, by a standard

bootstrapping argument: For x > 𝑑2, let r = 2⌈log2(x∕𝑑2)⌉, so that

x0 ≤ x∕r ≤ 𝑑2

where the first inequality holds provided that 𝑑2 ≥ 2x0. Consider a modified version of Richardson’s

infection model, which has the same rules as the original process except that, for each i ∈ N, if the

process has not infected s̄ by time ix∕r, then we restart the process from the beginning. Clearly the

time to infect s̄ in this modified process dominates the time to infect s̄ in the original process, so

P{𝜏(Q, s, s̄) > x} ≤ P{𝜏(G, s, s̄) > x∕r}r ≤ (
e−cx𝑑∕r)r = e−cx𝑑.

Thus, it suffices to prove the lemma for x0 ≤ x ≤ 𝑑2. For each i ∈ {0, 1,… , 𝑑}, let Li denote the

subset of
(
𝑑

i

)
vertices whose distance to s is i. Balister and coworkers [2, Lemma 4] show that there

are constants 𝛼, 𝛾 > 0 such that, if we sample each edge of Q independently with probability 𝛼∕𝑑 then,

with probability at least 1 − e−𝛾𝑑2

, there is a path of length 𝑑 − 4 consisting entirely of sampled edges

and having one endpoint in L2 and one endpoint in L𝑑−2.

In our setting, where edge weights are independent exponential(1), if we only consider edges of

weight at most ln(𝑑∕(𝑑 − 𝛼)), then we obtain a sample in which each edge is independently sampled

with probability 𝛼∕𝑑. Therefore, with probability at least 1 − e−𝛾𝑑2

, there is a path of weight at most

𝑑 ln(𝑑∕(𝑑 − 𝛼)) = O(1) joining a vertex u in L2 to a vertex w in L𝑑−2.

Now, there are 𝑑 edge-disjoint paths of length at most 4 joining s to u (see Figure 1). Consider

one such path, P. If P has weight greater than x∕3 then at least one of P’s edges has weight greater

than x∕12, which occurs with probability at most 4e−x∕12. Therefore, the probability that all 𝑑 paths

have weight greater than x∕3 is at most (4e−x∕12)𝑑 ≤ e−a𝑑x for 0 < a < ln 4∕x − 1∕12. Similarly, with

probability at least 1 − e−a𝑑x, there is a path of length at most 4 and weight at most x∕3 joining w to s̄.

Therefore,

P{𝜏(Q, s, s̄) > 2x∕3 + 𝑑 ln(𝑑∕(𝑑 − a))} ≤ P{𝜏(Q, s, s̄) > x} ≤ 2e−ax𝑑 + e−𝛾𝑑2

provided that x ≥ max{3𝑑 ln(𝑑∕(𝑑 − a)), ln 4∕(1∕12 − a)}. This holds, for example, when x ≥ x0 =
24 ln 4, a = 1∕24, and 𝑑 ≥ 1. ▪

Lemma 14 extends from 𝜏(Q, s, s̄) to 𝜏(Q, s, v) for any vertex v ∈ V(Q) using the union bound and

the fact that v is at distance at least 𝑑∕2 from at least one of s or s̄. (This argument is also used by

Balister and coworkers [2].)
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Corollary 15 Let Q be the 𝑑-cube, and let s, v ∈ V(Q) be arbitrary. Then there exist universal
constants c > 0 and x0 > 0 such that,

P{𝜏(Q, s, v) > x} ≤ e−cx𝑑,

for all x ≥ x0.

Corollary 15 says that the tail of 𝜏(Q, s, v) is dominated by an exponential(c𝑑) random variable.

The next lemma shows that sums of independent copies of 𝜏(Q, s, v) also behave (roughly) like sums

of independent exponential(c𝑑) random variables.

Lemma 16 Let Q be a 𝑑-cube, let s1,… , sk ∈ V(Q) and v1,… , vk ∈ V(Q) be arbitrary, and let
Z1,… ,Zk be independent random variables where Zi is distributed like 𝜏(Q, si, vi). Then there exist
universal constants c > 0 and x0 > 0 such that

P

{ k∑
i=1

Zi > ak

}
≤ e(x0+1)k−ac𝑑k∕2,

for all a > 0.

