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Estimation of a Density Using Real and Artificial
Data

Luc Devroye, Tina Felber, and Michael Kohler

Abstract—Let X , X1, X2, . . . be independent and identically
distributed Rd-valued random variables and let m : Rd → R
be a measurable function such that a density f of Y = m(X)
exists. Given a sample of the distribution of (X,Y ) and additional
independent observations of X we are interested in estimating
f . We apply a regression estimate to the sample of (X,Y ) and
use this estimate to generate additional artificial observations
of Y . Using these artificial observations together with the real
observations of Y we construct a density estimate of f by using a
convex combination of two kernel density estimates. It is shown
that if the bandwidths satisfy the usual conditions and if in
addition the supremum norm error of the regression estimate
converges almost surely faster towards zero than the bandwidth
of the kernel density estimate applied to the artificial data, then
the convex combination of the two density estimates is L1–
consistent. The performance of the estimate for finite sample
size is illustrated by simulated data, and the usefulness of the
procedure is demonstrated by applying it to a density estimation
problem in a simulation model.

Index Terms—Consistency, density estimation, L1–error, non-
parametric regression.

I. INTRODUCTION

LET X , X1, X2, . . . be independent and identically dis-
tributed Rd-valued random variables and let m : Rd → R

be an unknown measurable function such that a density f of
Y = m(X) exists. The distribution of X is unknown—its
measure will be denoted by µ. The density f of Y = m(X)
must be estimated, and estimates will be compared on the basis
of total variation distance.

This problem is substantially different from that of the
estimation of the regression function m, as will be apparent
from the discussion below. Note also that X does not have
to have a density. In R2, consider X = (U,U), where U
is uniform on [0, 1], and set Y = m(X) = U . Then Y is
uniformly distributed, yet X does not have a density. In R1,
a more intricate example involving the Cantor set shows that
X has in general not a density. Let the ternary expansion
of X ∈ (0, 1) be 0.b1b2 . . ., where b1, b2, . . . are i.i.d. and
uniformly drawn from {0, 2}. Then X does not possess a
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density. Define the mapping m by the binary expansion of
m(X), given by 0.(b1/2)(b2/2) . . .. Since the bits in this
expansion are i.i.d. and uniform on {0, 1}, Y = m(X)
is uniformly distributed on [0, 1]. However, if Y has a
density, then X is non-atomic, i.e., continuous: its distribution
function is continuous. We do not wish to assume anything
about the underlying distribution of X .

We distinguish between three data models:
• (i) In the classical model, we have one data size constant,
n, and we observe the i.i.d. sequence

X1, . . . , Xn,

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

• (ii) In the finite information model, we have two data size
constants, n and N , and we observe the i.i.d. sequence

X1, . . . , Xn, Xn+1, . . . , Xn+N

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

This model is of interest in many applications, where
the source of the Xi’s is cheap and readily available, but
the measurements Yi are expensive or rare. Especially
internet data fit this set-up.

• (iii) In the full information model, which corresponds to
N = ∞, we assume that µ, the distribution of X , is
known, and that we have access to

X1, . . . , Xn,

(drawn from the distribution of X), and

Yi = m(Xi), 1 ≤ i ≤ n.

This model is of theoretical interest, as it delineates how
far one can push the boundary in the finite information
model.

The present paper takes a first look at the problem at hand,
namely the estimation of the density f of Y for the finite
information model (ii). It is of particular interest to learn how
the presence of additional X-data (case (ii) with N > 0)
can aid with the estimation. We present a new estimator,
and are broadly concerned with its consistency under the
widest possible conditions, never assuming anything about the
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underlying distribution of X . We also point out avenues of
future research on this set of problems.

The safest way to approach this matter is by ignoring the
Xi’s altogether. In this case f can be estimated by applying,
e.g., a standard kernel density estimate ([28], [29]) defined by

fn(y) =
1

nhn
·
n∑
i=1

K

(
y − Yi
hn

)
with some kernel function K : R→ R which is a density (e.g.,
the naive kernel K(u) = 1/2 · 1[−1,1]) and some bandwidth
hn > 0, which is a parameter of the estimate. For this estimate
it is known that

hn → 0 (n→∞) and n · hn →∞ (n→∞)

imply that the estimate is L1–consistent for all densities (cf.,
[24] and [7]): ∫

|fn(x)− f(x)| dx→ 0

almost surely as n→∞. By Scheffé’s Lemma (see, e.g., [10])
this implies that the estimated distribution converges to the true
distribution in total variation distance and hence the above L1–
consistent density estimate allows simultaneous estimation of
all probabilities. For general results in density estimation we
refer to the books of [10], [8] and [12].

Improvements in the performance can be achieved in model
(i) if additional information about m is available. This will not
be our focus. In model (ii), without assuming anything about
m or X , there is indeed help in the form of additional Xi’s.
We achieve this by estimating m by mn based on the data

Dn = {(X1, Y1), . . . , (Xn, Yn)},

which allows us to generate artificial (approximate) observa-
tions of Y = m(X) via Ŷi = mn(Xn+i) (i = 1, . . . , N). In
a second step we apply separately kernel density estimates to
the data sets Y1, . . . , Yn and Ŷ1, . . . , ŶN and use a convex
combination of the resulting two density estimates as an esti-
mate of f . The L1–error of this estimate depends in particular
on the interplay between the error of the estimate mn and the
bandwidth of the second kernel density estimate. In our main
result we give sufficient conditions for the L1–consistency of
our estimate, and under suitable smoothness conditions on m
we are able to show that our density estimate is indeed L1–
consistent. Furthermore we indicate under which condiditons
our estimate should achieve a better rate of convergence than
the simple estimate mentioned above, and these observations
are confirmed in our simulation part. As an application we
consider a density estimation method in a simulation method.