Proof If X is exponential(c𝑑), then Corollary 15 says that

P{𝜏(Q, si, vi) > x} ≤ e−cx𝑑 = P{X > x}

for all x > x0. This implies that

P{𝜏(Q, si, vi) > x} ≤ P{X + x0 > x}

for all x > 0, that is, X+x0 stochastically dominates 𝜏(Q, si, vi). Therefore, if X1,… ,Xk are independent

exponential(1), then

P

{ k∑
i=1

Zi > ak

}
≤ P

{ k∑
i=1

Xi > (a − x0)k

}
≤ e(x0+1)k−ac𝑑k∕2,

where the second inequality is an application of (2). ▪

We can now finish the proof of Theorem 12.

Proof of Theorem 12 The idea of this proof is that, for any vertex v, there is a path from s to v that

visits at most k 𝑑-cubes. Therefore, there is a path from s to v whose length can be expressed as a sum

like that considered in Lemma 16.

For each vertex u = (u1,… , u𝑑) with ui ∈ {0,… , k − 1} for each i ∈ {1,… , 𝑑}, define the

subgraph Qu = G[Vu] of G induced by the vertex set

Vu = {(u1 + x1,… , u𝑑 + x𝑑) ∶ xi ∈ {0, 1} for each i ∈ {1,… , 𝑑}}.

Each Qu is a (𝑑, 1)-grid, that is, a 𝑑-cube. For any vertex v ∈ G, there is a sequence v1, v2,… , vk′ of

vertices in G with k′ ≤ k such that

1. s ∈ Qv1
and v ∈ Qvk′ ;
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2. for each i ∈ {1,… , k′ − 1}, Qvi and Qvi+1
have at least one vertex in common.

3. for each i ∈ {1,… , k′} and each j ∈ {1,… , k′} ⧵ {i − 1, i, i + 1}, Qvi and Qvj have no edges

(or vertices) in common.

The sequence v1,… , vk′ can be found with a greedy algorithm: Define v′
0
= s. Now, if v′i−1

and v differ

in r coordinates, then there is some vertex vi such that Qvi contains v′i−1
as well as some vertex v′i whose

distance to v is r less than the distance from v′i−1
to v. It is straightforward to verify that the resulting

sequence of vertices v1,… , vk′ satisfies the three properties described above.

For each i ∈ {1,… , k′}, let si = v′i−1
and xi = v′i . Now, observe that

𝜏(G, s, v) ≤
k′∑

i=1

𝜏(Qvi , si, xi).

Point 3, above, ensures that the random variables 𝜏(Qv1
, s1, x1),… , 𝜏(Qvk′ , sk′ , xk′ ) can be partitioned

into two sets of size ⌊k′∕2⌋ and ⌈k′∕2⌉ where the variables within each set are independent.

By Lemma 16 we now have

P{𝜏(G, s, v) > ak} ≤ P

{⌈k′∕2⌉∑
i=1

𝜏(Qv2i−1
, s2i−1, x2i−1) > ak

}
+ P

{⌊k′∕2⌋∑
i=1

𝜏(Qv2i , s2i, x2i) > ak

}
≤ 2e(x0+1)k−ac𝑑k∕2.

Applying the union bound over all (k + 1)𝑑 choices of v completes the proof:

P{𝜏(G, s) > ak} ≤ ∑
v∈V(G)

P{𝜏(G, s, v) > ak}

≤ 2(k + 1)𝑑e(x0+1)k−ac𝑑k∕2

= e𝑑 ln(2(k+1))+(x0+1)k−ac𝑑k∕2

= on(1),

for

a >
2(𝑑 ln(2(k + 1) + (x0 + 1)k)

c𝑑k
. ▪

8 LOWER BOUNDS FOR GENERAL GRAPHS

Next, we describe a series of lower bound constructions that match the upper bounds obtained in

Theorems 4–8. In particular, these constructions show that the dependence on Δ in the upper bounds

in the previous sections can not be asymptotically reduced.

In this section we prove the following theorem.

Theorem 17 There exists a positive constant c such that for any given positive integers 1 < Δ,D
satisfying D ≥ 16e3 lnΔ, there exists an n-vertex graph G with maximum degree ≤ Δ, diameter ≤ D,
and a vertex s satisfying P{h( (G, s)) ≥ c(Δ ln n + ΔD)} ≥ 1 − on(1).

The graph G is obtained by gluing together two graphs H and I. The graph H has large diameter and

high connectivity. The graph I has low connectivity and small diameter. By gluing them we obtain a



DEVROYE ET AL. 303

· · ·

V1 V2 V3 V4 V5 V6 VL−1 VL

FIGURE 2 The graph H

graph of low diameter (because of I) but for which the infection is more likely to spread via H (because

of its high connectivity), and hence will have a large height. We begin by defining and studying H and

I individually.

8.1 The Ladder Graph H

Let L, 𝛿, a be positive integers. The graph H is shown in Figure 2. The vertices of H are partitioned

into L groups V1,… ,VL, each of size 𝛿. The edge set of H is

E(H) =
L−1⋃
i=1

{vw ∶ v ∈ Vi, w ∈ Vi+1}.

First we show that the infection spreads rather quickly in H, namely we prove upper bounds for

𝜏(H, v,w).

Lemma 18 Let a > e2. Then for any 1 ≤ i < j ≤ n and any v ∈ Vi, w ∈ Vj we have

P{𝜏(H, v,w) > 2aL∕(e2𝛿)} ≤ exp(L − aL∕(2e2)) + exp(−aL∕(e2𝛿)).

Proof Consider the following greedy algorithm for finding a path from v to w: The path starts at v
(which is in Vi). When the path has reached some vertex x ∈ Vk, for k < j − 1, the algorithm extends

the path by taking the minimum-weight edge joining x to some vertex in Vk+1. When the algorithm

reaches some x ∈ Vj−1, it takes the edge xw.

Let m = j − i. Each of the first m − 1 edges in the resulting path has a weight that is the minimum

of 𝛿 exponential(1) random variables. Thus, the sum of weights of these edges is the sum of m − 1

exponential(𝛿) random variables, that is, a Gamma(m− 1, 𝛿) random variable. The weight of the final

edge is an exponential(1) random variable. Thus we find

P
{
𝜏(H, v,w) > 2aL∕(e2𝛿)

} ≤ P
{
Gamma(m − 1, 𝛿) + exponential(1) > 2aL∕(e2𝛿)

}
≤ P

{
Gamma(m − 1, 𝛿) > aL∕(e2𝛿)

}
+ P

{
exponential(1) > aL∕(e2𝛿)

}
≤ P

{
Gamma(L, 𝛿) > aL∕(e2𝛿)

}
+ exp(−aL∕(e2𝛿))

≤ exp(L − aL∕(2e2)) + exp(−aL∕(e2𝛿)).
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· · ·

H

I

FIGURE 3 The lower bound graph G. Dashed segments denote subdivided edges (paths of length ⌈aL∕𝛿⌉)

The first inequality follows from the discussion above. The second inequality follows from the union

bound. The third inequality is because a Gamma(L, 𝛿) random variable stochastically dominates a

Gamma(m−1, 𝛿) random variable, and the definition of the exponential distribution. The final equality

follows from the tail bound (2). ▪

8.2 The Subdivided Tree I

Next, we consider a tree I that is obtained by starting with a perfect binary tree3 having L leaves

and then subdividing each edge incident to a leaf ⌈aL∕𝛿⌉ − 1 times so that each leaf-incident edge

becomes a path of length ⌈aL∕𝛿⌉. Note that I has height ⌈aL∕𝛿⌉ + log2 L − 1 (we assume L is a

power of 2).

We next show that the infection spreads rather slowly in I, namely we prove lower bounds for

𝜏(I, v,w).