Estimation of m from the data Dn can be done via re-
gression estimation, a field studied already over many years.
The most popular estimates include kernel regression estimate
(cf., e.g., [26], [27], [33], [14], [30], [31] or [13], partitioning
regression estimate (cf., e.g., [18] or [2] nearest neighbor re-
gression estimate (cf., e.g., [6] or [11]), least squares estimates
(cf., e.g., [23] or [21]) or smoothing spline estimates (cf., e.g.,
[32] or [22]). For a detailed introduction to nonparametric
regression we refer to [19].

Our analysis depends critically on the connection between
the error of the regression estimate and the error of the density
estimate. A similar phenomenon occurs in density estimation
of the density of residuals of a regression model (cf., e.g., [1],
[5], [16], [17] or [9]), and in our proof we apply techniques
related to the ones in [9]. Our data set can be considered
as one data set (X1, Y1), . . . , (Xn, Yn) with labels and one
unlabelled data set Xn+1, Xn+2, . . . and our procedure can be
considered as semi-supervised learning for density estimation,
which is usually studied in the context of pattern recognition
(cf., e.g., [3], [4] and the wide-ranging literature cited therein.)

The classical model forces one to work with Y1, . . . , Yn,
i.e., the input data are one-dimensional, and the nature of
the mapping m is irrelevant, as is the underlying distribution
of X . It is surprising that with additional information on the
distribution of X , one can improve the estimate of the density
of m(X). Situations in which this is possible are plentiful.
Consider the Xi’s as internet data on users or web sites. Let
Yi = m(Xi) be the outcome of an action of a user, such as a
purchase or investment. While the number of Xi’s is virtually
unlimited, the number of users i for which Yi = m(Xi) is
known is limited, because not everyone performs the action.
The finite information model (ii) introduced above corresponds
to this. In a second example, the Xi’s represent medical data
on patients. For a smallish subset of the patients, the outcome
of a treatment is known: Yi = m(Xi). What we point out is
that all data, even those of patients who have not undergone
the treatment, can help in the estimation of the density of
m(X).

The outline of the paper is as follows: We start in Section
2 with a discrete analog of the problem, where we illustrate
the potential usefulness of the artificial data. Then we present
in Section 3 a general consistency result for a newly proposed
estimate in the general finite information model, indicate in
Section 4 how in a special situation the used regression
estimate might be improved drastically, investigate in Section
5 the performance of the estimate from Section 3 for finite
sample size by simulated data and illustrate the usefulness of
the procedure by applying it to a density estimation problem
in a simulation model, and give an outlook in Section 6. The
proof of our main result is given in the Appendix.

II. THE DISCRETE ANALOG

In the discrete version of this problem, X is a random
variable on the positive integers with

pi = P{X = i}.

There is an unknown function m on the positive integers. The
objective is to estimate the distribution of the atomic random
variable m(X). Since m itself takes only countably many
values, the canonical version of the problem is such that m
itself takes values in the positive integers. We define

qj = P{m(X) = j},

and are interested in estimating qj from data such that the total
variation error is small.

We would like to investigate how the additional data
Xn+1, . . . , Xn+N can help in the estimation. Since models
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(i) and (iii) described in Section 1 correspond to N = 0 and
N = ∞, respectively, it should be clear that we should first
try to compare (i) and (iii). In case (i), it is difficult to improve
on the empirical estimate,

qn,j =
1

n

n∑
i=1

I[m(Xi)=j], j ≥ 1.

Note that nqn,j is binomial (n, qj), and hence qn,j is an
unbiased estimate of qj . The expected total variation error is
easily bounded:

∑
j

E{|qj − qn,j |} = 2
∑
j

E{(qj − qn,j)+}

≤ 2
∑
j

min

(
qj ,
√

Var{qn,j}
)

= 2
∑
j

min

(
qj ,
√
qj(1− qj)/n

)
.

If
∑
j

√
q
j
< ∞, then the upper bound is O(1/

√
n). In all

but the trivial case that qj = 1 for some j, the expected total
variation error ∑

j

E{|qj − qn,j |}

tends to 0 at the rate 1/
√
n or slower, because if qk ∈ (0, 1)

for some k ∈ N then

E{|qk − qn,k|}
1/
√
n

→ 0 (n→∞)

implies that
√
n · (qn,k − qk)√
qk · (1− qk)

→ 0 in L1

which is a contradiction to the central limit theorem.
In case (iii), the situation is remarkably different. Let

A = {X1, . . . , Xn} with duplicates removed. If i ∈ A, m(i)
is known. If i 6∈ A, m is unknown and cannot possibly be
guessed. Since

qj = P{m(X) = j} =
∑
i

piI[m(i)=j],

we set
qn,j =

∑
i∈A

piI[m(i)=j].