Lemma 19 For any distinct leaves v and w we have P{𝜏(I, v,w) ≤ 2aL∕(e2𝛿)} ≤ exp(−2aL∕𝛿).

Proof The path from v to w in I contains at least 2⌈aL∕𝛿⌉ edges. Therefore, the weight of this path

is lower-bounded by the sum of 2⌈aL∕𝛿⌉ independent exponential(1) random variables. The lemma

then follows by applying (1) to this sum.
▪

8.3 Putting it Together

The lower-bound graph G is now constructed by taking a tree I with L leaves and a graph H with L
groups V1,… ,VL each of size 𝛿 = ⌊(Δ− 1)∕2⌋. Next, we consider the leaves of I in the order they are

encountered in a depth first-traversal of I and, for each i ∈ {1,… ,L} we identify the ith leaf of I with

some vertex in Vi. See Figure 3.

3A perfect binary tree, sometimes called a complete binary tree, is a binary tree in which all vertices have 0 or 2 children, and

all leaves have the same depth: https://xlinux.nist.gov/dads/HTML/perfectBinaryTree.html

https://xlinux.nist.gov/dads/HTML/perfectBinaryTree.html
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Lemma 20 For any vertex s ∈ V1 in the graph G described above, we have

P{h( (G, s)) < L − 1} ≤ L2
(
exp((1 − a∕2e2)L) + exp(−aL∕(e2𝛿)) + exp(−2aL∕𝛿)

)
Proof Recall that  (G, s) is the shortest-path tree rooted at s for the first-passage percolation in G.

If this tree contains no edge of I, its height is at least L − 1. If it does use some edge of I, then there

must be two leaves v and w of I such that 𝜏(I, v,w) ≤ 𝜏(H, v,w). Since there are
(L

2

)
< L2 choices for

the pair {v,w}, using Lemma 18 and 19, we can bound the probability of this event by

L2 (P{𝑑H(v,w) > 2aL∕𝛿} + P{𝑑I(v,w) < 2aL∕𝛿})
≤ L2

(
exp((1 − a∕2e2)L) + exp(−aL∕(e2𝛿)) + exp(−2aL∕𝛿)

)
,

which proves the lemma. ▪

We now have all the ingredients to prove the main theorem of this section, Theorem 17.

Proof of Theorem 17 Let a = 4e2, 𝛿 = (Δ−1)∕2, and let L be the largest power of 2 that is not larger

than DΔ∕8a. Let G be the graph described above. The maximum degree of G is 2𝛿 + 1 = Δ, and the

diameter of G is bounded by

2(aL∕𝛿 + log2 L) ≤ 2(a × (DΔ∕8a)∕(Δ∕2) + log2(DΔ∕8a)) ≤ D,

and its number of vertices is

n = L𝛿 + (2L − 1) + L(aL∕𝛿 − 1) < L(𝛿 + 1 + aL∕𝛿).

We have

L ≥ DΔ∕4a = Ω(DΔ + Δ ln L + Δ ln(𝛿 + 1 + aL∕𝛿)) = Ω(Δ ln n + ΔD).

By Lemma 20, there exists a vertex s such that

P{h( (G, s) ≥ Ω(Δ ln n + ΔD))}
≥ P{h( (G, s) ≥ L − 1)}
≥ 1 − L2

(
exp((1 − a∕2e2)L) − exp(−aL∕(e2𝛿)) − exp(−2aL∕𝛿)

)
= 1 −

(
exp(−L + 2 ln L) − exp(−8L∕Δ + 2 ln L) − exp(−16e2L∕Δ + 2 ln L)

)
= 1 − oL(1) = 1 − on(1),

completing the proof. ▪

9 LOWER BOUNDS FOR DEGENERATE GRAPHS

Theorem 17 shows that Theorem 4 cannot be strengthened without knowing more about G than its

number of vertices, maximum degree, and diameter. Theorem 6 provides a stronger upper bound under

the assumption that G is 𝑑-degenerate. In this section we show that Theorem 6 is also tight, even when

restricted to very special subclasses of 𝑑-degenerate graphs.
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· · ·

V1 V2 V3 V4 V5 V6 VL−1 VL

FIGURE 4 The graph H in the proof of Theorem 21

First we show that the bound given by Theorem 6 for O(1)-degenerate graphs is tight, even when

we restrict our attention to planar graphs, which are 5-degenerate. Since planar graphs have genus 0,

this lower bound also shows that Theorem 8, which applies to bounded genus graphs, is tight.

Theorem 21 There exists an absolute constant c > 0 such that for any Δ > 1 and D ≥ 106 lnΔ
there exists a planar graph with diameter ≤ D, maximum degree ≤ Δ, and a vertex s such that with
probability 1 − on(1) we have h( (G, s)) > c

√
Δ(D + ln n).

Proof Let C = 105, a = e2C, 𝛿 = Δ∕2, and L = D
√
𝛿∕3a, and Let H be the graph shown in Figure 4,

where each Vi has 𝛿 vertices. Let I be the perfect binary tree with L leaves, with each leaf-incident

edge subdivided aL∕
√
𝛿 − 1 times. Let G be the graph obtained from identifying the ith leaf of I with

an arbitrary vertex from Vi. Note that G is a planar graph with maximum degree 2𝛿 = Δ, diameter

2(aL∕
√
𝛿 + 1 + log2 L) ≤ D, and n = 𝛿L + L − 1 + (2L − 1) + L(aL∕𝛿 − 1) = O(𝛿L + L2∕𝛿) vertices.

Let s be an arbitrary vertex in V1. Since L = Ω(
√
Δ(D + ln n)), to complete the proof, we need only

show that with probability 1 − on(1) we have h( (G, s)) ≥ 2L − 2.

Choose an arbitrary vertex t ∈ VL. Let  denote the event 𝜏(H, s, t) ≤ CL∕
√
𝛿, and let  denote

the event “for all pairs” v and w of leaves of I we have 𝜏(I, v,w) > CL∕
√
𝛿. Note that if both  and 

happen, then the path in  (G, s) from s to t uses edges from H only, which implies the height of this

tree is at least 2L − 2. To complete the proof via the union bound, we need only show that each of 
and  happen with probability 1 − oL(1) = 1 − on(1).

We start with . In H, one can go from the vertex in-between Vi and Vi+1 to the vertex in-between

Vi+1 and Vi+2 by taking a path whose weight is distributed as a Y𝛿,1 random variable (recall the definition

of a Ya,b random variable from Section 2). Therefore, we have

𝜏(H, s, t) = X1 + X2 +
L−2∑
i=1

Zi,

where X1,X2 are independent exponential(1) random variables (weights of the first and last edges),

and Zi’s are independent Y𝛿,1 random variables. Since C∕3 ≥ 3 × (64 + 1024), Using Lemma 1

(concentration for the sum of Ya,b random variables) we have

1 − P{} ≤ 2 P

{
X1 > CL∕3

√
𝛿

}
+ P

{L−1∑
i=1

Zi > CL∕3
√
𝛿

}
≤ 2 exp

(
−CL∕3

√
𝛿

)
+ exp(−(L − 2)∕9) = oL(1)
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· · ·

V1 V2 V3 V4 V5 V6 VL

V1 V2́ V3́ V4́ V5́ VĹ−1

· · ·

· · ·

´

FIGURE 5 The 𝑑-degenerate graph H used in the proof of Theorem 22. In this example, 𝛿 = 7 and 𝑑 = 3 [Color Figure can

be viewed at wileyonlinelibrary.com]

We now prove happens with high probability. The path connecting any pair of leaves of I contains

at least 2aL∕
√
𝛿 edges, each of them having an independent exponential(1) weight. Therefore, using

union bound over all pairs and using (1) we get

1 − P{} ≤
(

L
2

)
× P{Gamma(2aL∕

√
𝛿, 1) ≤ CL∕

√
𝛿} ≤ L2 × (eC∕2a)2aL∕

√
𝛿 = oL(1),

completing the proof. ▪

Next we describe a lower-bound construction that is 𝑑-degenerate, has thickness 𝑑 and treewidth

O(𝑑). This construction shows that Theorem 6 is asymptotically tight for all values 𝑑 ≤ Δ (with certain

restrictions etc.).