Clearly, 0 ≤ qn,j ≤ qj , and we do not have the unbiasedness
we enjoyed in case (i). However, the expected total variation
error has a simple and universal expression that is the same
(!!!) for all choices of m. First note that the total variation
error is∑
j

(qj − qn,j) =
∑
j

(∑
i

piI[m(i)=j] −
∑
i∈A

piI[m(i)=j]

)
=

∑
i

pi −
∑
i∈A

pi

=
∑
i 6∈A

pi.

Thus, the expected total variation error is∑
i

piP{i 6∈ A} =
∑
i

pi(1− pi)n.

This error tends to zero with n in all cases, and the rate
of decrease depends upon the tail of {pi}. However, it is
much better than for (i). To wit, consider X with compact
support. Then the expected total variation error tends to 0 at
an exponential rate in n.

It is of interest to see how the finite information model
interpolates between these two behaviors.

III. THE GENERAL FINITE INFORMATION MODEL

In the sequel we consider the general finite information
model, where we introduce a new density estimate and study
its consistency.

In the definition of our generic estimate, we first apply a
suitably defined regression estimate mn to the data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

in order to estimate m : Rd → R. Then we use the estimate
mn of m in order to define an artificial sample of Y . To do
this, we choose the size N of this sample and define artificial
data via

Ŷ1 = mn(Xn+1), . . . , ŶN = mn(Xn+N ).

Next we apply standard kernel density estimates separately to
the data Y1, . . . , Yn and Ŷ1, . . . , ŶN . Let K be the so-called
naive kernel defined by

K(u) =
1

2
· I[−1,1](u) (u ∈ R),

let hn > 0 and ĥN > 0 and define

fn(y) =
1

n · hn
·
n∑
i=1

K

(
y − Yi
hn

)
and

f̂N (y) =
1

N · ĥN
·
N∑
i=1

K

(
y − Ŷi
ĥN

)
.

Finally we use a convex combination of these two estimates
as estimate of f , i.e., we choose a weight

wn = wn (Dn, Xn+1, . . . , Xn+N ) ∈ [0, 1]

and estimate f by

gn = wn · fn + (1− wn) · f̂N .

The precise choice of weight function is left open, as is
the choice of regression function estimate mn. The first
business at hand is to determine the consistency of the
generic estimate. Since we do not impose restrictions on wn,
the choice wn = 0 and wn = 1 imply that both fn and f̂N
must be consistent. The latter can only happen if N → ∞.
Also, the performance of mn is critical. For example, if one
lets mn be the nearest neighbor regression function estimate
(mn(x) = m(Xi) if Xi is the nearest neighbor of x), then is
the atomic nature of such mn a problem for the consistency
of f̂N? The consistency theorem we present in the next
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section takes a higher view, and gives a natural technical
condition that links mn to ĥN .

Our main result is the following theorem.

Theorem 1: Let X , X1, X2, . . . be independent and iden-
tically distributed Rd-valued random variables and let m :
Rd → R be a measurable function such that a density f of
Y = m(X) exists. Set Yi = m(Xi) (i ∈ N). Let K be
the naive kernel and for n ∈ N let N ∈ N, hn > 0 and
ĥN > 0. Given (X1, Y1), . . . , (Xn, Yn), Xn+1, Xn+2, . . . ,
and a regression estimate mn let gn be the estimate of f
as defined in Section 2. Assume that N = N(n) → ∞ as
n→∞, and that

max(hn, ĥn) → 0 (n→∞),

n ·min(hn, ĥn) → ∞ (n→∞). (1)

Assume furthermore the following on mn: for every ε > 0,
n ∈ N, there exists a (random) set An,ε = An,ε(Dn) ⊆ Rd
such that

lim
n→∞

P{µ{Acn,ε} > ε} = 0 (2)

and

‖mn −m‖∞,An,ε
ĥN

=
supx∈An,ε |mn(x)−m(x)|

ĥN
= o(1)

(3)
in probability. Then, regardless of how wn is chosen,∫

R
|gn(y)− f(y)| dy → 0

in probability. [In particular,
∫
R

∣∣∣f̂N (y)− f(y)
∣∣∣ dy = o(1) in

probability as well.] If, in addition,

lim sup
n→∞

µ{Acn,ε} ≤ ε (4)

almost surely and

‖mn −m‖∞,An,ε
ĥN

=
supx∈An,ε |mn(x)−m(x)|

ĥN
= o(1)

(5)
almost surely then∫

R
|gn(y)− f(y)| dy → 0

almost surely.

Proof. The proof is given in the Appendix.
Conditions (3) and (5) can be derived from rate of
convergence results for nonparametric regression estimates.
A less cumbersome, but weaker, consistency result is the
following

Corollary 1: Let X , X1, X2, . . . be independent and
identically distributed Rd-valued random variables and let
m : Rd → R be a measurable function such that a density
f of Y = m(X) exists. Let K be the naive kernel and for
n ∈ N let N ∈ N, hn > 0 and ĥN > 0. Set Yi = m(Xi)
(i ∈ N). Given (X1, Y1), . . . , (Xn, Yn), Xn+1, Xn+2, . . . ,
and a regression estimate mn let gn be the estimate of f as

defined in Section 2. Assume that (1) holds.

(i) If, in addition,

E

∫
|mn(x)−m(x)|2µ(dx) = E

(
|mn(X)−m(X)|2

)
= o

(
ĥ2N

)
, (6)

then, regardless of the choice of wn,∫
R
|gn(y)− f(y)| dy → 0

in probability.

(ii) If, in addition,∫
|mn(x)−m(x)|2µ(dx)

ĥ2N
→ 0 (7)

almost surely, then, regardless of the choice of wn,∫
R
|gn(y)− f(y)| dy → 0

almost surely.

Proof. In order to prove (i), choose an ∈ R+ such that

E
∫
|mn(x)−m(x)|2µ(dx)

a2n
= o(1) (8)

and
an

ĥN
= o(1). (9)

In order to show (ii), choose an = an(Dn) ∈ R+ such that∫
|mn(x)−m(x)|2µ(dx)

a2n
= o(1) (10)

almost surely and
an

ĥN
= o(1) (11)

almost surely. In both cases set

An,ε =
{
x ∈ Rd : |mn(x)−m(x)| ≤ an

}
.

Then
‖mn −m‖∞,An,ε

ĥN
≤ an

ĥN
→ 0

almost surely by (9) or (11), respectively. Furthermore, by
Markov’s inequality we have

µ(Acn,ε) ≤
∫
|mn(x)−m(x)|2µ(dx)

a2n
,

so (2) and (4) are implied by (8) and (10), resp. Application
of Theorem 1 yields the assertion. �

Remark 1. It is an open problem how to choose the
bandwidths of the estimates above in a data-dependent way
such that the consistency theorem still holds and the estimate
behaves well in practice. In view of the minimization of the
L1 error it would be in particular interesting to try to use the
combinatorial method of [12] in this context.
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Remark 2. In this paper Y is defined by applying a
deterministic function m to X . In case that the relation is
given by a regression model

Y = m(X) + ε,

where ε is the random error satisfying E(ε
∣∣ X) = 0 a.s. and

the aim is to estimate a density of m(X), it follows from the
proofs that Theorem 1 and Corollary 1 remain valid if we set
wn = 0.

Remark 3. The techniques introduced in the proofs of
Theorem 1 and Corollary 1 can be applied in the context of
estimation of the density of the residuals in a nonparametric
regression model. Here we assume that Y − m(X) has a
density f , and we try to estimate f using the data (X1, Y1),
. . . , (X2n, Y2n). To do this, we compute first a regression
estimate mn(x) = mn(x,Dn) and use then

f̂n(x) =
1

n · hn
·
n∑
i=1

K

(
x− (Yn+i −mn(Xn+i))

hn

)
as estimate of f . Assume hn → 0 (n → ∞), n · hn → ∞
(n→∞) and

E
∫
|mn(x)−m(x)|2µ(dx)

ĥ2n
→ 0 (n→∞). (12)

We argue as in the proof of Theorem 1, where we use

E{f̂n(x)|Dn} =

∫
1

hn
·K

(
x− (y −mn(z))

hn

)
ν(dz, dy)

(where ν is the joint probability measure of (X,Y )) and
replace mn(Xn+i) by Yn+i − mn(Xn+i)). Then we obtain
weak consistency:∫

R
|f̂n(y)− f(y)| dy → 0

in probability. It follows from [30] that there exist weakly
universally consistent regression estimates, so for each distri-
bution of (X,Y ) we can find a sequence of bandwidths hn
(depending on this distribution) such that (12) holds. Observe
that this result does not require that X and Y − m(X) are
independent.

It is an open problem, whether the same result also holds for
a fixed sequence of bandwidths {hn}n and a fixed sequence
of regression estimates.

IV. THE LINEAR INTERPOLAND

In this section, we look at a very specific choice of mn, the
linear interpoland, when d = 1, and in addition, m : R→ R is
twice continuously differentiable and the distribution function
F of X satisfies for some a < b: F (a) = 0, F (b) = 1
and on (a, b), F is twice continuously differentiable with
first derivative bounded away from zero and with second
derivative uniformly bounded on (a, b). [Equivalently, µ has a
continuously differentiable density on [a, b] that is bounded
away from 0 on that interval.] These assumptions imply
that F−1 exists, has on (0, 1) a uniformly bounded second
derivative and that m◦F−1 is twice continuously differentiable

with uniformly bounded second derivative on (0, 1). This is an
exploratory example that illustrates how one can handsomely
beat the rates suggested in the remarks of the previous section
when N is large.

Two observations are crucial: first of all, the total variation
error is invariant under componentwise monotone transforma-
tions of X , if we wish to estimate the density of X . Secondly,
if µ is known, as in model (iii), then the probability integral
transform can be used and X can be replaced by F (X), where
F is the (known) distribution function of X . In particular, for
d = 1, we may in all cases assume, without loss of generality,
that X is uniformly distributed on [0, 1]. This is called the
canonical version of the problem.

The canonical version above corresponds to the case N =
∞, where we assume that F (i.e., µ) is explicitly known.
In the sequel we take a slightly more realistic stance and
assume instead that N > n4. Let FN be the empirical
distribution function for Xn+1, . . . , Xn+N , and let Qnm be
the linear interpoland of (FN (Xi),m(Xi)) (i = 1, . . . , n)
(where the first and the last linear part are extended to −∞ and
∞, respectively). Observe that (Qnm)(y) is well-defined for
y /∈ {FN (X1), . . . , FN (Xn)} even if FN (Xi) = FN (Xj) for
some i 6= j. For y ∈ {FN (X1), . . . , FN (Xn)} we require that
(Qnm)(y) is equal to some m(Xk) such that y = FN (Xk).
Let X(1), . . . , X(n) be the order statistics of X1, . . . , Xn, and
set

mn(x) =

 (Qnm) (FN (x)) , if X(1) ≤ x ≤ X(n),
m(X(1)), if x < X(1),
m(X(n)), if x > X(n).