Theorem 22 There exists an absolute constant c > 0 such that for any Δ > 1 with D ≥ 106 lnΔ and
𝑑 < Δ, there exists a graph G with diameter ≤ D, maximum degree ≤ Δ, and the following properties:

(i) G is 𝑑-degenerate, has thickness ≤ 𝑑 and treewidth ≤ 2𝑑 + 1.
(ii) G has a vertex s such that with probability 1 − on(1) we have h( (G, s)) > c

√
𝑑Δ(D + ln n).

Proof Let C = 105, a = e2C, 𝛿 = Δ∕2, L = D
√
𝑑Δ∕8a, and let H be the graph shown in

Figure 5, where each Vi has 𝛿 vertices and each V ′
i has 𝑑 vertices, and each of the pairs (V1,V ′

1
),

(V ′
1
,V2), (V2,V ′

2
), etc. forms a complete bipartite graph. Let I be the perfect binary tree with L leaves,

with each leaf-incident edge subdivided aL∕
√
𝑑𝛿 − 1 times. Consider the leaves of I in the order

they are encountered in a depth first-traversal, for each i ∈ {1,… ,L} identify the ith leaf of I with

some vertex in Vi. Let G be the resulting graph. Note that G has maximum degree 2𝛿 = Δ, diameter

≤ 2(1+aL∕
√
𝑑𝛿+ log2 L) ≤ D, and n = (𝛿+𝑑)L+2L−1+L(aL∕𝑑𝛿−1) = O(ΔL+L2∕𝑑Δ) vertices.

(i) Graph G is 𝑑-degenerate because the vertices of degree greater than 𝑑 form an independent set.

Therefore, every induced subgraph of G is either an independent set (so has a vertex of degree 0) or

contains a vertex of degree at most 𝑑.

To see that G has thickness 𝑑, for each i = 1,… ,L, assign to each vertex of V ′
i a distinct color

from one of 𝑑 color classes. Now partition the edges incident to these vertices among 𝑑 subgraphs

depending on the color of the vertex they are incident to. Edges not incident to these vertices can be

assigned to any subgraph. With this partition of edges, each subgraph becomes a subgraph of the planar

graph used in the proof of Theorem 21.

http://wileyonlinelibrary.com
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To see that G has treewidth 2𝑑 + 1, we build a tree decomposition of G with bags of maximum

size 2𝑑 + 2. For convenience, we define V0 = VL+1 = ∅.

We begin with a tree T ′ of empty bags that has the same shape as I. For each vertex v of I, let Bv
denote the bag of v.

1. Assign each vertex of v of I to Bv and to the (up to 2) children of Bv in T ′.

2. Let v1,… , vL be the leaves of I ordered so that each vi ∈ Vi. In the leaf bag Bvi of T ′ we add

all vertices in V ′
i−1

and V ′
i .

Now each vertex in V ′
i appears in Bvi and Bvi+1

; so we add all vertices of V ′
i to each of the

bags on the path in T ′ from Bvi to Bvi+1
.

3. Finally, to each Bvi we attach 𝛿− 1 bags as leaves of T ′; in each bag we put all the vertices in

V ′
i ∪ V ′

i+1
, and a distinct vertex of Vi ⧵ {vi}. We call each such bag Bv, where v is the unique

vertex of Vi ⧵ {vi} contained in the bag.

No bag contains more than 2𝑑 + 2 vertices: for a leaf vi, Bvi contains vi and its parent, as well as

vertices in V ′
i−1

∪V ′
i . For a nonleaf vertex v of I, observe that (in any binary tree) there are at most two

distinct indices i, j such that v lies on the (vi, vi+1)-path in I and on the (vj, vj+1)-path, hence Bv contains

v and its parent, as well as possibly V ′
i and V ′

j . For each v ∈ Vi ⧵ {vi}, Bv contains at most 2𝑑 + 1

vertices; v and the vertices in V ′
i−1

∪ V ′
i .