Then

E

∫
|mn(x)−m(x)|2 µ(dx) = O

(
1

n3

)
. (13)

Consequently, if we demand that limn→∞ n3/2 · ĥN =∞ (so
that assumption (8) is satisfied), the estimate f̂N is weakly
L1–consistent.

Proof of (13). Let Q̄nm be the linear interpoland of
(F (Xi),m(Xi)) (i = 1, . . . , n). For x ∈ (a, b) set

ηn(x) =


F (X(1)), if F (x) ≤ F (X(1)),
F (X(k))− F (X(k−1)), if F (X(k−1)) < F (x)

and F (x) ≤ F (X(k)),
1− F (X(n)), if F (x) ≥ F (X(n)).

In case X ∈
[
X(1), X(n)

]
, η(x) is an upper bound on

the distances of F (x) to the two closests values among
{F (Xi) : i = 1, . . . , n}. Let x ∈ (a, b) be arbitrary. First we
assume x ∈ [X(1), X(n)]. In this case we have

|mn(x)−m(x)|
≤
∣∣(Qnm) (FN (x))−

(
Q̄nm

)
(FN (x))

∣∣
+
∣∣(Q̄nm) (FN (x))−

(
Q̄nm

)
(F (x))

∣∣
+
∣∣(Q̄nm) (F (x))−

(
m ◦ F−1

)
(F (x))

∣∣
=: T1,n + T2,n + T3,n.
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Since
m(X(k))−m(X(k−1))

F (X(k))− F (X(k−1))

=
m ◦ F−1(F (X(k)))−m ◦ F−1(F (X(k−1)))

F (X(k))− F (X(k−1))

= (m ◦ F−1)′(ξ)

for some ξ ∈ (F (X(k−1)), F (X(k))), Q̄nm is Lip-
schitz continuous with Lipschitz constant bounded by
supz∈(0,1)

∣∣∣(m ◦ F−1)′ (z)∣∣∣, from which we conclude

T2,n ≤ sup
z∈(0,1)

∣∣∣(m ◦ F−1)′ (z)∣∣∣ · sup
u∈R
|FN (u)− F (u)| .

By construction of Qnm and of Q̄nm, for any y ∈
[FN (X(1)), FN (X(n))] there exists ȳ ∈ R satisfying

(Qnm)(y) = (Q̄nm)(ȳ) and |y−ȳ| ≤ sup
u∈R
|FN (u)− F (u)| .

(In case y = FN (X(k)) + α · (FN (X(k+1)) − FN (X(k))) for
some k ∈ {1, . . . , n − 1} and some α ∈ (0, 1) we set ȳ =
F (X(k)) +α · (F (X(k+1))−F (X(k))).) Consequently, setting
y = FN (x) we get by using again the Lipschitz property of
Q̄nm:

T1,n = |(Q̄nm)(ȳ)− (Q̄nm)(y)|

≤ sup
z∈(0,1)

∣∣∣(m ◦ F−1)′ (z)∣∣∣ · sup
u∈R
|FN (u)− F (u)| .

Finally, to bound T3,n we observe that
(
m ◦ F−1

)
(u) is

equal to the value of the first term of the Taylor series of
m ◦ F−1 around u and evaluated at u, and that this Taylor
series polynomial p satisfies

Q̄n(p ◦ F ) = p.

Hence, setting u = F (x), it suffices to bound∣∣(Q̄nm) (u)−
(
Q̄n(p ◦ F )

)
(u)
∣∣ .

Since both expressions are linear interpolands of functions
at points with x-values F (Xi) (i = 1, . . . , n) and y-values
(m ◦ F−1)(F (Xi)) and p(F (Xi)), resp., their maximum
distance for u ∈

[
F (X(1)), F (X(n))

]
is bounded by the

distance between m ◦ F−1 and its Taylor series approximant
evaluated at the two x-points closest to u, which have distance
less than η(x) from X .
Summarizing the above results we get for x ∈ [X(1), X(n)]

|mn(x)−m(x)|
≤ 2 · sup

z∈(0,1)

∣∣∣(m ◦ F−1)′ (z)∣∣∣ · sup
u∈R
|FN (u)− F (u)|

+
1

2
sup

z∈(0,1)

∣∣∣(m ◦ F−1)′′ (z)∣∣∣ · ηn(x)2.

For x < X(1) we get (by using the Lipschitz property of
m ◦ F (−1))

|mn(x)−m(x)|
= |(m ◦ F−1)(F (X(1)))− (m ◦ F−1)(F (x))|

≤ sup
z∈(0,1)

∣∣∣(m ◦ F−1)′ (z)∣∣∣ · F (X(1))

and for x > X(n) we have

|mn(x)−m(x)| ≤ sup
z∈(0,1)

∣∣∣(m ◦ F−1)′ (z)∣∣∣ · (1− F (X(n))).

This implies

E

∫
|mn(x)−m(x)|2 µ(dx)

≤ const ·E
(

sup
u∈R
|FN (u)− F (u)|2

)
+ const ·E

(
ηn(X)4

)
+ const ·E

(
F (X(1))

3
)

+ const ·E
(
(1− F (X(n)))

3
)
.

Using the Dvoretzky-Kiefer-Wolfowitz inequality ([15]) we
can conclude

E

(
sup
u∈R
|FN (u)− F (u)|2

)
≤ 1

n3
+

∫ ∞
1/n3

P

{
sup
u∈R
|FN (u)− F (u)| >

√
t

}
dt

≤ 1

n3
+

∫ ∞
1/n3

2 · exp(−2Nt) dt

= O

(
1

n3

)
.

Furthermore using the fact that F (X1) is uniformly distributed
on [0, 1] we get

E
(
ηn(X)4

)
=

∫ ∞
0

4 · t3 ·P [ηn(X) > t] dt

≤ 4 ·
∫ 1

0

t3 ·P

[
∀i ∈ {1, . . . , n} :

F (Xi) /∈
[
F (X)− t

2
, F (X)

]
, F (X) >

t

2

]
dt

+ 4 ·
∫ 1

0

t3 ·P

[
∀i ∈ {1, . . . , n} :

F (Xi) /∈
[
F (X), F (X) +

t

2

]
, F (X) < 1− t

2

]
dt

= 4 ·
∫ 1

0

t3 · 2 ·
(

1− t

2

)n
dt

≤ 8 ·
∫ 1

0

t3 · exp

(
−n t

2

)
dt

≤ 384

n3

∫ 1

0

exp

(
−n t

2

)
dt = O

(
1

n4

)
,

where the last inequality follows by partial integration. Finally
we observe

E
(
(1− F (X(n)))

3
)

= E
(
F (X(1))

3
)

=

∫ 1

0

3 · t2 ·P [∀i ∈ {1, . . . , n} : F (Xi) > t] dt

≤
∫ 1

0

3 · t2 · e−n·t dt
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<
6

n3
= O

(
1

n3

)
.

�
Remark 6. For d > 1, we may assume that X has a copula
distribution (i.e., a distribution with uniform marginals). In this
case it is not necessary to assume that X has a density g.

V. APPLICATION TO SIMULATED DATA

In this section we illustrate the finite sample size perfor-
mance of our estimates by applying them to simulated data.
In our first example we set X = (X(1), X(2)) for independent
standard normally distributed random variables X(1) and X(2)

and choose Y = m(X) for

m(x1, x2) = 2 · x1 + x2 + 2.

In this case Y is normally distributed with expectation 2 and
variance 22 + 12 = 5. We estimate the density of Y by
the estimate introduced in Section 2, where we use a fully
data-driven smoothing spline estimate to estimate the linear
function m. For this purpose we use the routine Tps() from
the library fields in the statistics package R. For the weights
we use three different values: wn = 1 (in which case we use
only the real data), wn = 0 (in which case the estimate is
based only on the artificial data) and wn = n/(n + N) (in
which case we use real and artificial data and all data points
have the same weight). We set n = 200 and N = 800 and
choose the bandwidths by minimizing the L1–errors of the
estimate via comparing the estimated density with the true
density (so we assume that we have available an oracle which
chooses the optimal bandwidth, so that we can ignore effects
occuring because of inproper choice of the bandwidths). Fig.
1 shows the three estimates and the true density in a typical
simulation. Since the result of our simulation depends on the
randomly occuring data points, we repeat the simulation 100
times with independent realizations of the occuring random
variables and report in Fig. 2 boxplots of the occuring L1–
errors (where we approximate the integrals by Riemann sums
in order to compute the L1–errors approximately). Comparing
the boxplots in Fig. 2 we see that the median of the L1–errors
in case of the estimate which uses only real data (0.1097)
is nearly twice as big as the median of the L1–errors of the
estimate which uses only artificial data (0.0648). If we assign
the same weight to every data point it is even more smaller
(0.0612).

In our second example we set X = (X(1), X(2)) for
independent standard normally distributed random variables
X(1) and X(2) and choose Y = m(X) for

m(x1, x2) = x21 + x22.

Then Y is chi-squared distributed with two degrees of free-
dom. We define the estimate as in the first example. Again Fig.
3 shows the three estimates and the true density in a typical
simulation, and in Fig. 4 we compare boxplots of the L1–errors
of the estimate. From Fig. 4 we see that the mean L1–error
of the estimate with wn = 0 (0.1426) is well below the first
estimate with wn = 1 (0.2208). The median of the estimate
which uses real and artificial data is the smallest (0.1321).

−4 −2 0 2 4 6 8
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20

Density estimates (h_n=1.5, h_N=1)

density
w_n=1
w_n=0
w_n=n/(N+n)

Fig. 1. Density estimates in the first model
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15

0.
20

L1−error (n=200, N=800, h_n=1.5, h_N=1, rep=100)

Fig. 2. Boxplots in the first model

In Fig. 5 and Fig. 6 we repeat the same simulation choosing
X as a standard-normally distributed random variable and
m(x) = exp(x). In this case Y = m(X) is log-normally
distributed. Fig. 6 shows the same results as before. The
estimate which uses only real data is again the worst (0.2221).
If every data point has the same weight the mean L1–error
(0.1341) is smaller than if we use only artificial data (0.1402).