For each edge vw of G, there is some bag that contains both v and w: If vw is an edge of T with v
a child of w then Bv contains both v and w. Otherwise, v ∈ Vi and w ∈ V ′

i−1
or w ∈ V ′

i , in which case

v and w appear in Bv.

Finally, for each vertex v of G, the subgraph of T ′ induced by bags containing v is connected: For

a vertex v ∈ I this subgraph is either an edge or a single vertex. For a vertex v ∈ Vi this subgraph is a

single vertex. For a vertex v ∈ V ′
i this subgraph is a path joining two vertices of T ′.

Therefore, T ′ is a tree-decomposition of G whose largest bag has size 2𝑑 + 2, and thus treewidth

of G is at most 2𝑑 + 1.

(ii) Let s be an arbitrary vertex in V1. Since L = Ω(
√
𝑑Δ(D+ ln n)), to prove part (ii) we need only

show that with probability 1 − on(1) we have h( (G, s)) ≥ 2L − 2.

Choose an arbitrary vertex t ∈ VL. Let  denote the event 𝜏(H, s, t) ≤ CL∕
√
𝑑𝛿, and let  denote

the event “for all pairs” v and w of leaves of I we have 𝜏(I, v,w) > CL∕
√
𝑑𝛿. Note that if both  and

 happen, then the path in  (G, s) from s to t uses edges from H only, which implies the height of this

tree is at least 2L − 2. To complete the proof via the union bound, we need only show that each of 
and  happen with probability 1 − oL(1) = 1 − on(1).

We start with . In H, one can go from a given vertex in V ′
i to some vertex in V ′

i+1
by taking

a path whose weight is distributed as a Y𝛿,𝑑 random variable. Therefore, 𝜏(H, s, t) is stochastically

dominated by

X1 + X2 +
L−2∑
i=1

Zi,

where X1,X2 are independent exponential(1) random variables (weights of the first and last edges), and

Zi’s are independent Y𝛿,𝑑 random variables. Since C∕3 ≥ 3×(64+1024), using Lemma 1 (concentration

for the sum of Ya,b random variables) we have

1 − P{} ≤ 2 P{X1 > CL∕3
√
𝑑𝛿} + P{

L−2∑
i=1

Zi > CL∕3
√
𝑑𝛿}

≤ 2 exp(−CL∕3
√
𝑑𝛿) + exp(−(L − 2)∕9) = oL(1)
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We now prove happens with high probability. The path connecting any pair of leaves of I contains

at least 2aL∕
√
𝑑𝛿 edges, each of them having an independent exponential(1) weight. Therefore, using

union bound over all pairs and using (1) we get

1 − P{} ≤
(

L
2

)
× P{Gamma(2aL∕

√
𝑑𝛿, 1) ≤ CL∕

√
𝑑𝛿} ≤ L2 × (eC∕2a)2aL∕

√
𝑑𝛿 = oL(1),

completing the proof. ▪
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APPENDIX A

A1 PROOF OF LEMMA 1

We will use the following inequality, which holds for any positive integer k and any real number 𝜆 (see

[10, Theorem 5.1(ii)]):

P{Gamma(k, 1) ≥ 𝜆k} ≤ exp(1 − 𝜆). (A.1)

We will also use the following inequality, which holds for any binomial random variable X, and

any M ≤ E[X] (see [12, Theorem 2.3(c)]):

P{X < M∕2} ≤ exp(−M∕8). (A.2)

We will use the following version of Bernstein’s inequality (see Theorem 2.10 and Corollary 2.11

in [6]).