To examine the influence of the parameter N we set in the
third model n = 200 and N = 0, 400, 800, 1200, 1600. After
100 repetitions we calculate the empirical mean and standard
deviation of the approximated L1 error of the estimate where
wn = n

n+N . Both decrease when we raise the parameter N :
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Fig. 3. Density estimates in the second model
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Fig. 4. Boxplots in the second model

N 0 400 800 1200 1600
mean 0.2297 0.1496 0.1270 0.1134 0.1045

sd 0.0274 0.0171 0.0149 0.0134 0.0127

In this example the speed of decrease of the error does not
seem to get smaller for N up to 1600, which might be due
to the fact that our regression estimate of m(X) = exp(X)
is rather good.

Finally we illustrate the usefulness of our estimation
procedure by applying it to a density estimation problem in
a simulation model. Here we consider the load distribution
in the three legs of a simple tripod. More precisely, a static
force is applied on the symmetric tripod to induce mechanical
loading equivalent to the weight of 4,5 kg in its three legs.

0 2 4 6 8
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Density estimates (h_n=0.5, h_N=0.2)

density
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w_n=0
w_n=n/(N+n)

Fig. 5. Density estimates in the third model

●

●

real realart art

0.
10

0.
15

0.
20

0.
25

0.
30

L1−error (n=200,N=800, h_n=0.5, h_N=0.2, rep=100) 

Fig. 6. Boxplots in the third model

On the bottom side of the legs, force sensors are mounted to
measure the leg’s axial force. For a safe and stable standing
of the tripod, the legs are angled with α = 5◦ from the
middle axis of the connecting devise. Engineers expect that
if the holes where the legs are plugged in have a diameter
of 15 mm, a third of the general load should be measured in
each leg. Unfortunately, a gouching of exactly 15 mm is not
possible in the manufactering process. In the simulation we
assume that the diameters behave like a standard normally
distributed random variable with expectation 15 and standard
deviation 0.5. Based on the physical model of the tripod
we are able to calculate the resulting load distribution in
dependence of the three values of the diameter. Since in this
case the real density is unknown, we repeat the simulation
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Fig. 7. Density estimates in the fourth model

10.000 times to generate a high sample of relative loads. For
simplicity, we consider only one leg of the tripod. Application
of the routine density in the statistics package R to these
10.000 observed values leads to the solid line in Fig. 7. We
calculate our estimates as described before using 200 real and
800 artificial data. Again the estimates which use artificial
data achieve better results than the estimate with wn = 1.
The difference between the estimate with wn = 0 and the
estimate with wn = n/(N + n) is not visible.

VI. AN OUTLOOK

The consistency result gives us only general guidelines for
the joint choice of ĥN and mn. The rate of convergence of∫
|gn(y)−f(y)| dy needs to be studied in detail. This can only

be attempted if we specify the data-dependent weight function
wn. It is clear that the individual rates of∫

|fn(y)− f(y)| dy and
∫
|f̂N (y)− f(y)| dy

will form the basis of such a study.
Help can come from f̂N only if it performs well. Our

examples outlined a few possible situations. The discrete
analog of the previous section shows even more dramatically
the improvements one can expect if N is very large.

There is also a need to develop a suitable minimax theory
for our estimation problem for appropriate subclasses of
distributions of X and regression functions m.

Even further afield, one might consider vector-valued re-
gression functions m.

Finally, our generic estimate itself was kernel-based. It is
of interest to explore a nearest-neighbor or space partitioning
version for both mn and the definition of f̂N .

In this respect, [20] have embarked on a study of the
performance of density estimates based on those functions.
They obtained explicit rates of convergence under certain
smoothness assumptions.

APPENDIX A
PROOF OF THEOREM 1

We prove only the almost sure version of the Theorem 1.
The other part can be derived in the same way. Since∫

R
|gn(y)− f(y)| dy

≤ wn ·
∫
R
|fn(y)− f(y)| dy

+ (1− wn) ·
∫
R
|f̂N (y)− f(y)| dy

≤
∫
R
|fn(y)− f(y)| dy +

∫
R
|f̂N (y)− f(y)| dy,

it suffices to show∫
R
|fn(y)− f(y)| dy → 0 (14)

almost surely and∫
R
|f̂N (y)− f(y)| dy → 0 (15)

almost surely. (14) follows from [7], so it suffices to show (15).

As in the proof of Theorem 1 in [9] we conclude from
McDiarmid’s inequality (cf., [25]) that (15) is implied by

E

{∫
R
|f̂N (y)− f(y)| dy

∣∣Dn}→ 0 (16)

almost surely, which we show in the sequel.

Set (a)+ = max{a, 0} for a ∈ R. By Scheffé’s Lemma we
know ∫

R
|f̂N (y)− f(y)| dy

= 2 ·
∫
R
(f(y)− f̂N (y))+ dy

≤ 2 ·
∫
B

(f(y)− f̂N (y))+ dy + 2 ·
∫
Bc
f(y) dy

for any B ⊆ R, hence it suffices to show that we have for any
compact set B ⊆ R

E

{∫
B

(f(y)− f̂N (y))+ dy
∣∣Dn}→ 0 (17)

almost surely. Since

(a)+ ≤ |b|+ (a− b)+ for a, b ∈ R, (18)

this in turn is implied by

E

{∫
B

∣∣∣f̂N (y)−E
{
f̂N (y)|Dn

}∣∣∣ dy∣∣Dn}→ 0 (19)

almost surely and∫
B

(
f(y)−E

{
f̂N (y)|Dn

})
+
dy → 0 (20)

almost surely.
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In the first step of the proof we show (19). By Cauchy-Schwarz
and the inequality of Jensen we have