Theorem 23 (Bernstein’s inequality) Let X1,… ,Xm be non-negative independent random variables
for which there exist v, c satisfying

m∑
i=1

E[Xp
i ] ≤ vp!cp−2∕2

for all positive integers p ≥ 2. Then for any t > 0 we have

P

{ m∑
i=1

(Xi − E[Xi]) ≥ ct +
√

2vt

}
≤ e−t,

and

P

{ m∑
i=1

(Xi − E[Xi]) ≥ t

}
≤ exp

(
− t2

2v + 2ct

)
,

We begin with a helper lemma.
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Lemma 24 For any t we have

P{Ya,b > t} ≤ exp(−at∕64) + exp(−abt2∕1024).

Proof First, consider the case t > 4. Note that there exist a independent root-to-leaf paths, the weight

of each is Gamma(2, 1). Hence, using (A.1) and since t ≥ 4,

P{Ya,b > t} ≤ P{Gamma(2, 1) > t}a ≤ (exp(1−t∕2))a ≤ (exp(−t∕4))a = exp(−at∕4) ≤ exp(−at∕64).

The case t ≤ 0 is trivial, so we consider the case 0 ≤ t ≤ 4. Note that for such t we have 1 −
exp(−t∕2) ≥ t∕8. We say a node in the tree survives if each of the edges on its path to the root have

weight at most t∕2. Note that Ya,b > t implies no node at level 2 survives. The probability that a node

at level 1 (children of the root) survives is 1 − exp(−t∕2), so the number of surviving nodes at level 1,

S1, is a binomial random variable with mean a(1 − exp(−t∕2)) ≥ at∕8. From (A.2) we have

P{S1 < at∕16} ≤ P{S1 < E[S1]∕2} ≤ exp(−E[S1]∕8) ≤ exp(−at∕64).

Conditioned on S1 ≥ at∕16, the number of surviving nodes at level 2, S2, is a binomial random

variable with mean S1b(1 − exp(−t∕2)) ≥ abt2∕128, so using (A.2) again we have

P{Ya,b > t|S1 ≥ at∕16} ≤ P{S2 = 0|S1 ≥ at∕16} ≤ P{S2 < abt2∕256|S1 ≥ at∕16}
≤ exp(−abt2∕1024),

completing the proof. ▪

We are now ready to prove Lemma 1. Let X1,… ,Xm be i.i.d. distributed as Ya,b for some a, b. Then

we want to prove E[X1] = O(1∕a + 1∕
√

ab) and moreover,

P

{ m∑
i=1

Xi ≥ 3m(64∕a + 1024∕
√

ab)

}
≤ exp(−m∕9).

Let 𝑑1 = a∕64 and 𝑑2 = ab∕1024. For any positive integer p, by Lemma 24 we have

E[Xp
1
] = ∫

∞

0

P{X1 > t1∕p}𝑑t ≤ ∫
∞

0

exp(−𝑑1t1∕p) + ∫
∞

0

exp(−𝑑2t2∕p)

For any positive numbers c, 𝛼, we have

∫
∞

0

exp(−ct𝛼)𝑑t = ∫
∞

0

exp(−x)x1∕𝛼−1

𝛼c1∕𝛼 𝑑x = c−1∕𝛼

𝛼 ∫
∞

0

e−xx1∕𝛼−1 =
c−1∕𝛼Γ(1∕𝛼)

𝛼
, (A.3)

whence,

E[Xp
1
] ≤ p𝑑−p

1
Γ(p) + p𝑑−p∕2

2
Γ(p∕2)∕2

In particular, setting p = 1 gives E[X1] ≤ 64∕a + 1024∕
√

ab =∶ c. Let v = 4c2m. For p ≥ 2, we have

m∑
i=1

E[Xp
i ] ≤ mp𝑑−p

1
Γ(p) + mp𝑑−p∕2

2
Γ(p∕2)∕2 ≤ mp!𝑑−p

1
+ mp!𝑑−p∕2

2
∕2 ≤ vp!cp−2∕2.
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Bernstein’s inequality (Theorem 23) gives that for all t,

P

{ m∑
i=1

Xi ≥ m
(

64∕a + 1024∕
√

ab
)
+ ct + 3c

√
mt

}
≤ e−t,

and choosing t = m∕9 completes the proof of the lemma.