E

{∫
B

∣∣∣f̂N (y)−E
{
f̂N (y)

∣∣Dn}∣∣∣ dy∣∣Dn}
≤

√∫
B

1 dy

·E

{√∫
B

∣∣∣f̂N (y)−E
{
f̂N (y)

∣∣Dn}∣∣∣2 dy∣∣∣∣Dn
}

≤

√∫
B

1 dy

·

√
E

{∫
B

∣∣∣f̂N (y)−E
{
f̂N (y)

∣∣Dn}∣∣∣2 dy∣∣∣∣Dn}.
Using the theorem of Fubini and the conditional independence
of Ŷ1, . . . , ŶN we get

E

{∫
B

∣∣∣f̂N (y)−E
{
f̂N (y)

∣∣Dn}∣∣∣2 dy∣∣Dn}
=

∫
B

E

{∣∣∣f̂N (y)−E
{
f̂N (y)

∣∣Dn}∣∣∣2 ∣∣Dn} dy

≤
∫
B

1

N2 · ĥ2N
·
N∑
i=1

E

{
K2

(
y −mn(Xn+i)

ĥN

) ∣∣∣∣Dn} dy

=
1

N · ĥ2N
·
∫
B

∫
K2

(
y −mn(z)

ĥN

)
µ(dz) dy

=
1

N · ĥ2N
·
∫ ∫

B

K2

(
y −mn(z)

ĥN

)
dy µ(dz)

≤ 1

N · ĥN
·
∫ ∫

R
K2 (y) dy µ(dz)

=
1

N · ĥN
·
∫
R
K2 (y) dy → 0 (n→∞),

from which we conclude (19) via (1).

In the second step of the proof we show (20). Let B ⊆ R be
an arbitrary compact set, let ε > 0 be arbitrary and let An,ε
be defined as in the theorem. Then∫

B

(
f(y)−E

{
f̂N (y)|Dn

})
+
dy

=

∫
B

(
f(y)−

∫
1

ĥN
K

(
y −mn(x)

ĥN

)
µ(dx)

)
+

dy

≤
∫
B

(
f(y)

−
∫

1

ĥN
K

(
y −mn(x)

ĥN

)
· 1An,ε(x)µ(dx)

)
+

dy.

Since K is the naive kernel we have for any x ∈ An,ε in case
that ĥN > ‖mn −m‖∞,An,ε

K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
=

1

2

⇔ m(x)− ĥN + ‖mn −m‖∞,An,ε

≤ y ≤ m(x) + ĥN − ‖mn −m‖∞,An,ε
⇒ m(x)− ĥN + (mn(x)−m(x))

≤ y ≤ m(x) + ĥN − (m(x)−mn(x))

⇔ mn(x)− ĥN ≤ y ≤ mn(x) + ĥN

⇔ K

(
y −mn(x)

ĥN

)
=

1

2

which implies

K

(
y −mn(x)

ĥN

)
≥ K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
.

Using this and (18) we conclude that we have in case ĥN >
‖mn−m‖∞,An,ε (which happens for n sufficiently large with
probability one by assumption (5))∫

B

(
f(y)−

∫
1

ĥN
K

(
y −mn(x)

ĥN

)

· IAn,ε(x)µ(dx)

)
+

dy

≤
∫
B

(
f(y)−

∫
1

ĥN
K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)

· IAn,ε(x)µ(dx)

)
+

dy

≤
∫
B

(
f(y)−

∫
1

ĥN

·K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
µ(dx)

)
+

dy

+

∫
B

∫
1

ĥN
K

(
y −m(x)

ĥN − ‖mn −m‖∞,An,ε

)
· IAcn,ε(x)µ(dx) dy

≤
∫
B

(
f(y)−

∫
R

1

ĥN

·K

(
y − z

ĥN − ‖mn −m‖∞,An,ε

)
· f(z) dz

)
+

dy

+
ĥN − ‖mn −m‖∞,An,ε

ĥN
·
∫
R
K (y) dy

∫
1Acn,ε(x)µ(dx).

By Lebesgue’s density theorem (cf., e.g., Theorem 2 or
Theorem 3 in [10]) and (1) and (5) we know that∫

R

1

ĥN
K

(
y − z

ĥN − ‖mn −m‖∞,An,ε

)
· f(z) dz

=
ĥN − ‖mn −m‖∞,An,ε

ĥN
·
∫
R

1

ĥN − ‖mn −m‖∞,An,ε

·K

(
y − z

ĥN − ‖mn −m‖∞,An,ε

)
· f(z) dz

→ 1 · f(y) = f(y) (n→∞)
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for almost all y ∈ R with probability one, which implies (via
the dominated convergence theorem)∫

B

(
f(y)−

∫
R

1

ĥN

·K

(
y − z

ĥN − ‖mn −m‖∞,An,ε

)
· f(z) dz

)
+

dy

→ 0

almost surely. Furthermore,

ĥN − ‖mn −m‖∞,An,ε
ĥN

·
∫
R
K (y) dy∫

1Acn,ε(x)µ(dx)

≤ 1 · 1 · µ(Acn,ε).

Summarizing the above result we get

lim sup
n→∞

∫
B

(
f(y)−E

{
f̂N (y)|Dn

})
+
dy ≤ ε

almost surely, and with ε→ 0 this implies (20). The proof is
complete. �
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